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Abstract

The design of contemporary multi-core architectures has progressively diversified from more conventional
architectures. Instead of simply “gluing” together a number of slightly modified existing uniprocessor cores,
a new class of multi-core architectures is emerging, which is the results of a more radical exploration of the
multiprocessor architecture design space. An important feature of these new architectures is the integration of
a large number of simple cores with software-managed embedded memory, in place of a hardware managed
cache hierarchy. These two subsystems communicate through a powerful on-chip interconnection network,
which is capable of providing a very high bandwidth. However, what remains an open question is what the
programming model of this new class of multi-core architectures should be. In this report we present an im-
plementation of the LU application for Cyclops-64, an architecture that fits into the above category. Through
this experience, we identified a number of program developing methodologies that are extensively used on
cache-based parallel systems to improve performance, but behave poorly on Cyclops-64. These include algo-
rithmic design, the interaction between the high-level algorithm and the architecture and architecture specific
optimizations. Moreover, we identified methodologies that improve performance on both kind of systems.
Along with the description of our algorithm for LU and the experimental evaluation, we analyze and explore
the impact of those methodologies on the performance of LU and provide alternatives whenever they fail on
our architecture. As a result, we are able to achieve a performance of 11.19 GFlops with double-precision
floating point numbers, even for a small matrix of size 512 × 512. To our knowledge, this is the highest
GFlops per chip rate reported so far for this application.
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1 Introduction

Large scale parallel systems are nowadays increasingly used to solve important scientific and engineering prob-
lems. Therefore, the performance that a specific architecture can deliver for solving these problems can be of
great importance. In many of these applications the problem of quickly solving dense linear systems arises.
Examples include the design of airplane wings, the flow of gases or liquids around solid objects, diffusion of
solid objects in liquids and diffusion of light through small particles. Although for some problems the linear
systems that emerge are symmetric and more efficient methods can be used to solve them, in the general case
the LU decomposition algorithm is employed to perform that task. The algorithm itself is quite simple, as it only
decomposes the matrix that describes the linear system into a product of a lower and an upper triangular matrix.
Solving the linear systems described by these new matrices is then a trivial task.

Due to its importance to scientific computing, it comes as no surprise that the LU decomposition is a well
studied algorithm and many variations to it have been proposed, both for uni- and multi-processor systems.
These include recursive methods [9], blocking algorithms [10, 18], pipelining and hyperplane (or wavefront)
solutions [12]. The significance of this application is further underlined by the fact that it is used as the primary
means to characterize the performance of high-end parallel systems and determine their rank in the Top 500
list [16].

Naturally, all of the above algorithms are designed to exploit the characteristics of the underlying architecture
in the best possible way. Despite their differences in their implementation, contemporary parallel architectures
share similar characteristics at almost every level. For example, they feature a two- or three-level hardware-
managed cache hierarchy and each node of the system has it’s own memory, creating either a distributed or
distributed-shared memory address space. As a result, algorithms for these systems have to be explicitly designed
to take advantage of memory locality, in order to achieve high performance.

Lately, a new trend in parallel computer architecture is gaining importance and starts to show promising
results. Multi-core-on-a-chip systems have significantly different characteristics, compared to previous architec-
tures. They integrate a large number of processing cores in a single chip and instead of a hardware-managed cache
hierarchy, they usually include a software-managed memory hierarchy, visible to the programmer. Cyclops-64 [6]
and the recently announced 80-core Intel processor [17] are examples of such architectures. The challenge for
these architectures is to show that they can outperform previous designs for problems of immediate interest to
the computing community. If this can be achieved, they will have a chance to become the computing platforms
of the near future.

These platforms however have currently a significant disadvantage, compared to more traditional architec-
tures. The latter have been thoroughly studied for many years and techniques that allow applications to take
full advantage of the underlying hardware have been developed. On the other hand, multi-core architectures are
relatively new and such general directions for application development do not exist yet.

In this report we present an implementation of the LU decomposition algorithm that targets a single Cyclops-
64 chip, a multi-core architecture with a software-managed memory hierarchy. Through this implementation, we
identified a number of programming methodologies that are extensively used on cache-based parallel systems
to improve performance, but behave poorly on multi-core architectures. Moreover, we identified methodologies
that improve performance on both kind of systems. Specifically:
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• We show how partitioning the original matrix into blocks, in order to assign them to processors, is influ-
enced by the assumption that the underlying architecture has a cache. This scheme does not fit our case
and we provide an alternative Dynamic Repartitioning Algorithm, in conjunction with Recursion on the
Diagonal Block and Processor Adaptation.

• The methodology to update the elements within each block also relies on the existence of a cache. Due to
the lack of a cache on Cyclops-64, we use instead the next level of high-speed storage, which is the register
file. We show that applying register tiling in an application-aware manner, instead of relying on the static
semantics of a loop, can provide a huge increase in performance.

• We verify that instruction scheduling on Cyclops-64 is extremely important, due to the in-order execution
engine of the chip and can further improve performance.

• The result of applying all of our optimizations allows us to achieve an extremely high performance on the
chip. The 11.19 and 21.92 GFlops achieved for a 512 × 512 and 1024 × 1024 matrix respectively are, to
our knowledge, the highest reported GFlops per chip rates so far.

The rest of this report is organized as follows: In Section 2, we describe the Cyclops-64 architecture. In Sec-
tion 3 we describe the high-level algorithm that is used in most blocking implementations of LU. In Section 4 we
introduce our dynamic repartitioning algorithm for defining the number and size of each block. In Section 6 we
present how register tiling can significantly improve performance. In Section 7 we further improve performance
by better scheduling instructions at the application level. In Section 8 we present the results of our experimental
evaluation, whereas in Section 9 we present related work. Finally, Section 10 concludes this report and gives
some directions for future work.

2 The Cyclops-64 Architecture

The Cyclops-64 (C64) chip is based on a multi-core-on-a-chip design, featuring 80 processors, each with two
thread units (TUs). The design of the processor can be seen in Figure 1. Each processor is further equipped with
one floating point unit and two SRAM memory banks of 32KB each. A 32KB instruction cache, not shown in
the figure, is shared among five processors. The C64 chip has no data cache. Instead a portion of each SRAM
bank can be configured as scratchpad memory (SP). The remaining sections of SRAM are combined together,
to form the global memory (GM), which is uniformly addressable from all TUs. All TUs and SRAM banks are
connected through a 96-port crossbar network, which provides a bandwidth of 4GB/s per port. This accounts to a
total of 384GB/s on each direction. This huge bandwidth supports both, the intra-chip communication, as well as
the six routing ports that connect each C64 chip to its nearest neighbors in the system. The complete C64 system
is built out of tens of thousands of C64 processing nodes, arranged in a 3-D mesh topology. Each processing node
consists of a C64 chip, external DRAM, and a small amount of external interface logic. This system incarnates the
next generation of the Cyclops cellular architecture, which is designed to serve as a dedicated petaflop compute
engine for running high performance applications.

The C64 architecture represents a major departure from mainstream microprocessor design in several aspects.
The C64 chip integrates processing logic, embedded memory and communication hardware in the same piece of
silicon. However, it provides no resource virtualization mechanisms. For instance, execution is non-preemptive
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Figure 1: The architecture of a Cyclops-64 node.

and there is no hardware virtual memory manager. The former means that the C64 microkernel will not interrupt
the execution of a user application, unless an exception occurs. The latter means the three-level memory hierarchy
of the C64 chip is visible to the programmer. From the processing core standpoint, a thread unit is a simple 64-bit,
single issue, in-order RISC processor with a small instruction set architecture, operating at a moderate clock rate
(500MHz). Nonetheless, it incorporates efficient support for thread level execution. For instance, a thread can
stop executing instructions for a number of cycles or indefinitely and can be woken up in a few tens of cycles by
another thread through a hardware interrupt. C64 also provides an extremely fast hardware implementation of
the barrier synchronization primitive.

3 The Classic Block-LU Algorithms

In this paragraph, we give a short overview on how most classic blocking algorithms for LU work. During the
initial phase of our research on the topic, we considered using one of the well known LU algorithms and modify
it, so that it better maps to the C64 architecture. As we will see, however, this would not be as easy as initially
thought. The first algorithm that we considered was the Linpack benchmark [1, 8]. Since this implementation
is not parallelized, we focused our attention on High-Performance Linpack (HPL) [10]. This implementation
has been developed mainly for distributed-memory architectures, although it can also run on shared-memory
systems. However, this benchmark requires an implementation of MPI [15], which is currently not available
on C64. Moreover, since our initial implementation targets only one chip, even if the MPI interface would be
available, the overhead of using it in our case would be significant.

We finally opted for a parallel implementation that specifically targets shared-memory systems, which is the
LU in the SPLASH-2 benchmarks suite [18]. This implementation directly uses threads to express parallelism,
which is extremely convenient in our case. The C64 tool-chain provides the TiNy-Threads run-time library [6],
which provides an API to manage threads that execute on a C64 chip. The library directly maps each thread
that is created to a TU, hence the associated cost of managing parallelism is kept extremely low. Creating a first
version of the application for C64 was quite easy, since it only required the modification of a few predefined
macros that create and join threads, as well as those that handle barriers.

Although each of the above implementations targets a different set of architectures, the algorithms used at
the highest level are quite similar. The main concept is to partition the matrix into smaller blocks with a fixed
size, each one being processed by one processor. The SPLASH-2 implementation divides the matrix into blocks
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Figure 2: How the classic algorithms define blocks and progress in each step.

that fit into the L1 data cache of a processor. A typical block size that gives good results is 16 × 16. The HPL
algorithm can be thought of having one more level of block creation. Since it targets mainly distributed-memory
systems, the matrix is initially divided into a number of blocks, equal to the number of nodes on the system. Each
node receives a block, which creates a first level of memory locality. Similarly to the previous case, these blocks
have a constant size. Within each node, these blocks are further divided into smaller blocks, again of a fixed size,
in order to take advantage of the cache hierarchy.

There is, however, one important difference between the implementation of HPL and SPLASH-2. The first
one uses the Level 3 Basic Linear Algebra Subprograms (BLAS-3) [7, 13], in order to update the elements within
each block. These routines perform operations between vectors and matrices. The latter uses only the DAXPY()
Level 1 BLAS routine, which updates a vector with a second vector, the latter having been multiplied with a
scalar value, i.e., x← x+α ·y, where x, y are vectors and α is a scalar. The drawback of these implementations,
for the architecture under consideration in this report, is the fact that they both use BLAS routines to perform the
basic operations within each block. These routines have been specifically designed to take advantage of the data
cache hierarchy, since this is the dominant computer system design nowadays. However, multi-core architectures
like C64, Cell, ClearSpeed CSX and others employ an explicitly programmable local memory storage. BLAS
routines map poorly on such multi-core chips, resulting in very low performance, as we will see later.

To continue our discussion and compare the above algorithms with the one we propose in the next section,
we include Figure 2 as an example. We assume that the initial matrix is divided into smaller blocks. On a shared-
memory architecture, the whole matrix is assumed to be in the globally accessible memory address space. On a
distributed system, each block is on a different node. Blocks with the same color can be executed in parallel. The
algorithm starts by processing the diagonal block (dark red color) on one processor, while all other processors
wait on a barrier. After this block finishes, the blocks on the same row and column with the diagonal block can
be processed in parallel (dark orange color). Each processor will update a few of these blocks and when it has no
more blocks to process in this phase, it waits again on a barrier. Finally, all other (inner) blocks can be processed
(light orange color), which completes the first step of the algorithm. The second step starts by moving to the
next diagonal block to update it. Notice that the first row and column of blocks are not processed now. The
blocks on the same row and column with the new diagonal block are the next ones to be processed. The second
step completes with the processing of all other colored blocks. The algorithm continues by moving each time to
the next diagonal block, until it processes the last one. After each step, one more row and column of blocks is
discarded and not processed in the next step.

Despite its simplicity, the algorithm at the block-level has an important drawback. On a shared-memory
system, the number of available blocks in each parallel phase is usually not exactly divisible by the number of
processors. This creates a load imbalance at each step, with the associated overhead accumulating over time. On
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Figure 3: How the dynamic algorithm defines blocks and progresses in each step.

a distributed system, the processors that processed the diagonal block and the blocks that share the same rows and
columns with it, are left idle on all the following steps. However, the exploitation of the cache on a per processor
basis compensates at a large degree for this loss in both of the above cases. For the rest of this report, we will
refer to the SPLASH-2 implementation of LU as the Base Implementation, since it is the one we started with.

4 The Dynamic Block-LU Algorithm

In the previous section we identified how two features of applying a blocking algorithm for LU have been im-
plicitly influenced by the fact that the algorithms were to be executed on cache-based architectures. The first one
is the use of a fixed size for each block, in order for the block to fit into local memory and/or into the cache of
each processor. The second one is the use of the BLAS routines to process each block, which are specifically
designed to take advantage of the cache.

In this section, we argue that both these decisions are a poor choice for modern multi-core architectures that
lack a cache-hierarchy. With respect to the BLAS routines, they rely on the fact that accessing one element in
memory, fetches more elements into the cache of a processor. Consequently, these elements can be accessed
faster, if immediately used. This is however not true for the architectures we examine, where access to each
element has to reach main memory through the interconnection network. As a result, every access to an element
is more expensive and we should try to find alternative ways to minimize them. This is also the reason why we
chose to use the Non-Contiguous version of the SPLASH-2 implementation. The second alternative (Contiguous)
accesses elements in each block through an auxiliary table, requiring two memory accesses to load each element.
On the other hand, using a fixed size for each block creates imbalance in the distribution of work. Combined with
the fact that accessing elements in main memory is much slower, the imbalance caused at the end of each step of
the algorithm has a greater effect on the total execution time.

In the rest of this section, we will present an alternative method to divide the matrix into the blocks that will
be distributed among the available processors, which we will refer to as Dynamic Repartitioning. For the time
being, we will continue using the BLAS-1 DAXPY() routine, in order to update the elements of each block.
According to our previous analysis, our main goal should be to improve load balance among processors. In order
to achieve this goal, we will return to the description of the blocking algorithm in the previous section and we
will assume that we use 16 processors. The algorithm starts by processing the diagonal block. After it finishes,
it processes all blocks on the same row and column with the diagonal block. These blocks can all be processed
in parallel. Therefore, we should ideally have 16 blocks of equal size, in order to achieve the best possible load
balance in this example. This can be achieved if we divide the initial matrix into 9 equally sized blocks on each
side. This is depicted in Figure 3. After we process the diagonal block, 8 blocks remain on the same row and 8
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blocks on the same column with that block (dark orange color). Hence, all 16 processors can be kept busy. This
algorithm of partitioning the matrix into blocks has one more advantage. As can be seen in the same figure, the
number of blocks that remain (light orange color) after we process all the above blocks are 8 × 8 = 64, which
can be exactly divided by the number of available processors. This means that we can statically define which of
these blocks will be executed on each processor and we can achieve again excellent load balance.

As a result, the number of blocks and the size of each block are not defined by the parameters of the memory,
as on a cache-based system, but rather by the number of processors that are used to execute the algorithm. In
order to express the above description more formally, we assume that we have a matrix of size N ×N and that
the number of available processors is P . In this case the matrix is divided into B = (P/2) + 1 blocks on each
dimension. As a result, the size of each block on each dimension should be NB = N/B. Obviously, the last
result might not be an integer. The way we handle this case is as follows. We define the first block, which will be
the diagonal block in that step, to have a size equal to the floor of the above division (bN/Bc). Since processing
blocks in parallel can start only after the diagonal block has been processed, the latter should finish as soon as
possible. Therefore, using the smallest size that also leads to a load balanced execution in the parallel phases,
benefits our algorithm. If NR is the remainder of the above division, it can have a value ranging from zero up to
B − 1. We define the size of the next NR blocks to be equal to the ceiling of the above division (dN/Be). The
rest of the blocks will have again a size equal to the floor of the same division. As a result, each block can have a
size of bN/Bc or bN/Bc+ 1 on each dimension. This means that the total size of each block is almost equal to
the size of each other block.

After applying the above algorithm to create the blocks and processing the diagonal block, we are left with
P/2 blocks on the same row andP/2 blocks on the same column with the diagonal block. Hence, allP processors
have exactly one block to process and all of them have almost the same size. In the second parallel phase, where
all inner blocks are processed, we have a total of (P/2) · (P/2) = P 2/4 blocks. This number can always be
exactly divided with P , therefore each processor has to be assigned P/4 blocks in this phase. From this result,
we conclude that our algorithm can be applied when P can be exactly divided by four. With a simple extension,
we managed to apply the algorithm for every even number of processors. However, this is currently not the focus
of this report, therefore we will not describe further this extension.

Although we managed to balance the work load in the first step of our algorithm, there remains an important
issue. If we continue the execution of the algorithm with the current distribution of elements among blocks, we
will have a load imbalance in all the following steps of the algorithm, since there will not be enough blocks for
all processors. The solution we adopted for this problem is simple and can be seen in Figure 3. Before each
step of the algorithm begins, we repartition the remaining part of the matrix according to the same algorithm.
For the same example we used above, we would divide the remaining part of the matrix again into 9× 9 blocks.
Obviously, this creates at each step the same number of blocks, which results in good load balance, and only
assigns less elements to each block. This is also depicted in the above figure.

In the first steps of the algorithm, each block might be quite large. This is not a problem for the blocks that
are processed during the parallel phases, since all processors will be busy. However, it is an important drawback
for the diagonal block. The larger the diagonal block, the more time it requires to be processed and the later the
parallel phases can be invoked. To explain the problem better, assume that we have a 1000 × 1000 matrix and
16 processors. This would mean that we have to create 9 blocks on each direction and the diagonal block would
have a size of b1000/9c = 111. The classic algorithm would create a much smaller diagonal block, typically
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Figure 4: The number of elements in each block for the classic and dynamic algorithm.

16 × 16, which is about 7 times less. Since processing the diagonal block is performed by only one processor,
this becomes a significant bottleneck in our algorithm. Fortunately, there is a simple solution to this problem too.
The operation performed in the diagonal block is actually a serial version of LU. To remove the bottleneck, we
can recursively apply our parallel algorithm on the diagonal block. This is also depicted in the left most part of
Figure 3, where the diagonal block is magnified and the same algorithm is applied. Using the same example as
above, we would apply our parallel algorithm to the 111 × 111 diagonal block of the initial matrix and divide
it into 9 × 9 blocks. This would give a new diagonal block of b111/9c = 12. The recursion stops when the
number of elements in the last created diagonal block becomes smaller than the value (P/2) + 1, because this
means that if we applied one more level of recursion, some of the newly created blocks would have a size of zero.
In the example we used, we can apply one more level of recursion. The new diagonal block would have a size
of b12/9c = 1, which is trivial to calculate. Returning from this level of recursion, we can use all processors
to solve the 12 × 12 block. Finally, we return to the last level and again using all processors, we calculate the
111 × 111 block. After this step completes, we can continue to the parallel phases in the initial matrix. During
the next step of our algorithm, when we repartition the matrix, if the new diagonal block is large enough, we can
apply the same procedure of recursions.

The opposite problem appears as we move towards the lower-right end of the matrix. Step after step, the
part of the matrix that has to be processed becomes smaller. In the first implementation of our algorithm, this
last part was calculated serially, after its size became less than (P/2) + 1. However, using a large number of
processors would leave a large portion of the matrix to be updated serially. In order to overcome this problem,
we modified our algorithm. After reaching the last part of the matrix we simply divide the number of available
processors by two. This allows each block to have a size larger than zero in the next step. Hence, we continue
using the parallel algorithm. As we move further and the last part becomes again small enough, we divide again
the number of available processors by two and continue, until only one processor is left. This allows us to process
in parallel the whole matrix. We refer to this optimization as Processor Adaptation. Notice that this optimization
can also be applied when recursively calling our parallel algorithm for the diagonal block, as long as the number
of processors is restored, each time we leave a level of the recursion.

One more optimization that can be applied, relies on the fact that the P/4 inner blocks that each processor
has to update can be statically assigned to it. Therefore, we can choose the blocks to be continuous and combine
them into a larger block. As a result, we need to call only once the function that is used to update the inner
blocks, instead of P/4 times. In the base implementation this is not possible. Since the number of blocks that
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have to be processed changes after each step, they have to be assigned dynamically to the processors. Moreover,
the total number of blocks is much larger, since the block size is chosen to be small. As a result, the overhead of
calling functions is considerably higher in this case. As we will see in a later section, the best way to combine
inner blocks in our algorithm is to use blocks that are on the same column.

A final and more detailed example of how we divide a matrix into blocks and how many elements each block
contains can be seen in Figure 4. For this example, we assume that we have a matrix with a size of 22 × 22
and 8 processors. On the left part of the figure, we have applied blocking with a size of 4 × 4. As can be seen,
there is a remainder at the end of both dimensions, which leads to the creation of smaller blocks. After the first
diagonal block has been processed, all 8 processors will be used to update blocks of the first row and column in
the matrix. However, the two smaller blocks on the same row and column will have to be updated in a second
pass and only two processors can be used for this. The remaining six processors have no useful work to do at this
point. On the right part of the figure, we demonstrate how our dynamic repartitioning algorithm would divide the
matrix. It will create (P/2) + 1 = (8/2) + 1 = 5 blocks. The diagonal block will have a size of b22/5c = 4.
The remainder of this division is 22 mod 5 = 2, which means that the following two blocks will have a size of
d22/5e = 5. Finally, the remaining blocks will have again a size of 4. As can be seen, there are blocks with
dimensions 4× 4, 4× 5, 5× 4 and 5× 5. Although these differences seem significant, proportionally to the size
of each block in this example, their importance diminishes as the size of the matrix grows, which explains why
we can achieve better load balance.

Figure 5 presents the results of applying the dynamic repartitioning algorithm. Since one C64 chip has in the
default configuration only 2.5MB of SRAM available, only small matrices can fit into it. Therefore, we used a
matrix of size 512 × 512. For the base implementation we used the default block size of 16 × 16, which also
proved to be the best choice. This implementation manages to closely follow the dynamic algorithm up to about
16 TUs. However, its performance remains unchanged after using 32 or more TUs. In contrast, the dynamic
repartitioning algorithm scales much better after that point, obtaining 1.81 GFlops on 128 TUs, which is about
3.5 times better, compared to the base implementation. This result verifies that our approach up to this point is
valid and can be used as a solid base for further improvements.
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Figure 5: The performance of the base implementation and the dynamic repartitioning algorithm.
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1 vo id DAXPY( dou b l e ∗A, d oub l e ∗B , do ub l e X, long N)
2 {
3 long i ;
4
5 f o r ( i = 0 ; i < N; i ++) {
6 A[ i ∗ S t r i d e ] += X ∗ B[ i ∗ S t r i d e ] ;
7 }
8 }

Figure 6: The source code of the DAXPY() function in C.

5 Analysis of Memory Operations in the Dynamic Block-LU Algorithm

Despite the differences between the classic and the dynamic LU algorithms, in defining the number and the size
of blocks, the methods used to update the elements of each block remain the same in both cases. In this section
we analyze the behavior of these methods, with respect to the number of loads and stores required to implement
the algorithm. This is quite important, since the Cyclops-64 architecture has a characteristic memory hierarchy,
which elevates the importance of data transfers to an extremely high level. Moreover, this will prove very useful
later (Section 6), when we will introduce alternate methods to update each block and compare them to the original
ones. As we will see, reusing as much as possible data that has been already loaded into registers, can lead to
reduced data transfers and boost performance by an order of magnitude.

It is also worth to mention at this point, that the base implementation operates on each row of the matrix.
More specifically, the DAXPY() routine updates each row, using the rows above it, which is a good choice for
the targeted architectures. The C language stores matrices by row and accessing an element will automatically
load more elements of the same row into the cache. Initially, we used the same convention in our algorithm.
However, for reasons that will become clear in Section 7, we decided to change this behavior and instead process
the matrix by columns. If the matrix is available from another application, we only have to load it transposed
into memory, in order to get the same results with the base implementation. Moreover, when using DAXPY(),
we now have to use the stride of the matrix, to access the correct elements in each column. Initially, this slightly
reduced performance, but was extremely important to finally improve it.

5.1 The ProcessDiagonalBlock() Function

The diagonal block A in a given repetition is processed by the function ProcessDiagonalBlock(). Let us
assume that the diagonal block is of size N ×N . Recall that with the current implementation, the diagonal block
always has the same length on both dimensions. The function uses each column i to update columns i+ 1 to N .
The code of the function is depicted in Figure 7. It consists of two nested loops, with the main computation being
performed by the function DAXPY(). The general operation of the DAXPY() function is to update a vector with
a second vector, the latter having been multiplied with a scalar value, i.e., x ← x + α · y, where x and y are
vectors and α is a scalar. The code for the DAXPY() function is depicted in Figure 6.

In order to calculate the number of loads and stores performed in this code, we start with a single repetition
of the inner loop in Figure 7 (lines 6-9). At Line 7 the algorithm has to load elements A[i][j] and A[i][i],

9



1 vo id P r o c e s s D i a g o n a l B l o c k ( do ub l e ∗∗A, long N)
2 {
3 long i , j ;
4
5 f o r ( i = 0 ; i < N; i ++) {
6 f o r ( j = i + 1 ; j < N; j ++) {
7 A[ i ] [ j ] /= A[ i ] [ i ] ;
8 DAXPY(&A[ i + 1 ] [ j ] , &A[ i + 1 ] [ i ] , −A[ i ] [ j ] , N−i −1);
9 }

10 }
11 }

Figure 7: The source code of the ProcessDiagonalBlock() function in C.

in order to divide them. An obvious optimization is to keep the new value of A[i][j] in a register, so that
it can be used in the call to the DAXPY() function. We verified that the compiler in the current tool-chain
for Cyclops-64, actually performs this optimization. Eventually, however, this value has to be written back to
memory, hence a store instruction is required. Within the DAXPY() function, each element of the first vector
and the corresponding element of the second vector have to be loaded into registers, so as to perform the required
calculations on them. The scalar value, however, is already in a register, as previously mentioned. Therefore, no
load instruction has to be issued for it. After all calculations are performed, the new value has to be stored in the
first vector. For each repetition of the inner loop, DAXPY() has to process N − i − 1 elements (Line 8). As a
result, the total load and store operations for one iteration of the inner loop are:

Loads per inner loop repetition = 2 + 2 · (N − i− 1) = 2 · (N − i)
Stores per inner loop repetition = 1 + (N − i− 1) = (N − i)

However, this loop is executed N − i− 1 times for each iteration of the outer loop. As a result, the total load
and store operations for an iteration of the outer loop are:

Loads per outer loop repetition = 2 · (N − i) · (N − i− 1)

Stores per outer loop repetition = (N − i) · (N − i− 1)

Finally, the total number of loads and stores in the function can be obtained, if we sum up the number of
loads and stores per iteration of the outer loop. Notice that in the following sum, the upper bound for i is equal
to N − 2, since for N − 1, the inner loop will not be executed:

Loads =
N−2∑
i=0

2 · (N − i) · (N − i− 1) = 2 ·
N−2∑
i=0

(N − i) · (N − i− 1)

Stores =
N−2∑
i=0

(N − i) · (N − i− 1)

10



Hence, it is enough to find a closed form for the expression:

N−2∑
i=0

(N − i) · (N − i− 1) =
N−2∑
i=0

(N2 − i ·N −N − i ·N + i2 + i) =

=
N−2∑
i=0

[
(N2 −N)− (2 ·N − 1) · i+ i2

]
=

N−2∑
i=0

(N2 −N)−
N−2∑
i=0

(2 ·N − 1) · i+
N−2∑
i=0

i2 =

=(N2 −N) · (N − 1)− (2 ·N − 1) · (N − 1) · (N − 2)
2

+
(N − 1) · (N − 2) · (2 ·N − 3)

6
=

=N · (N − 1) · (N − 1)− (N − 1) · (N − 2) ·
(

2 ·N − 1
2

− 2 ·N − 3
6

)
=

=N · (N − 1) · (N − 1)− (N − 1) · (N − 2) ·
(

6 ·N − 3
6

− 2 ·N − 3
6

)
=

=N · (N − 1) · (N − 1)− (N − 1) · (N − 2) ·
(

4 ·N
6

)
=

=N · (N − 1) ·
[
(N − 1)− 2

3
· (N − 2)

]
= N · (N − 1) ·

[
3 ·N − 3

3
− 2 ·N − 4

3

]
=

=N · (N − 1) · N + 1
3

=

=
N · (N2 − 1)

3

Which gives the final result:

Loads =
2 ·N · (N2 − 1)

3

Stores =
N · (N2 − 1)

3

5.2 The ProcessBlockOnRow() Function

The function ProcessBlockOnRow() is used to handle blocks that share the same rows with the diagonal
block. This function is similar to the ProcessDiagonalBlock() function, with the exception that each
block might not have the same number of rows and columns. Figure 8 depicts the code for the function, for a
block that has N rows and M columns. Variable A refers to the block being processed in this function and D
refers to the diagonal block, which has previously been processed by ProcessDiagonalBlock(). Notice
that the difference between the two functions are actually the boundaries of the inner loop.

Consequently, the number of loads and stores required in this function can be calculated in the same manner.
However, each iteration of the outer loop executes now M iterations of the inner loop, instead of N − i− 1. As
a result, the equations to calculate the number of loads and stores now become:
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1 vo id ProcessBlockOnRow ( do ub l e ∗∗A, d oub l e ∗∗D, long N, long M)
2 {
3 long i , j ;
4
5 f o r ( i = 0 ; i < N; i ++) {
6 f o r ( j = 0 ; j < M; j ++) {
7 A[ i ] [ j ] /= D[ i ] [ i ] ;
8 DAXPY(&A[ i + 1 ] [ j ] , &D[ i + 1 ] [ i ] , −A[ i ] [ j ] , N−i −1);
9 }

10 }
11 }

Figure 8: The source code of the ProcessBlockOnRow() function in C.

Loads =
N−1∑
i=0

2 · (N − i) ·M = 2 ·M ·
N−1∑
i=0

(N − i)

Stores =
N−1∑
i=0

(N − i) ·M = M ·
N−1∑
i=0

(N − i)

Notice that due to the different boundaries of the inner loop, the latter is executed even when i reaches the
value N − 1, in contrast to the function ProcessDiagonalBlock(). Therefore, the upper limit in the above
sums must be corrected accordingly. The above expression can be easily simplified:

N−1∑
i=0

(N − i) =
N−1∑
i=0

N −
N−1∑
i=0

i = N2 − N · (N − 1)
2

=
2 ·N2 −N2 +N

2
=
N · (N + 1)

2

Which gives the final result:

Loads =
2 ·M ·N · (N + 1)

2
= M ·N · (N + 1)

Stores =
M ·N · (N + 1)

2

5.3 The ProcessBlockOnColumn() Function

The function ProcessBlockOnColumn() is used to handle blocks that share the same columns with the
diagonal block. Similarly to the function ProcessBlockOnRow(), each block might not have the same
number of rows and columns. Figure 9 depicts the code for the function, for a block that has N rows and M
columns. Again, A refers to the block being processed in this function and D refers to the diagonal block.

Each column i is used to update columns i + 1 to M . Two differences exist, with respect to the previous
two functions. The first one is that no division between elements is required. This, however, affects the call to

12



1 vo id ProcessBlockOnColumn ( do ub l e ∗∗A, d oub l e ∗∗D, long N, long M)
2 {
3 long i , j ;
4
5 f o r ( i = 0 ; i < M; i ++) {
6 f o r ( j = i + 1 ; j < M; j ++) {
7 DAXPY(&A[ 0 ] [ j ] , &A[ 0 ] [ i ] , −D[ i ] [ j ] , N ) ;
8 }
9 }

10 }

Figure 9: The source code of the ProcessBlockOnColumn() function in C.

DAXPY(), since the third parameter (Line 7) must now be loaded from memory. The second difference is that
the range of elements that the DAXPY() function operates on does not depend on the index of the outer loop.

In order to calculate the number of loads and stores for this function, we start again with one iteration of the
inner loop. As can be seen in Line 7, it is necessary to load each element of the two vectors and the scalar value.
Finally, the result of each computation has to be stored back into the first vector. As a result, the total load and
store operations for one iteration of the inner loop are:

Loads per inner loop repetition = 2 ·N + 1

Stores per inner loop repetition = N

However, the inner loop is executed M − i− 1 times for each iteration of the outer loop. As a result, the total
load and store operations for an iteration of the outer loop are:

Loads per outer loop repetition = (2 ·N + 1) · (M − i− 1)

Stores per outer loop repetition = N · (M − i− 1)

Finally, the total number of loads and stores in the function can be obtained, if we sum up the number of
loads and stores per iteration of the outer loop. Notice that in the following sum, the upper bound for i is equal
to M − 2, since for M − 1, the inner loop will not be executed:

Loads =
M−2∑
i=0

(2 ·N + 1) · (M − i− 1) = (2 ·N + 1) ·
M−2∑
i=0

(M − i− 1)

Stores =
M−2∑
i=0

N · (M − i− 1) = N ·
M−2∑
i=0

(M − i− 1)
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Hence, it is enough to find a closed form for the expression:

M−2∑
i=0

(M − i− 1) =
M−2∑
i=0

(M − 1)−
M−2∑
i=0

i = (M − 1)2 − (M − 1) · (M − 2)
2

=

=(M − 1) ·
[
(M − 1)− M − 2

2

]
= (M − 1) · 2 · (M − 1)− (M − 2)

2
=

=
M · (M − 1)

2

Which gives the final result:

Loads =
M · (2 ·N + 1) · (M − 1)

2

Stores =
M ·N · (M − 1)

2

5.4 The ProcessInnerBlock() Function

The last function that processes blocks of the matrix is ProcessInnerBlock(). It is used to process blocks
that don’t belong to the previous classes. These blocks share neither rows nor columns with the diagonal block.
The code of the function is presented in Figure 10. Variable C refers to the block that must be processed by this
function, which consists of N rows and M columns. Variable A refers to the block that shares the same columns
with C and has previously been processed by ProcessBlockOnRow(). Similarly, B refers to the block that
shares the same rows with C and has previously been processed by ProcessBlockOnColumn(). The size
of the diagonal block is given by K. This value is obviously equal to the number of rows for A and the number
of columns for B.

As with all previous cases, we will calculate the required number of loads and stores for this code, starting
with one iteration of the innermost loop. As can be seen in Line 7, it is necessary to load one column of block
C, one column of block B and one scalar value. The result is stored back in the same column of block C. As a
result, the total load and store operations for one iteration of the inner loop are:

Loads per inner loop repetition = 2 ·N + 1

Stores per inner loop repetition = N

However, the inner loop is executed M times for each iteration of the outer loop. As a result, the total load
and store operations for an iteration of the outer loop are:

Loads per outer loop repetition = (2 ·N + 1) ·M
Stores per outer loop repetition = N ·M
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1 vo id P r o c e s s I n n e r B l o c k ( dou b l e ∗∗A, d oub l e ∗∗B , do ub l e ∗∗C , long K, long N, long M)
2 {
3 long i , j ;
4
5 f o r ( i = 0 ; i < K; i ++) {
6 f o r ( j = 0 ; j < M; j ++) {
7 DAXPY(&C [ 0 ] [ j ] , &B [ 0 ] [ i ] , −A[ i ] [ j ] , N ) ;
8 }
9 }

10 }

Figure 10: The source code of the ProcessInnerBlock() function in C.

Obviously, the above result does not depend at all on the loop variable of the outer loop. As a result, the total
number of loads and stores in the function are:

Loads = (2 ·N + 1) ·M ·K
Stores = N ·M ·K

5.5 Validating the Results

In order to verify the previous results, we ran the LU benchmark on the Cyclops-64 simulator with different com-
binations of matrix sizes and number of thread units. During these experiments, we exploited the StatsOn and
StatsOff macros, which are provided by the tool-chain for Cyclops-64. These macros enable the programmer
to collect statistics only in the parts of a program that are of immediate interest. Among the statistics that are
collected, the number of loads and stores in the designated part of the program are included.

Initially, we added StatsOn to the beginning of ProcessDiagonalBlock() and StatsOff to the
end of the same function. For each combination of matrix size and number of thread units, we executed the
benchmark on the Cyclops-64 simulator, but allowed it to complete only the first step of the algorithm. We noted
the size of the diagonal block and the number of loads and stores, as reported by the simulator. Subsequently, we
executed the benchmark again with the same parameters, allowing it this time to complete two steps. As a result,
the reported number of loads and stores were the sum of the first two steps, for the same function. Subtracting
the numbers from the first step gives us the number of loads and stores for the second step. We repeated the
procedure, this time allowing the benchmark to complete three steps. Subtracting the corresponding numbers
from the previous runs, gives us the number of loads and stores for the third step.

We repeated the procedure for all other functions of the algorithm, i.e., ProcessBlockOnColumn(),
ProcessBlockOnRow() and ProcessInnerBlock(). In all cases, the theoretically calculated number
of loads and stores exactly matches the measured ones. As an example, we include Table 1 to Table 4. These
measurements were obtained using 16 thread units and a matrix with a size of 512 × 512. This verifies that our
theoretical approach is valid and accurate.
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Theoretical Measured
Repetition N Loads Stores Loads Stores

1 56 117040 58520 117040 58520
2 50 83300 41650 83300 41650
3 45 60720 30360 60720 30360

Table 1: The number of loads and stores in ProcessDiagonalBlock().

Theoretical Measured
Repetition Thread Unit M/N Loads Stores Loads Stores

1 8-15 57/56 181944 90972 181944 90972

2
8-13 51/50 130050 65025 130050 65025
14-15 50/50 127500 63750 127500 63750

3
8 46/45 95220 47610 95220 47610

9-15 45/45 93150 46575 93150 46575

Table 2: The number of loads and stores in ProcessBlockOnRow().

Theoretical Measured
Repetition Thread Unit M/N Loads Stores Loads Stores

1 0-7 56/57 177100 87780 177100 87780

2
0-5 50/51 126175 62475 126175 62475
6-7 50/50 123725 61250 123725 61250

3
0 45/46 92070 45540 92070 45540

1-7 45/45 90090 44550 90090 44550

Table 3: The number of loads and stores in ProcessBlockOnColumn().

Theoretical Measured
Repetition Thread Unit K/M/N Loads Stores Loads Stores

1 0-15 56/57/228 1458744 727776 1458744 727776

2

0-5 50/51/204 1042950 520200 1042950 520200
6-7 50/50/204 1022500 510000 1022500 510000

8-13 50/51/202 1032750 515100 1032750 515100
14-15 50/50/202 1012500 505000 1012500 505000

3

0 45/46/181 751410 374670 751410 374670
1-7 45/45/181 735075 366525 735075 366525
8 45/46/180 747270 372600 747270 372600

9-15 45/45/180 731025 364500 731025 364500

Table 4: The number of loads and stores in ProcessInnerBlock().
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6 Minimizing the Number of Memory Operations in the Dynamic Block-LU
Algorithm

Having the promising results of the previous paragraphs for the high-level algorithm, we are ready to continue
optimizing our application at the next level. As previously mentioned, we still use the DAXPY() BLAS-1 routine
to update the elements within each block. In this section we propose an alternative way to perform the same
operations, since the above routine does not map well to our architecture. Since there is no data cache to speed
up the access to required elements of the matrix, we will have to rely on the next level of high-speed storage,
which is the register file in each TU. Each TU has a total of 64 registers, but some of them cannot be used in
user-level applications, like R3 (Stack Pointer) and R0 (Permanent Zero). Moreover, parameters to functions are
passed through registers and are required throughout the function, for example the block that has to be processed
and it’s dimensions. Finally some registers are required as loop indices in our code. After optimizing usage of
these registers we are left with only 48 registers for loading data. However, this number proves to be crucial for
our implementation.

In order to use such a limited number of registers, each block will have to be further subdivided into smaller
blocks. This widely used technique is known as register tiling [2, 3, 14] and applying it in the case of a ma-
trix multiplication for C64 yielded excellent results [11]. However, register tiling is usually implemented as a
compiler optimization and does not have a global, high-level knowledge of the algorithm that is used to solve a
specific problem. It rather relies on the static semantics of the loop under consideration. In order to overcome
this shortcoming in current compiler technology and get the highest possible performance out of this technique,
we decided to manually apply register tiling in an application-aware manner. More specifically, after loading
the elements of a sub-block into registers, we examined how it is possible to perform the largest number of
floating point operations, before writing them back into memory. Since updating these elements depends on
elements from other blocks, we have to take into account the fact that we also need registers for these elements.
The advantage that we have over an automated, compiler-driven analysis, is that we can understand in a more
complete way the data dependencies between these elements and further optimize our code. We believe that
making compilers aware of an application’s behavior at this level is a challenge to be met and that results will
be very important for the architectures under consideration. One more advantage we have over current compiler
technology, is that we can exactly calculate the number of loads and stores required in each case, which makes
it possible to determine the case that minimizes memory operations. Finally, taking into account the number
of available registers, it is possible to determine the optimal size for each sub-block. We realize, however, that
applying this methodology manually to each application is a time consuming and error-prone procedure, which
is why we already commented on the features that we would like to see in future compilers.

In the following paragraphs, we identify possible ways to subdivide each block. Although we did our best,
we do not argue that this is an exhaustive list of possibilities. However, among the ones we identified, we
mathematically prove which is the best one, with respect to the number of loads and stores that are required. We
used the optimal cases in our implementation and, as we will see through our experiments, the whole process
was worth it.

For the rest of this section, we will assume that the size of a block or sub-block can always be exactly divided
with the size of another block or sub-block, i.e., we will not take into account any remainders. This has no effect
on the general results of our analysis and makes it simpler to follow.
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Figure 11: Dividing into sub-blocks for ProcessDiagonalBlock().

6.1 Optimizing the ProcessDiagonalBlock() Function

The ProcessDiagonalBlock() function operates at each step of our algorithm on the first block of data.
In order to update the elements of the block, it exclusively uses elements from the same block. As mentioned in
Section 5.1, each block is assumed to have N rows and columns. Each column i of the block is used to update
all subsequent columns, i.e., columns i+ 1 to N . For this function, we identified only one possible way to apply
register tiling. We assume that the block has been divided into sub-blocks of size L1 × L1. Figure 11 shows
an example of dividing a block into sub-blocks, which we will use throughout this paragraph. From the same
figure, it should also be clear why we decided to divide the block into sub-blocks that have the same size on both
dimensions. As can be seen, the sub-blocks that are now on the diagonal have to update elements differently,
depending on whether they are on the upper or lower triangular part of the whole block (see Figure 7). Choosing
the same size for both dimensions of each sub-block makes them symmetrical in this aspect and the whole process
is far easier to be implemented.

We start with the first sub-block of size L1 × L1 and update it. This corresponds to sub-block (D1) in
Figure 11. Then, we load successively each sub-block of size L1 × L1 that is to the right of the first sub-block
and make the necessary updates. Using again Figure 11, while we still have (D1) in registers, we consecutively
load (D2), (D3) and (D4) and update them. Then we move to the next row of sub-blocks to update (D5).
We load (D1) and (D5) and update the latter. While still having (D5) in registers, we load (D2) and (D6)
to update (D6), (D3) and (D7) to update (D7) and (D4) and (D8) to update (D8). Then we load (D6)
into registers, update it and also use it to update (D7) and (D8). With this we finished updating the second row
of sub-blocks and can move to the third one. We load (D1) and (D9) and update the latter. While still having
(D9) in registers, we load (D2) and (D10) to update (D10), (D3) and (D11) to update (D11) and (D4)
and (D12) to update (D12). Then we load (D6) and (D10) and update the latter. While still having (D10)
in registers, we load (D7) and (D11) and update (D11) and (D8) and (D12) to update (D12). Finally, we
load (D11) into registers, update it and also use it to update (D12). Finally, we move to the fourth row of sub-
blocks. We load (D1) and (D13) and update the latter. While still having (D13) in registers, we load (D2)
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and (D14) to update (D14), (D3) and (D15) to update (D15) and (D4) and (D16) to update (D16).
Then we load (D6) and (D14) and update the latter. While still having (D14) in registers, we load (D7)

and (D15) and update (D15) and (D8) and (D16) to update (D16). Then we load (D11) and (D15) and
update the latter. While still having (D15) in registers, we load (D12) and (D16) and update (D16). Finally,
we load (D16) and update it.

In order to calculate the number of loads and stores required, we start with the first row of sub-blocks. We
load (D1) into registers, update it and also use it to update (D2), (D3) and (D4):

Loads =
N

L1
· L2

1

Stores =
N

L1
· L2

1 = N · L1

On the second row of sub-blocks, we load (D1) and (D5) to update the latter and then we load (D2) and
(D6) to update (D6), (D3) and (D7) to update (D7) and (D4) and (D8) to update (D8). Then we load
(D6) into registers, update it and also use it to update (D7) and (D8):

Loads =
N

L1
· 2 · L2

1 +
(
N

L1
− 1
)
· L2

1

Stores = 2 · L2
1 +

(
2 · N

L1
− 3
)
· L2

1 = 2 · N
L1
· L2

1 − L2
1

On the third row of sub-blocks, we load (D1) and (D9) to update the latter and then we load (D2) and
(D10) to update (D10), (D3) and (D11) to update (D11) and (D4) and (D12) to update (D12). Then
we load (D6) and (D10) and update the latter. While still having (D10) in registers, we load (D7) and
(D11) and update (D11) and (D8) and (D12) to update (D12). Finally, we load (D11) into registers,
update it and also use it to update (D12):

Loads =
N

L1
· 2 · L2

1 +
(
N

L1
− 1
)
· 2 · L2

1 +
(
N

L1
− 2
)
· L2

1 = 2 · N
L1
· 2 · L2

1 − 2 · L2
1 +

(
N

L1
− 2
)
· L2

1

Stores = 3 · L2
1 +

(
3 · N

L1
− 6
)
· L2

1 = 3 · N
L1
· L2

1 − 3 · L2
1
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Following the same procedure for all rows of sub-blocks, leads us to the more general equations:

Loads =

N
L1

−1∑
i=0

2 · L2
1 ·

N

L1
· i−

i∑
j=1

[
2 · L2

1 · (j − 1)
]
+
(
N

L1
− i
)
· L2

1

 =

=

N
L1

−1∑
i=0

2 ·N · L1 · i+
i∑

j=1

(2 · L2
1)−

i∑
j=1

(2 · L2
1 · j) +N · L1 − i · L2

1

 =

=

N
L1

−1∑
i=0

[
2 ·N · L1 · i+ 2 · L2

1 · i− 2 · L2
1 ·
i · (i+ 1)

2
+N · L1 − i · L2

1

]
=

=

N
L1

−1∑
i=0

[
2 ·N · L1 · i+N · L1 − L2

1 · i2
]

=

= 2 ·N · L1 ·
N
L1
· ( N

L1
− 1)

2
+N · L1 ·

N

L1
− L2

1 ·
N
L1
· ( N

L1
− 1) · (2 · N

L1
− 1)

6
=

=
N2 · (N − L1)

L1
+N2 − N · (N − L1) · (2 ·N − L1)

6 · L1
=

=
N · (4 ·N − L1) · (N + L1)

6 · L1

Stores =

N
L1∑
i=1

N · L1 · i−
i−1∑
j=1

j · L2
1

 =

N
L1∑
i=1

[
N · L1 · i− L2

1 ·
i · (i− 1)

2

]
=

=

N
L1∑
i=1

[
N · L1 · i−

L2
1

2
· i2 +

L2
1

2
· i
]

=

N
L1∑
i=1

[(
N · L1 +

L2
1

2

)
· i− L2

1

2
· i2
]

=

=
(
N · L1 +

L2
1

2

)
·

N
L1
· ( N

L1
+ 1)

2
− L2

1

2
·

N
L1
· ( N

L1
+ 1) · (2 · N

L1
+ 1)

6
=

=
(
N +

L1

2

)
· N · (N + L1)

2 · L1
− N · (N + L1) · (2 ·N + L1)

12 · L1
=

=
N · (N + L1) · (2 ·N + L1)

3 · L1

In order to minimize the number of loads and stores, we have to calculate the parameter L1. For that, we have
to take into account the fact that the number of available registers in our architecture is fixed. If we assume that
we have R registers available, then at any point three L1 × L1 sub-blocks have to fit into the available registers,
which means that:

3 · L2
1 = R⇒ L1 =

√
R

3
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Figure 12: Dividing into sub-blocks for ProcessBlockOnRow().

For our architecture we can use R = 48. As a result, L1 = 4 and the final equations for the number of loads
and stores become:

Loads =
N · (N − 1) · (N + 4)

6

Stores =
N · (N + 2) · (N + 4)

6

6.2 Optimizing the ProcessBlockOnRow() Function

The ProcessBlockOnRow() function operates on blocks of data that share the same rows with the diagonal
block. In order to update these elements, it also requires data from the diagonal block. As mentioned in Sec-
tion 5.2, each block is assumed to have N rows and M columns. Each column from the diagonal block is used
to update all columns in the block that is being processed. For this function, we identified four possible ways to
apply register tiling. We assume that each block that has to be processed by the function has been divided into
sub-blocks of size L1 × L2. Due to data dependencies (see Figure 8), this means that the required data in the
diagonal block has to be divided into sub-blocks of size L1 × L1. Moreover, it is worth to notice that not all the
data from the diagonal block is required, but only the data from the lower triangular part. Figure 12 shows an
example of dividing a block into sub-blocks, which we will use throughout this paragraph. For the readers who
would like to skip the detailed analysis, we mention that the optimal method to load sub-blocks proves to be the
last one, which we also used in our implementation.

Case 1: In the first case, we start with the first sub-block of size L1 × L2 and update it, using the corresponding
triangular-shaped data sub-block from the diagonal block. These correspond to sub-blocks (A1) and
(D1) in Figure 12. Then, we load successively each sub-block of size L1 × L2 that is to the bottom of
the first sub-block and the corresponding sub-block of size L1 × L1 from the diagonal block and make
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the necessary updates. Using again Figure 12, while we still have (A1) in registers, we load (A3) and
(D2) and update (A3). Then we load (A5) and (D4) and update (A5). Moving on, we load (A3)
and (D3) and update (A3). While we still have (A3) in registers, we load (A5) and (D5) and update
(A5). Finally, we load (A5) and (D6) and update (A5). This completes the first column of sub-blocks
and we can move to the next column, containing sub-blocks (A2), (A4) and (A6), in order to repeat the
process.

Before calculating the total number of loads and stores required for this case, we have to calculate the
number of loads required for the triangular sub-blocks of the diagonal block, i.e., blocks (D1), (D3) and
(D6) in the example of Figure 12.

Loads in triangular sub-block = 1 + 2 + 3 + . . .+ L1 =
L1 · (L1 + 1)

2

Having this result, we can move on to calculate the total number of loads and stores required. As mentioned
earlier, we start by updating sub-block (A1) and then using this sub-block, we update (A3) and (A5):

Loads =
[
L1 · L2 +

L1 · (L1 + 1)
2

]
+
[
2 · L1 · L2 + 2 · L2

1

]
Stores = 3 · L1 · L2

Then we update sub-block (A3) and then using this sub-block, we update (A5):

Loads =
[
L1 · L2 +

L1 · (L1 + 1)
2

]
+
[
L1 · L2 + L2

1

]
Stores = 2 · L1 · L2

Finally, we update sub-block (A5):

Loads = L1 · L2 +
L1 · (L1 + 1)

2
Stores = L1 · L2

Which leads us to the more general equations for the total number of loads and stores per column of
sub-blocks:

Loads =

N
L1∑
i=1

[
i · L1 · L2 + (i− 1) · L2

1 +
L1 · (L1 + 1)

2

]

Stores =

N
L1∑
i=1

i · L1 · L2
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However, the above procedure has to be repeated for every column of sub-blocks, which gives the final
equations:

Loads =
M

L2
·

N
L1∑
i=1

[
i · L1 · L2 + (i− 1) · L2

1 +
L1 · (L1 + 1)

2

]
=

=
M

L2
·

N
L1∑
i=1

[
i · (L1 · L2 + L2

1)− L2
1 +

L1 · (L1 + 1)
2

]
=

=
M

L2
·

N
L1∑
i=1

[
i · (L1 · L2 + L2

1)−
L1 · (L1 − 1)

2

]
=

=
M

L2
· (L1 · L2 + L2

1) ·

N
L1∑
i=1

i− M

L2
· N
L1
· L1 · (L1 − 1)

2
=

=
M

L2
· L1 · (L1 + L2) ·

N
L1
· ( N

L1
+ 1)

2
− M ·N · L1 · (L1 − 1)

2 · L1 · L2
=

=
M

L2
· (L1 + L2) ·

N · (N + L1)
2 · L1

− M ·N · L1 · (L1 − 1)
2 · L1 · L2

=

=
M ·N · (L1 + L2) · (N + L1)−M ·N · L1 · (L1 − 1)

2 · L1 · L2
=

=
M ·N · (N · L1 +N · L2 + L1 · L2 + L1)

2 · L1 · L2

Stores =
M

L2
·

N
L1∑
i=1

i · L1 · L2 =
M

L2
· L1 · L2 ·

N
L1∑
i=1

i = M · L1 ·
N
L1
· ( N

L1
+ 1)

2
=

=
M ·N · (N + L1)

2 · L1

In order to minimize the number of loads and stores, we have to calculate the parameters L1 and L2.
For that, we have to take into account the fact that the number of available registers in our architecture
is fixed. If we assume that we have R registers available, then at any point one L1 × L1 sub-block from
the diagonal block and two L2 × L1 sub-blocks from the block that is being updated have to fit into the
available registers, which means that:

2 · L1 · L2 + L2
1 = R⇒ L2 =

R− L2
1

2 · L1

By replacing L2 in the equation for the total number of loads and setting the derivative of that equation
equal to zero, we can calculate the value of L1 that minimizes the total number of loads. In order to keep
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the analysis short, we just present the final results:

dLoads

dL1
= 0⇒ (N + 2) · L4

1 + (4 ·N ·R+ 2 ·R) · L2
1 −N ·R2 = 0⇒

L2
1 = R · −(2 ·N + 1)±

√
5 ·N2 + 6 ·N + 1

N + 2

By letting N move from a small value (N = 1) to infinity in the above equation, we can conclude that L2
1

should move between the values:

0.154700 ·R ≤ L2
1 ≤ 0.236068 ·R

Since R in Cyclops-64 can have a value of up to 48, we conclude that:

7.43 ≤ L2
1 ≤ 11.33

The only integer value for L1 that gives a value in the above range is L1 = 3. In this case, however, the
largest R that we can use is 45, because this gives an integer value for L2 of 6. This gives the final values
for the total number of loads and stores:

Loads =
M ·N · (3 ·N + 7)

12

Stores =
M ·N · (N + 3)

6

Case 2: The second case can be seen as the reverse of the first one. Keeping one sub-block of size L1 × L2

constant, we successively load every sub-block that is on top of it, together with the corresponding sub-
block of size L1 × L1 from the diagonal block. Referring again to Figure 12, we start with sub-blocks
(A1) and (D1) and update the first. Then we load sub-block (A3) and keep it constantly in registers.
We also load (A1) and (D2) and update (A3). Finally, we load (D3) and update again (A3). Now
we finished updating (A3) and we load (A5) into registers and keep it constantly there. Now we load
(A1) and (D4) and update (A5). Then we load (A3) and (D5) and update again (A5). Finally, we
load (D6) and update (A5). This completes the first column of sub-blocks and we can move to the next
column.

In order to calculate the total number of loads and stores in this case, we start with the update of sub-block
(A1):

Loads = L1 · L2 +
L1 · (L1 + 1)

2
Stores = L1 · L2
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In order to update sub-block (A3), we require sub-blocks (A1), (A3), (D2) and (D3):

Loads =
[
L1 · L2 +

L1 · (L1 + 1)
2

]
+
[
L1 · L2 + L2

1

]
Stores = 2 · L1 · L2

Finally, in order to update sub-block (A5), we require sub-blocks (A1), (A3), (A5), (D4), (D5) and
(D6):

Loads =
[
L1 · L2 +

L1 · (L1 + 1)
2

]
+
[
2 · L1 · L2 + 2 · L2

1

]
Stores = 3 · L1 · L2

Which leads us to the more general equations for the total number of loads and stores per column of
sub-blocks:

Loads =

N
L1∑
i=1

[
i · L1 · L2 + (i− 1) · L2

1 +
L1 · (L1 + 1)

2

]

Stores =

N
L1∑
i=1

i · L1 · L2

However, the above procedure has to be repeated for every column of sub-blocks, which gives the final
equations:

Loads =
M

L2
·

N
L1∑
i=1

[
i · L1 · L2 + (i− 1) · L2

1 +
L1 · (L1 + 1)

2

]

Stores =
M

L2
·

N
L1∑
i=1

i · L1 · L2

Obviously, the above equations are exactly the same with the ones from the previous case, which means
that the optimum number of loads and stores in this case is again:

Loads =
M ·N · (3 ·N + 7)

12

Stores =
M ·N · (N + 3)

6
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Case 3: The third case is different from the two previous ones. After updating each sub-block of size L1 × L2

we move to the sub-block to the right. This leads to reusing data from the diagonal block, whereas in the
previous cases, we were reusing data from the block that is being updated. Using again the example of
Figure 12, we start by loading sub-blocks (A1) and (D1) and update (A1). Keeping the elements from
(D1), we load (A2) and update it. We continue until we reach the end of the block. Then we move to the
next row of sub-blocks. We load (D2) and keep it constantly in registers. We also load (A1) and (A3)
and update (A3). Then we load (A2) and (A4) and update (A4). Again, we continue until the end of
the block and then move to the next row of sub-blocks. We load (D4) and keep it constantly in registers.
We also load (A1) and (A5) and update (A5). Then we load (A2) and (A6) and update (A6). After
we finish with the whole row of sub-blocks, we load (D3) and keep it constantly in registers. We load
(A3) and update it, then (A4) and update it and we continue to the end of the row of sub-blocks. Then
we load (D5) and keep it constantly in registers. We also load (A3) and (A5) and update (A5). Then
we load (A4) and (A6) and update (A6). Again, we continue until we finish with the whole row of
sub-blocks. Finally, we load (D6) and keep it constantly in registers. Then we load subsequently (A5)
and update it, then (A6) and update it, until we reach again the end of the block.

In order to calculate the total number of loads and stores in this case, we start with the updates in the
first row of sub-blocks. In the example of Figure 12 we need to load (D1) and then successively all of
the M/L2 sub-blocks that have to be updated in the column, i.e., (A1), (A2), etc. This leads to the
equations:

Loads = L1 · L2 ·
M

L2
+
L1 · (L1 + 1)

2

Stores =
M

L2
· L1 · L2

After that, we load (D2), (A1) and (A3), in order to update (A3). We repeat the whole process for the
whole row of sub-blocks to the right of (A3). We also repeat the process for (D4) and sub-block (A5)
and all sub-blocks to the right of it. Combined with the above result, this gives a total of:

Loads = 2 ·
[
L2

1 + (L1 · L2 + L1 · L2) ·
M

L2

]
+ L1 · L2 ·

M

L2
+
L1 · (L1 + 1)

2

Stores = 2 · M
L2
· L1 · L2 +

M

L2
· L1 · L2 = 3 · M

L2
· L1 · L2

Subsequently, we repeat the whole process starting with (D3) and updating (A3) and all blocks that are
to the right it. This time, however, we have to update only one row of sub-blocks more, by loading (D4)
and updating (A5) and all sub-blocks to the right it. Hence:

Loads =
[
L2

1 + (L1 · L2 + L1 · L2) ·
M

L2

]
+ L1 · L2 ·

M

L2
+
L1 · (L1 + 1)

2

Stores =
M

L2
· L1 · L2 +

M

L2
· L1 · L2 = 2 · M

L2
· L1 · L2

26



Finally, we have to load (D6) and update (A5) and all sub-blocks to the right of it:

Loads = L1 · L2 ·
M

L2
+
L1 · (L1 + 1)

2

Stores =
M

L2
· L1 · L2

By adding all previous equations and generalizing, we conclude that the total number of loads and stores
is in this case:

Loads =

N
L1∑
i=1

[
(i− 1) ·

[
L2

1 + (L1 · L2 + L1 · L2) ·
M

L2

]
+ L1 · L2 ·

M

L2
+
L1 · (L1 + 1)

2

]
=

=

N
L1∑
i=1

[
(i− 1) · (L2

1 + 2 · L1 ·M) +M · L1 +
L1 · (L1 + 1)

2

]
=

= (L2
1 + 2 · L1 ·M) ·

N
L1
· ( N

L1
− 1)

2
+
N

L1
·M · L1 +

N

L1
· L1 · (L1 + 1)

2
=

= (L1 + 2 ·M) · N · (N − L1)
2 · L1

+
2 ·M ·N · L1

2 · L1
+
N · L1 · (L1 + 1)

2 · L1
=

=
N2 · L1 + 2 ·M ·N2 +N · L1

2 · L1
=

=
M ·N2

L1
+
N · (N + 1)

2

Stores =

N
L1∑
i=1

i · L1 · L2 ·
M

L2
= M · L1 ·

N
L1∑
i=1

i = M · L1 ·
N
L1
· ( N

L1
+ 1)

2
=

=
M ·N · (N + L1)

2 · L1

As can be seen, the above results do not depend on L2 at all and it is also obvious that the bigger L1 is, the
less the total number of loads and stores. Hence, we can set L2 = 1. If we further assume that the number
of available registers in our architecture is R, then at each point in time, the maximum number of elements
loaded into registers cannot be more than R:

2 · L1 · L2 + L2
1 = R⇒ 2 · L1 · 1 + L2

1 = R⇒ L2
1 + 2 · L1 −R = 0⇒ L1 = −1±

√
R+ 1

As mentioned earlier, R = 48 for our architecture, which will give us a value of L1 = 6. As a result, the
optimum number of loads and stores in this case is:
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Loads =
M ·N2

6
+
N · (N + 1)

2

Stores =
M ·N · (N + 6)

12

Case 4: The last case is similar to the previous one. The only difference is that we load the sub-blocks in the
diagonal block row-wise, whereas in the previous case we were loading them column-wise. Using again
the example of Figure 12, we start by loading sub-blocks (A1) and (D1) and update (A1). Keeping the
elements from (D1), we load (A2) and update it. We continue until we reach the end of the block. Then
we move to the next row of sub-blocks. We load (D2) and keep it constantly in registers. We also load
(A1) and (A3) and update (A3). Then we load (A2) and (A4) and update (A4). Again, we continue
until the end of the block. In contrast to the previous case, we now load (D3) and keep it constantly in
registers. We load (A3) and update it, then we load (A4) and update it and we continue to the end of the
block. After we finish with the whole row of sub-blocks, we load (D4) and keep it constantly in registers.
We also load (A1) and (A5) and update (A5). Then we load (A2) and (A6) and update (A6) and we
continue to the end of the row of sub-blocks. Then we load (D5) and keep it constantly in registers. We
also load (A1) and (A5) and update (A5). Then we load (A2) and (A6) and update (A6). Again, we
continue until we finish with the whole row of sub-blocks. Finally, we load (D6) and keep it constantly in
registers. Then we load subsequently (A5) and update it, then (A6) and update it, until we reach again
the end of the block.

In order to calculate the total number of loads and stores in this case, we start with the updates in the
first row of sub-blocks. In the example of Figure 12 we need to load (D1) and then successively all of
the M/L2 sub-blocks that have to be updated in the column, i.e., (A1), (A2), etc. This leads to the
equations:

Loads = L1 · L2 ·
M

L2
+
L1 · (L1 + 1)

2

Stores =
M

L2
· L1 · L2

After that, we load (D2), (A1) and (A3), in order to update (A3). We repeat the whole process for the
whole row of sub-blocks to the right of (A3). Then we load (D3) and update again sub-block (A3) and
all sub-blocks to the right of it. This gives a total of:

Loads =
[
L2

1 + (L1 · L2 + L1 · L2) ·
M

L2

]
+ L1 · L2 ·

M

L2
+
L1 · (L1 + 1)

2

Stores =
M

L2
· L1 · L2 +

M

L2
· L1 · L2 = 2 · M

L2
· L1 · L2

Subsequently, we repeat the whole process starting with (D4) and updating (A5) and all blocks that are
to the right of it. The same has to be done for (D5) and (A5) and all blocks that are to the right of it.
Finally, we load (D6) and update again (A5) and all blocks that are to the right of it. Hence:
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Loads = 2 ·
[
L2

1 + (L1 · L2 + L1 · L2) ·
M

L2

]
+ L1 · L2 ·

M

L2
+
L1 · (L1 + 1)

2

Stores = 2 · M
L2
· L1 · L2 +

M

L2
· L1 · L2 = 3 · M

L2
· L1 · L2

By adding all previous equations and generalizing, we conclude that the total number of loads and stores
is in this case:

Loads =

N
L1∑
i=1

[
(i− 1) ·

[
L2

1 + (L1 · L2 + L1 · L2) ·
M

L2

]
+ L1 · L2 ·

M

L2
+
L1 · (L1 + 1)

2

]

Stores =

N
L1∑
i=1

i · L1 · L2 ·
M

L2

Obviously, the above equations are exactly the same with the ones from the previous case, which means
that the optimum number of loads and stores in this case is again:

Loads =
M ·N2

6
+
N · (N + 1)

2

Stores =
M ·N · (N + 6)

12

The last step in our analysis is to compare the above results with the results obtained for all previous cases.
In order to simplify this procedure, we remind the reader that the value of M can be either equal to N or
N + 1, due to the way each block is defined. Setting the value of M to these values, it is very easy to
verify that the last case we analyzed is each time the best one, in terms of both the total number of loads
and stores required. Although the third case gives the same results as the last case, we chose to use the
latter in our implementation. Our decision was driven by the fact that in a real implementation, moving to
the next sub-blocks that have to be updated is easier in the last case.

6.3 Optimizing the ProcessBlockOnColumn() Function

The ProcessBlockOnColumn() function operates on blocks of data that share the same columns with the
diagonal block. In order to update these elements, it also requires data from the diagonal block. As mentioned
in Section 5.3, each block is assumed to have N rows and M columns. Each column i is used to update all
subsequent columns, i.e., columns i + 1 to M . For this function, we identified four possible ways to apply
register tiling. We assume that each block that has to be processed by the function has been divided into sub-
blocks of size L2×L1. Due to data dependencies (see Figure 9), this means that the required data in the diagonal
block has to be divided into sub-blocks of size L1 ×L1. Moreover, it is worth to notice that not all the data from

29



(A1) (A2) (A3)

(A4) (A5) (A6)

(D1) (D2) (D3)

(D4) (D5)

(D6)

L1

L1

L2

Figure 13: Dividing into sub-blocks for ProcessBlockOnColumn().

the diagonal block is required, but only the data from the upper triangular part. Figure 13 shows an example of
dividing a block into sub-blocks, which we will use throughout this paragraph. For the readers who would like
to skip the detailed analysis, we mention that the optimal method to load sub-blocks proves to be the last one,
which we also used in our implementation.

Case 1: In the first case, we start with the first sub-block of size L2 × L1 and update it, using the corresponding
triangular-shaped data sub-block from the diagonal block. These correspond to sub-blocks (A1) and
(D1) in Figure 13. Then, we load successively each sub-block of size L2 × L1 that is to the right of the
first sub-block and the corresponding sub-block of size L1 × L1 from the diagonal block and make the
necessary updates. Using again Figure 13, while we still have (A1) in registers, we load (A2) and (D2)
and update (A2). Then we load (A3) and (D3) and update (A3). Moving on, we load (A2) and (D4)
and update (A2). While we still have (A2) in registers, we load (A3) and (D5) and update (A3).
Finally, we load (A3) and (D6) and update (A3). This completes the first row of sub-blocks and we can
move to the next row, containing sub-blocks (A4), (A5) and (A6), in order to repeat the process.

Before calculating the total number of loads and stores required for this case, we have to calculate the
number of loads required for the triangular sub-blocks of the diagonal block, i.e., blocks (D1), (D4) and
(D6) in the example of Figure 13.

Loads in triangular sub-block = 1 + 2 + 3 + . . .+ (L1 − 1) =
L1 · (L1 − 1)

2

Having this result, we can move on to calculate the total number of loads and stores required. As mentioned
earlier, we start by updating sub-block (A1) and then using this sub-block, we update (A2) and (A3):

Loads =
[
L1 · L2 +

L1 · (L1 − 1)
2

]
+
[
2 · L1 · L2 + 2 · L2

1

]
Stores = 3 · L1 · L2
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Then we update sub-block (A2) and then using this sub-block, we update (A3):

Loads =
[
L1 · L2 +

L1 · (L1 − 1)
2

]
+
[
L1 · L2 + L2

1

]
Stores = 2 · L1 · L2

Finally, we update sub-block (A3):

Loads = L1 · L2 +
L1 · (L1 − 1)

2
Stores = L1 · L2

Which leads us to the more general equations for the total number of loads and stores per row of sub-blocks:

Loads =

M
L1∑
i=1

[
i · L1 · L2 + (i− 1) · L2

1 +
L1 · (L1 − 1)

2

]

Stores =

M
L1∑
i=1

i · L1 · L2

However, the above procedure has to be repeated for every row of sub-blocks, which gives the final equa-
tions:

Loads =
N

L2
·

M
L1∑
i=1

[
i · L1 · L2 + (i− 1) · L2

1 +
L1 · (L1 − 1)

2

]
=

=
N

L2
·

M
L1∑
i=1

[
i · (L1 · L2 + L2

1)− L2
1 +

L1 · (L1 − 1)
2

]
=

=
N

L2
·

M
L1∑
i=1

[
i · (L1 · L2 + L2

1)−
L1 · (L1 + 1)

2

]
=

=
N

L2
· (L1 · L2 + L2

1) ·

M
L1∑
i=1

i− N

L2
· M
L1
· L1 · (L1 + 1)

2
=

=
N

L2
· L1 · (L1 + L2) ·

M
L1
· ( M

L1
+ 1)

2
− M ·N · L1 · (L1 + 1)

2 · L1 · L2
=

=
N

L2
· (L1 + L2) ·

M · (M + L1)
2 · L1

− M ·N · L1 · (L1 + 1)
2 · L1 · L2

=

=
M ·N · (L1 + L2) · (M + L1)−M ·N · L1 · (L1 + 1)

2 · L1 · L2
=

=
M ·N · (M · L1 +M · L2 + L1 · L2 − L1)

2 · L1 · L2
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Stores =
N

L2
·

M
L1∑
i=1

i · L1 · L2 =
N

L2
· L1 · L2 ·

M
L1∑
i=1

i = N · L1 ·
M
L1
· ( M

L1
+ 1)

2
=

=
M ·N · (M + L1)

2 · L1

In order to minimize the number of loads and stores, we have to calculate the parameters L1 and L2.
For that, we have to take into account the fact that the number of available registers in our architecture
is fixed. If we assume that we have R registers available, then at any point one L1 × L1 sub-block from
the diagonal block and two L2 × L1 sub-blocks from the block that is being updated have to fit into the
available registers, which means that:

2 · L1 · L2 + L2
1 = R⇒ L2 =

R− L2
1

2 · L1

By replacing L2 in the equation for the total number of loads and setting the derivative of that equation
equal to zero, we can calculate the value of L1 that minimizes the total number of loads. In order to keep
the analysis short, we just present the final results:

dLoads

dL1
= 0⇒ (M − 2) · L4

1 + (4 ·M ·R− 2 ·R) · L2
1 −M ·R2 = 0⇒

L2
1 = R · (1− 2 ·M)±

√
5 ·M2 − 6 ·M + 1

M − 2

By letting M move from a small value (M = 3) to infinity in the above equation, we can conclude that L2
1

should move between the values:

0.236068 ·R ≤ L2
1 ≤ 0.291503 ·R

Since R in Cyclops-64 can have a value of up to 48, we conclude that:

11.33 ≤ L2
1 ≤ 13.99

Although these values are theoretically minimizing the total number of loads, they do not include an exact
square, which is required in a real implementation of the algorithm, since L1 should be an integer. Hence,
we have to compromise and choose between the closest values for L1, which are 3 and 4. If we choose
L1 = 3, then the largest R that we can use is 45, because this gives an integer value for L2 of 6. If we
choose L1 = 4, then R = 48 and L2 = 4. Between these two sets of values for L1 and L2, the one that
gives the smallest number of loads is L1 = 4 and L2 = 4, which gives the final values for the total number
of loads and stores:
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Loads =
M ·N · (2 ·M + 3)

8

Stores =
M ·N · (M + 4)

8

Case 2: The second case can be seen as the reverse of the first one. Keeping one sub-block of size L2 × L1

constant, we successively load every sub-block that is to the left of it, together with the corresponding
sub-block of size L1 ×L1 from the diagonal block. Referring again to Figure 13, we start with sub-blocks
(A1) and (D1) and update the first. Then we load sub-block (A2) and keep it constantly in registers.
We also load (A1) and (D2) and update (A2). Finally, we load (D4) and update again (A2). Now we
finished updating (A2) and we load (A3) into registers and keep it constantly there. Now we load (A1)
and (D3) and update (A3). Then we load (A2) and (D5) and update again (A3). Finally, we load
(D6) and update (A3). This completes the first row of sub-blocks and we can move to the next row.

In order to calculate the total number of loads and stores in this case, we start with the update of sub-block
(A1):

Loads = L1 · L2 +
L1 · (L1 − 1)

2
Stores = L1 · L2

In order to update sub-block (A2), we require sub-blocks (A1), (A2), (D2) and (D4):

Loads =
[
L1 · L2 +

L1 · (L1 − 1)
2

]
+
[
L1 · L2 + L2

1

]
Stores = 2 · L1 · L2

Finally, in order to update sub-block (A3), we require sub-blocks (A1), (A2), (A3), (D3), (D5) and
(D6):

Loads =
[
L1 · L2 +

L1 · (L1 − 1)
2

]
+
[
2 · L1 · L2 + 2 · L2

1

]
Stores = 3 · L1 · L2

Which leads us to the more general equations for the total number of loads and stores per row of sub-blocks:

Loads =

M
L1∑
i=1

[
i · L1 · L2 + (i− 1) · L2

1 +
L1 · (L1 − 1)

2

]

Stores =

M
L1∑
i=1

i · L1 · L2
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However, the above procedure has to be repeated for every row of sub-blocks, which gives the final equa-
tions:

Loads =
N

L2
·

M
L1∑
i=1

[
i · L1 · L2 + (i− 1) · L2

1 +
L1 · (L1 − 1)

2

]

Stores =
N

L2
·

M
L1∑
i=1

i · L1 · L2

Obviously, the above equations are exactly the same with the ones from the previous case, which means
that the optimum number of loads and stores in this case is again:

Loads =
M ·N · (2 ·M + 3)

8

Stores =
M ·N · (M + 4)

8

Case 3: The third case is different from the two previous ones. After updating each sub-block of size L2 × L1

we move to the sub-block downwards. This leads to reusing data from the diagonal block, whereas in the
previous cases, we were reusing data from the block that is being updated. Using again the example of
Figure 13, we start by loading sub-blocks (A1) and (D1) and update (A1). Keeping the elements from
(D1), we load (A4) and update it. We continue until we reach the end of the block. Then we move to
the next column of sub-blocks. We load (D2) and keep it constantly in registers. We also load (A1) and
(A2) and update (A2). Then we load (A4) and (A5) and update (A5). Again, we continue until the
end of the block and then move to the next column of sub-blocks. We load (D3) and keep it constantly
in registers. We also load (A1) and (A3) and update (A3). Then we load (A4) and (A6) and update
(A6). After we finish with the whole column of sub-blocks, we load (D4) and keep it constantly in
registers. We load (A2) and update it, then (A5) and update it and we continue to the end of the column
of sub-blocks. Then we load (D5) and keep it constantly in registers. We also load (A2) and (A3) and
update (A3). Then we load (A5) and (A6) and update (A6). Again, we continue until we finish with
the whole column of sub-blocks. Finally, we load (D6) and keep it constantly in registers. Then we load
subsequently (A3) and update it, then (A6) and update it, until we reach again the end of the block.

In order to calculate the total number of loads and stores in this case, we start with the updates in the first
column of sub-blocks. In the example of Figure 13 we need to load (D1) and then successively all of the
N/L2 sub-blocks that have to be updated in the column, i.e., (A1), (A4), etc. This leads to the equations:

Loads = L1 · L2 ·
N

L2
+
L1 · (L1 − 1)

2

Stores =
N

L2
· L1 · L2
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After that, we load (D2), (A1) and (A2), in order to update (A2). We repeat the whole process for the
whole column of sub-blocks under (A2). We also repeat the process for (D3) and sub-block (A3) and
all sub-blocks below it. Combined with the above result, this gives a total of:

Loads = 2 ·
[
L2

1 + (L1 · L2 + L1 · L2) ·
N

L2

]
+ L1 · L2 ·

N

L2
+
L1 · (L1 − 1)

2

Stores = 2 · N
L2
· L1 · L2 +

N

L2
· L1 · L2 = 3 · N

L2
· L1 · L2

Subsequently, we repeat the whole process starting with (D4) and updating (A2) and all blocks that are
below it. This time, however, we have to update only one column of sub-blocks more, by loading (D5)
and updating (A3) and all sub-blocks below it. Hence:

Loads =
[
L2

1 + (L1 · L2 + L1 · L2) ·
N

L2

]
+ L1 · L2 ·

N

L2
+
L1 · (L1 − 1)

2

Stores =
N

L2
· L1 · L2 +

N

L2
· L1 · L2 = 2 · N

L2
· L1 · L2

Finally, we have to load (D6) and update (A3) and all sub-blocks below it:

Loads = L1 · L2 ·
N

L2
+
L1 · (L1 − 1)

2

Stores =
N

L2
· L1 · L2

By adding all previous equations and generalizing, we conclude that the total number of loads and stores
is in this case:

Loads =

M
L1∑
i=1

[
(i− 1) ·

[
L2

1 + (L1 · L2 + L1 · L2) ·
N

L2

]
+ L1 · L2 ·

N

L2
+
L1 · (L1 − 1)

2

]
=

=

M
L1∑
i=1

[
(i− 1) · (L2

1 + 2 · L1 ·N) +N · L1 +
L1 · (L1 − 1)

2

]
=

= (L2
1 + 2 · L1 ·N) ·

M
L1
· ( M

L1
− 1)

2
+
M

L1
·N · L1 +

M

L1
· L1 · (L1 − 1)

2
=

= (L1 + 2 ·N) · M · (M − L1)
2 · L1

+
2 ·M ·N · L1

2 · L1
+
M · L1 · (L1 − 1)

2 · L1
=

=
M2 · L1 + 2 ·N ·M2 −M · L1

2 · L1
=

=
M2 ·N
L1

+
M · (M − 1)

2
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Stores =

M
L1∑
i=1

i · L1 · L2 ·
N

L2
= N · L1 ·

M
L1∑
i=1

i = N · L1 ·
M
L1
· ( M

L1
+ 1)

2
=

=
M ·N · (M + L1)

2 · L1

As can be seen, the above results do not depend on L2 at all and it is also obvious that the bigger L1 is, the
less the total number of loads and stores. Hence, we can set L2 = 1. If we further assume that the number
of available registers in our architecture is R, then at each point in time, the maximum number of elements
loaded into registers cannot be more than R:

2 · L1 · L2 + L2
1 = R⇒ 2 · L1 · 1 + L2

1 = R⇒ L2
1 + 2 · L1 −R = 0⇒ L1 = −1±

√
R+ 1

As mentioned earlier, R = 48 for our architecture, which will give us a value of L1 = 6. As a result, the
optimum number of loads and stores in this case is:

Loads =
M2 ·N

6
+
M · (M − 1)

2

Stores =
M ·N · (M + 6)

12

Case 4: The last case is similar to the previous one. The only difference is that we load the sub-blocks in the
diagonal block column-wise, whereas in the previous case we were loading them row-wise. Using again
the example of Figure 13, we start by loading sub-blocks (A1) and (D1) and update (A1). Keeping the
elements from (D1), we load (A4) and update it. We continue until we reach the end of the block. Then
we move to the next column of sub-blocks. We load (D2) and keep it constantly in registers. We also load
(A1) and (A2) and update (A2). Then we load (A4) and (A5) and update (A5). Again, we continue
until the end of the block. In contrast to the previous case, we now load (D4) and keep it constantly in
registers. We also load (A2) and update it, then we load (A5) and update it and we continue to the end
of the block. After we finish with the whole column of sub-blocks, we load (D3) and keep it constantly
in registers. We also load (A1) and (A3) and update (A3). Then we load (A4) and (A6) and update
(A6) and we continue to the end of the column of sub-blocks. Then we load (D5) and keep it constantly
in registers. We also load (A2) and (A3) and update (A3). Then we load (A5) and (A6) and update
(A6). Again, we continue until we finish with the whole column of sub-blocks. Finally, we load (D6)
and keep it constantly in registers. Then we load subsequently (A3) and update it, then (A6) and update
it, until we reach again the end of the block.

In order to calculate the total number of loads and stores in this case, we start with the updates in the first
column of sub-blocks. In the example of Figure 13 we need to load (D1) and then successively all of the
N/L2 sub-blocks that have to be updated in the column, i.e., (A1), (A4), etc. This leads to the equations:
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Loads = L1 · L2 ·
N

L2
+
L1 · (L1 − 1)

2

Stores =
N

L2
· L1 · L2

After that, we load (D2), (A1) and (A2), in order to update (A2). We repeat the whole process for the
whole column of sub-blocks under (A2). Then we load (D4) and update again sub-block (A2) and all
sub-blocks below it. This gives a total of:

Loads =
[
L2

1 + (L1 · L2 + L1 · L2) ·
N

L2

]
+ L1 · L2 ·

N

L2
+
L1 · (L1 − 1)

2

Stores =
N

L2
· L1 · L2 +

N

L2
· L1 · L2 = 2 · N

L2
· L1 · L2

Subsequently, we repeat the whole process starting with (D3) and updating (A3) and all blocks that are
below it. The same has to be done for (D5) and (A3) and all blocks that are below it. Finally, we load
(D6) and update again (A3) and all blocks that are below it. Hence:

Loads = 2 ·
[
L2

1 + (L1 · L2 + L1 · L2) ·
N

L2

]
+ L1 · L2 ·

N

L2
+
L1 · (L1 − 1)

2

Stores = 2 · N
L2
· L1 · L2 +

N

L2
· L1 · L2 = 3 · N

L2
· L1 · L2

By adding all previous equations and generalizing, we conclude that the total number of loads and stores
is in this case:

Loads =

M
L1∑
i=1

[
(i− 1) ·

[
L2

1 + (L1 · L2 + L1 · L2) ·
N

L2

]
+ L1 · L2 ·

N

L2
+
L1 · (L1 − 1)

2

]

Stores =

M
L1∑
i=1

i · L1 · L2 ·
N

L2

Obviously, the above equations are exactly the same with the ones from the previous case, which means
that the optimum number of loads and stores in this case is again:

Loads =
M2 ·N

6
+
M · (M − 1)

2

Stores =
M ·N · (M + 6)

12
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Figure 14: Dividing into sub-blocks for ProcessInnerBlock().

The last step in our analysis is to compare the above results with the results obtained for all previous cases.
In order to simplify this procedure, we remind the reader that the value of N can be either equal to M or
M + 1, due to the way each block is defined. Setting the value of N to these values, it is very easy to
verify that the last case we analyzed is each time the best one, in terms of both the total number of loads
and stores required. Although the third case gives the same results as the last case, we chose to use the
latter in our implementation. Our decision was driven by the fact that in a real implementation, moving to
the next sub-blocks that have to be updated is easier in the last case.

6.4 Optimizing the ProcessInnerBlock() Function

The ProcessInnerBlock() function operates on blocks of data that share neither columns nor rows with the
diagonal block. In order to update the elements in these blocks, it exclusively uses data from blocks that have been
previously updated through the functions ProcessBlockOnRow() and ProcessBlockOnColumn(), i.e.,
no elements from the block being updated are used to update other elements in the same block. As mentioned in
Section 5.4, each block is assumed to have N rows and M columns, whereas the diagonal block is assumed to
be of size K ×K. For this function, we identified 6 possible ways to apply register tiling. Although all of them
traverse in a different way all sub-blocks, they give in pairs the same results, with respect to the total number
of loads and stores required. As a result, only three distinct cases have actually to be analyzed. During the
analysis of each case, we will mention both cases that give the same results. We assume that each block that has
previously been processed by ProcessBlockOnColumn(), is subdivided into sub-blocks of size L3 × L1,
whereas the block that has to be updated is subdivided into sub-blocks of size L3×L2. Due to data dependencies
(see Figure 10), the block that has previously been processed by ProcessBlockOnRow() has to be divided
into sub-blocks of size L1 ×L2. Figure 14 shows an example of dividing a block into sub-blocks, which we will
use throughout this paragraph. For the readers who would like to skip the detailed analysis, we mention that the
optimal method to load sub-blocks proves to be the last one, which we also used in our implementation.
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Case 1: In the first case, we start with the first sub-block of size L2 × L3 and update it, using the corresponding
sub-blocks of size L3×L1 and L1×L2. Using the example of Figure 14, we would load (C1) and update
it using (A1) and (B1). While still having (C1) in registers, we would then update it again using (A2)
and (B2). Finally, we would repeat the process using the pairs of sub-blocks (A3) and (B3) and then
(A4) and (B4). This would give the following results:

Loads = L2 · L3 + (L1 · L3 + L1 · L2) ·
K

L1

Stores = L2 · L3 ·
K

L1

At this point, we can move on to update the next sub-block, using the exact same procedure. This can be
done either by moving horizontally to sub-block (C2) or vertically to sub-block (C3). No matter which
way we choose to continue, the result will be exactly the same, with respect to the total number of loads
and stores required. This is because either way, there are a total ofM/L2 ·N/L3 sub-blocks that have to be
updated and each one requires the aforementioned number of loads and stores. Hence, our final equations
are:

Loads =
[
L2 · L3 + (L1 · L3 + L1 · L2) ·

K

L1

]
· M
L2
· N
L3

=
K ·M ·N

L2
+
K ·M ·N

L3
+M ·N

Stores =
[
L2 · L3 ·

K

L1

]
· M
L2
· N
L3

=
K ·M ·N

L1

Case 2: In the second case, we subsequently load and keep in registers sub-blocks of size L3 × L1, updating
all possible sub-blocks. Using again the example of Figure 14, we would load (B1) and use it to update
(C1), in conjunction with (A1). While still having (B1) in registers, we would load (C2) and (A5),
in order to update (C2) and we would repeat the same process for all other sub-blocks to the right of
(C2). This would give the following results:

Loads = L1 · L3 + (L2 · L3 + L1 · L2) ·
M

L2

Stores = L2 · L3 ·
M

L2

At this point, (B1) is not needed anymore and we can load the next sub-block. This can be done either
by moving horizontally to sub-block (B2) or vertically to sub-block (B5). No matter which way we
choose to continue, the result will be exactly the same, with respect to the total number of loads and stores
required. This is because either way, there are a total of K/L1 · N/L3 sub-blocks that have to be loaded
and in each case we need the aforementioned number of loads and stores. Hence, our final equations are:

Loads =
[
L1 · L3 + (L2 · L3 + L1 · L2) ·

M

L2

]
· K
L1
· N
L3

=
K ·M ·N

L1
+
K ·M ·N

L3
+K ·N

Stores =
[
L2 · L3 ·

M

L2

]
· K
L1
· N
L3

=
K ·M ·N

L1

39



Case 3: In the third case, we subsequently load and keep in registers sub-blocks of size L1 × L2, updating all
possible sub-blocks. Using again the example of Figure 14, we would load (A1) and use it to update
(C1), in conjunction with (B1). While still having (A1) in registers, we would load (C3) and (B5),
in order to update (C3) and we would repeat the same process for all other sub-blocks under (C3). This
would give the following results:

Loads = L1 · L2 + (L1 · L3 + L2 · L3) ·
N

L3

Stores = L2 · L3 ·
N

L3

At this point, (A1) is not needed anymore and we can load the next sub-block. This can be done either
by moving horizontally to sub-block (A5) or vertically to sub-block (A2). No matter which way we
choose to continue, the result will be exactly the same, with respect to the total number of loads and stores
required. This is because either way, there are a total of K/L1 ·M/L2 sub-blocks that have to be loaded
and in each case we need the aforementioned number of loads and stores. Hence, our final equations are:

Loads =
[
L1 · L2 + (L1 · L3 + L2 · L3) ·

N

L3

]
· K
L1
· M
L2

=
K ·M ·N

L1
+
K ·M ·N

L2
+K ·M

Stores =
[
L2 · L3 ·

N

L3

]
· K
L1
· M
L2

=
K ·M ·N

L1

Obviously, all three cases above yield quite similar results. Firstly, the number of loads does in each case
depend only on two of the three parameters L1, L2 and L3. Moreover, the bigger the remaining two parameters
are, the smaller the number of loads required. Hence, the unused parameter should be set equal to one in each
case, i.e., L1 = 1 in the first case, L2 = 1 in the second case and L3 = 1 in the third case. Moreover, in each
case the total number of elements that has to fit into the register file at each step is the same. If we assume that
our architecture has R registers available, then:

L1 · L2 + L1 · L3 + L2 · L3 = R

However, in each case one of the parameters L1, L2 and L3 is equal to one:

Case 1 : L2 + L3 + L2 · L3 = R

Case 2 : L1 + L3 + L1 · L3 = R

Case 3 : L1 + L2 + L1 · L2 = R

Combining these last equations with the ones that give the number of loads in each case, reveals that the
values of the parameters L2 and L3 that minimize the number of loads in the first case, will be exactly the same
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as the values for L1 and L3 in the second case, which will be equal to the values of L1 and L2 for the third case.
Hence, the best case is actually determined by the factors that do not depend on L1, L2 and L3 in the equations
that give the number of loads, i.e., M ·N in the first case, K ·N in the second case and K ·M in the third case.
However, each block processed by this function is actually a set of smaller blocks, as defined by the dynamic
algorithm. Moreover, blocks that share the same columns are connected and processed together in this function,
which means that the number of rows is larger than the number of columns, i.e., N > M . Moreover, due to the
way blocks are defined in our algorithm, M ≥ K. This means that the smallest of the above factors is actually
K ·M , which in turn means that the third case is the best one, in terms of the total number of loads and stores
required to complete the algorithm.

Having reached this conclusion, we will determine now the exact values of L1 and L2 for our specific archi-
tecture. As determined above:

L1 + L2 + L1 · L2 = R⇒ L2 =
R− L1

L1 + 1

Replacing the value of L2 in the equation that determines the number of loads for the third case and setting
the derivative of that equation equal to zero, we can calculate the value of L1 that minimizes the total number of
loads. In order to keep the analysis short, we just present the final results:

dLoads

dL1
= 0⇒ R · L2

1 + 2 ·R · L1 −R2 = 0⇒ L1 = −1±
√
R+ 1

As mentioned earlier, R = 48 for our architecture, which will give us a value of L1 = 6. This, in turn, leads
to the conclusion that L2 should also be equal to 6. Hence, the final equations for the total number of loads and
stores required are:

Loads =
K ·M ·N

3
+K ·M

Stores =
K ·M ·N

6

6.5 Applying Architecture Specific Optimizations

We start this section by comparing the results we obtained from our analysis on the required number of loads
and stores for both, the original versions to process each block and the optimized versions. We have to remind
the reader at this point, that the results obtained for the optimized versions are not completely accurate, since
we assumed that there are no remainders when we divide a block into smaller sub-blocks. Despite this fact, our
results are still useful and can be used as a good estimate. The results are summarized in Table 5. As can be seen,
all equations are of third order. However, the dominating term for all optimized versions is each time divided
by 6, which is the optimal size for each sub-block, as calculated in the previous sections. The exceptions are
the number of loads and stores for the diagonal block, since the optimal sub-block size is in this case 4 and the
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dominating factor is divided by this value. Hence, we expect the optimized versions to require far less loads and
stores, in order to complete the calculations. Moreover, this result shows that a larger register file would benefit
even more our application. The conclusion is that implementing the optimized versions in our algorithm would
greatly reduce execution time.

Loads Loads Stores Stores
(DAXPY) (Optimized) (DAXPY) (Optimized)

ProcessDiagonalBlock() 2·N ·(N2−1)
3

N ·(N−1)·(N+4)
6

N ·(N2−1)
3

N ·(N+2)·(N+4)
6

ProcessBlockOnRow() M ·N ·(N+1) M ·N2

6 + N ·(N+1)
2

M ·N ·(N+1)
2

M ·N ·(N+6)
12

ProcessBlockOnColumn() M ·(2·N+1)·(M−1)
2

M2·N
6 + M ·(M−1)

2
M ·N ·(M−1)

2
M ·N ·(M+6)

12

ProcessInnerBlock() 2·K·M ·N+K·M K·M ·N
3 +K·M K·M ·N K·M ·N

6

Table 5: Comparing the number of loads and stores.

Although the above results are already very important and promising, we can optimize our implementation
even more, due to special load and store instructions provided by the C64 architecture. Specifically, our archi-
tecture provides the assembly instruction ’ldm RT, RA, RB’, which combines several loads of data from memory
into only one instruction. The register RA contains an address in memory. Starting from this address, consecutive
64-bit values in memory are loaded into consecutive registers, starting from RT through and including RB. Since
each block is divided into smaller sub-blocks that have either 4 or 6 elements consecutively in memory, we can
take advantage of this instruction. This is also the reason why we changed our algorithm to perform calculations
on columns, instead of rows, as described in Section 5. Notice that the number of elements that have to be loaded
and operated on will still be the same in the optimized version, no matter if we use normal load operations or
ldm. However, the number of load instructions that have to be issued, if we use ldm, will be 4 or 6 times less.
Moreover, when using the normal load instructions, one request for data transfer is issued per element. If we
use ldm, there is only one request for every 4 or 6 values. This reduces contention on the crossbar, allowing
us to better exploit the available bandwidth. Similarly to the optimized load instruction, our architecture also
provides the optimized store instruction ’stm RT, RA, RB’. Naturally, we used it in our implementation to reduce
the number of store instructions issued.

Another optimization that has been employed for our purpose is the hardware implemented barrier, provided
by the C64 architecture. It allows TUs to synchronize extremely fast and since barriers are the only synchroniza-
tion operations required in our algorithm, it is important to use an efficient implementation.

7 Improving Instruction Scheduling

Having all the above information from our theoretical analysis and the multiple load and store instructions of our
architecture, we finally implemented a first optimized version of the algorithm. Obviously, the whole process of
dividing blocks into smaller sub-blocks and loading them into registers to perform the calculations, exceed the
capability of modern compilers to automatically perform this task, as already discussed. Therefore, the whole
procedure had to be written in assembly code. Although the performance increased about four times, compared
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to the version that used the DAXPY() function, it was still less than expected. For a matrix of size 512 × 512,
the implementation that uses register tiling reached a performance of 7.09 GFlops, using 128 TUs, whereas the
implementation before applying register tiling managed to reach only 1.81 GFlops.

In order to explain why the total performance was still quite low, we took advantage of another functionality
that the simulator provides. Specifically, it is possible to create execution traces, which are text files that include
detailed information about the execution of every assembly instruction on every thread unit. Among this informa-
tion, the number of cycles that execution of an instruction stalls is reported. This may happen for several reasons,
as for example, delays to transfer data from memory or data dependencies between instructions. This last remark
is very important, since Cyclops-64 is an in-order processor and data dependencies can incur significant delays.

Our findings can be made clear by studying the assembly code of our initial implementation. The left part
of Figure 15 shows the initial version of the main loop that performs the loads, calculations and stores for the
ProcessInnerBlock() function. We present the code for this function, because it uses only square sub-
blocks and is easier to understand. Nonetheless, the code for all other functions is very similar. We start by
loading a square sub-block of size 6 × 6 (sub-blocks A in Figure 14) into registers r28 to r63. Then we load
one by one all the rows from the corresponding sub-blocks B and C into registers r16 to r21 and r22 to r27.
Finally, we update the elements from each row in C and store them back to memory. The assembly instruction
’fmsd’ (Fused Multiply and Subtract Double) maps directly to the dominant operation in LU, which updates an
element by subtracting the product of two other elements. Using the first such instruction in the example of
Figure 15, the operation that is performed is r22 ← r22 − r16 · r28. From the trace files, we found out that
this instruction requires 5 cycles to complete in Cyclops-64, after all required data has been loaded into registers.
Since we update the same register six times consecutively, this means that there is a data dependence between
these instructions and each one must wait for 5 cycles, until the previous one completes.

Fortunately, no data dependencies exist between different elements of the sub-block C. In our example, this
means that registers r22 to r27 have no dependencies among them. As a result, updates between different
registers can be performed in any order, although updates to each register have to be performed in a specific
order. Taking advantage of this observation, we decided to interleave updates of different registers. This leads
to our optimized version of the same code, which is shown in the right part of Figure 15. As can be seen,
two subsequent updates of the same register are separated by updates of all other registers. Effectively, the five
instructions that separate updates to the same register, exactly hide the latency of the first ’fmsd’ instruction to
that register. By applying this simple optimization, the performance finally reached 11.19 GFlops.

We believe that compilers could easily perform this kind of reordering, especially on the C64 architecture,
which executes instructions in-order. However, it was not possible for us to test whether this is true in the current
tool-chain for C64. The reason is that in order to apply this kind of instruction scheduling, the compiler would
have to perform first the register tiling optimization. Despite this fact, our experiment shows that instruction
scheduling remains relevant on our architecture.
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/∗ Load e l e m e n t s from b l o c k A ∗ /
ldm r28 , r8 , r33
add r8 , r8 , r14
ldm r34 , r8 , r39
add r8 , r8 , r14
ldm r40 , r8 , r45
add r8 , r8 , r14
ldm r46 , r8 , r51
add r8 , r8 , r14
ldm r52 , r8 , r57
add r8 , r8 , r14
ldm r58 , r8 , r63

/∗ S t a r t l oop ove r ’N’ ∗ /
beq r12 , LoopN End
mov r7 , r12

/∗
∗ Load e l e m e n t s from
∗ b l o c k s C and B .
∗ /

L o o p N S t a r t : ldm r22 , r10 , r27
ldm r16 , r9 , r21
add r9 , r9 , r14

/∗ Update v a l u e s i n C ∗ /
fmsd r22 , r16 , r28
fmsd r22 , r17 , r34
fmsd r22 , r18 , r40
fmsd r22 , r19 , r46
fmsd r22 , r20 , r52
fmsd r22 , r21 , r58

fmsd r23 , r16 , r29
fmsd r23 , r17 , r35
fmsd r23 , r18 , r41
fmsd r23 , r19 , r47
fmsd r23 , r20 , r53
fmsd r23 , r21 , r59
.
.
.
fmsd r27 , r16 , r33
fmsd r27 , r17 , r39
fmsd r27 , r18 , r45
fmsd r27 , r19 , r51
fmsd r27 , r20 , r57
fmsd r27 , r21 , r63

/∗ S t o r e v a l u e s i n C ∗ /
stm r22 , r10 , r27
add r10 , r10 , r14

/∗ E x i t from ’N’ loop ∗ /
a d d i r7 , r7 , −1
bne r7 , L o o p N S t a r t

LoopN End :

/∗ Load e l e m e n t s from b l o c k A ∗ /
ldm r28 , r8 , r33
add r8 , r8 , r14
ldm r34 , r8 , r39
add r8 , r8 , r14
ldm r40 , r8 , r45
add r8 , r8 , r14
ldm r46 , r8 , r51
add r8 , r8 , r14
ldm r52 , r8 , r57
add r8 , r8 , r14
ldm r58 , r8 , r63

/∗ S t a r t l oop ove r ’N’ ∗ /
beq r12 , LoopN End
mov r7 , r12

/∗
∗ Load e l e m e n t s from
∗ b l o c k s C and B .
∗ /

L o o p N S t a r t : ldm r22 , r10 , r27
ldm r16 , r9 , r21
add r9 , r9 , r14

/∗ Update v a l u e s i n C ∗ /
fmsd r22 , r16 , r28
fmsd r23 , r16 , r29
fmsd r24 , r16 , r30
fmsd r25 , r16 , r31
fmsd r26 , r16 , r32
fmsd r27 , r16 , r33

fmsd r22 , r17 , r34
fmsd r23 , r17 , r35
fmsd r24 , r17 , r36
fmsd r25 , r17 , r37
fmsd r26 , r17 , r38
fmsd r27 , r17 , r39
.
.
.
fmsd r22 , r21 , r58
fmsd r23 , r21 , r59
fmsd r24 , r21 , r60
fmsd r25 , r21 , r61
fmsd r26 , r21 , r62
fmsd r27 , r21 , r63

/∗ S t o r e v a l u e s i n C ∗ /
stm r22 , r10 , r27
add r10 , r10 , r14

/∗ E x i t from ’N’ loop ∗ /
a d d i r7 , r7 , −1
bne r7 , L o o p N S t a r t

LoopN End :

Figure 15: Assembly code before and after instruction scheduling.
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8 Experimental Evaluation

In this section we present the experimental evaluation of LU, which focuses on the following key points.

• The effect of each optimization on the total performance of the application.

• The effect of the memory size on the performance and the efficiency of the optimal implementation.

• Comparison of the achieved performance with other architectures.

Since the actual C64 chip is not yet physically available, all experiments had to be conducted using the FAST
simulator [5]. FAST is an execution-driven and binary-compatible simulator of a multi-chip C64 system. It
accurately represents the hardware components and reproduces the functional behavior of C64. It models in high
detail the key components of the system, such as the memory subsystem, the crossbar and other functional units.
FAST has been extensively used by the C64 architecture design team at IBM for the purpose of chip design
verification, and dozens of developers for early application development.

The development tool-chain for C64 also includes version 4.1.1 of the gcc compiler. During compilation, we
used the highest available optimization level (-O3), although the effect of this is quite limited. The functions
that perform the bulk of the data transfer from memory and the calculations have been hand-written in assembly.
The total percentage of execution time that corresponds to functions written in C, and therefore optimized by the
compiler, is actually very low.

8.1 The Effect of Optimizations on the Performance

In this paragraph, we provide the necessary data to evaluate the effect that each optimization on the performance
of LU has. During our experiments we used 128 TUs and a matrix with a size of 1024× 1024. Although only a
512× 512 matrix fits into the fast SRAM, in the default configuration of a chip, it is possible to redefine the size
of the SRAM in the simulator. As will be explained in more detail in the next section, all matrices behave well for
all optimizations that were described in Section 4. However, applying register tiling and instruction scheduling
only show their full potential for larger matrices. Therefore, we used the above matrix to better highlight the
differences in the last optimizations we applied. Figure 16 shows the results of our experiments. The first column
in the graph represents the performance for the base implementation, which reaches only about 76 MFlops. The
second column represents the performance after applying the dynamic repartitioning algorithm and recursion
on the diagonal block. The 2.39 GFlops achieved represent an improvement of about 31.5 times, compared to
the base implementation. As can be seen, the results for these two cases closely follow the ones presented at
the end of Section 4. Introducing processor adaptation yields a marginal performance improvement of about 25
MFlops. The use of the hardware provided barriers, instead of our initial software-based solution, improves the
performance by 129 MFlops, reaching a total of 2.54 GFlops. The largest improvements however, appear with the
introduction of register tiling and instruction scheduling. The performance almost quadruples after applying the
first optimization, reaching 9.90 GFlops. After applying the second optimization we finally reach our maximum
of 21.92 GFlops.

From the above results, it is obvious that there are three optimizations that contribute the most in achieving the
maximum performance. The first one is the introduction of dynamic repartitioning. Although the performance is
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Figure 16: Evaluating the impact of each optimization
on the performance of the application.

LU for different matrix sizes

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Processors

G
Fl

op
s

512x512
1024x1024
2048x2048
4096x4096
Linear

Figure 17: Performance achieved for different matrix
sizes and number of TUs.

not very high, compared to the final numbers that we achieve, it marks the first leap from the extremely slow base
implementation. Effectively, it provides a solid basis, on which we can build our more advanced optimizations.
Moreover, it proves that our departure from algorithms that implicitly rely on a cache hierarchy was a correct
decision. The second important optimization is, as expected, register tiling. This proves that our exhaustive
and analytical approach for this optimization was driven by correct assumptions about its importance on our
architecture. Additionally, it confirms that the introduction of an application-aware implementation of register
tiling can lead to better exploitation of the available hardware. The last optimization worth to be discussed is
instruction scheduling. Although it is common knowledge that this is an important aspect on every architecture,
it becomes even more important on C64. Due to its in-order execution engine, hiding latencies of instructions
with data dependencies has to be performed and carefully tuned at the application or compiler level.

8.2 The Efficiency of the Dynamic Repartitioning Algorithm

As previously mentioned, only a 512 × 512 matrix can fit into SRAM on the default configuration of C64. The
performance of our algorithm for this matrix and different numbers of TUs is depicted in Figure 17. Although
the total performance using 128 TUs is quite high, at 11.19 GFlops, it is obvious that our algorithm does not scale
well, if more than 16 TUs are used. Especially the difference between 64 and 128 TUs is negligible, compared
to the difference in the number of TUs. This behavior enabled us to further investigate why this is the case. Our
main concern was whether this is a limitation of our algorithm and of the optimizations we applied or whether the
reason was something totally different. After thoroughly studying the execution traces of several experiments, we
concluded that the main problem is the current size of the available SRAM. Having a matrix of only 512×512 in
SRAM, significantly limits the number of elements that have to be updated by each TU, especially as the number
of TUs rises. As the efficiency of register tiling depends on the amount of data that is being reused, smaller data
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Peak GFlops Actual GFlops Efficiency
Cell Broadband Engine 3.2 GHz 14.63 9.46 64.66%
Power5 1.9 GHz 7.60 6.21 81.71%
Itanium2 1.6 GHz 6.40 5.30 82.83%
Pentium 4 Xeon 3.6 GHz 7.20 5.20 72.22%
Cray XT3 2.6 GHz 5.60 4.17 74.48%
Opteron 2.8 GHz 5.60 3.87 69.10%
Blue Gene/L 700 MHz 2.80 2.14 76.46%

Table 6: Maximum performance achieved with one processor.

sets are not fully exploiting this optimization.

In order to verify our explanation, we run another set of experiments. Fortunately, FAST allows us to redefine
the size of SRAM. Using this feature, we run our application for larger matrix sizes, ranging from 1024×1024 up
to 4096×4096. The results of these experiments are also depicted in Figure 17. As can be seen, the performance
improves dramatically as the size of the matrix increases. The performance for 1, 2 and 4 TUs is in all cases
almost the same. Using this information, we extrapolated how our application would scale linearly. Doubling
the size of the matrix, allows our algorithm to achieve linear speedup, up to twice the number of TUs of the
previous matrix. For example, the 1024 × 1024 matrix scales linearly up to 16 TUs, the 2048 × 2048 up to 32
TUs and the 4096 × 4096 up to 64 TUs. These experiments confirm that our algorithm is capable of achieving
good performance and that the current limit is the size of SRAM. In turn, the size of the SRAM is currently
limited only by the size of the chip, as it must co-exist with 80 cores, the crossbar and all other functional units.
As manufacturing processes improve and the integration of chips increases, the size of SRAM will eventually
become larger. Therefore, our experiments with larger matrices provide a useful insight on the performance that
eventually can be achieved by C64. Being able to fit a 1024 × 1024 matrix in SRAM seems to be sufficient
to exceed the performance of most current architectures and is probably an achievable goal. Nevertheless, real
world applications require even larger matrices to be processed. In this case, the matrix can be stored in DRAM
and parts of it can be moved into SRAM when they need to be processed. Moving data can even be overlapped
with useful calculations, if we use a few of the available TUs specifically for this purpose. In this case, the
maximum performance to process such a large matrix would equal the performance achieved for a matrix that
can fit into SRAM.

8.3 Comparison with other Architectures

In this paragraph, we compare the results obtained on C64 with the results reported for other architectures. Table 6
summarizes the performance of the Linpack benchmark for a variety of systems, on a per chip basis. The results
for the Cell Broadband Engine [4] were obtained for a matrix of size 1000 × 1000. For all other systems, the
results are the ones reported in the Top500 list [16] and the matrix size was the largest possible for the available
memory. This gives these systems an edge over C64, as larger matrices allow better utilization of the hardware
and higher performance metrics. Although our implementation of LU is not based on the Linpack benchmark,
this comparison can still give some interesting insights.

Firstly, it is obvious that even for the smallest matrix size that we used (512× 512), the 11.19 GFlops of C64
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outperform the next best architecture, which is the Cell Broadband Engine with 9.46 GFlops. The difference rises
much higher, if we use the matching 1024× 1024 matrix on C64. All other architectures achieve an even lower
total performance, even though they operate on much larger matrices. A significant drawback of C64, is the fact
that it achieves a much lower efficiency, compared to all other architectures. The peak performance that can be
achieved on 128 TUs is 64 GFlops, therefore the efficiency is 17.48% for the 512 × 512 matrix, 34.25% for the
1024 × 1024 matrix and reaches only 49.84% for the largest matrix we used. This can be explained by the fact
that on C64 we use a much higher number of TUs, meaning that every TU has a much smaller data set to operate
on. In contrast, Cell has only 8 Synergistic Processing Units (SPUs), each one operating at a much higher clock
rate. Using 8 TUs on C64 for the 1024× 1024 matrix gives an efficiency rate of 59.50%, which is much closer to
the one achieved by Cell. Moreover, Cell has a total of 128 registers, each one 128 bits wide, which means that
two double-precision floating point numbers can simultaneously be loaded into each register and processed with
the Fused Multiply and Add instruction, which is also supported on Cell. Hence, Cell has effectively four times
more registers than C64. Nonetheless, we are confident that it is possible to further optimize our algorithm for
C64 and improve the efficiency rate. Our optimism on this matter stems from the fact that the execution traces
of our experiments reveal that a significant percentage of cycles is lost while waiting for data to be read from
memory. Our first analysis shows that it is possible to overlap part of these lost cycles with useful calculations.

9 Related Work

Probably the most used implementation of LU is the one provided by HPL [10]. It is a blocking algorithm, origi-
nally developed to run on distributed-memory systems. Over the years, it has become the standard benchmark for
ranking high-end parallel systems in the Top 500 list [16]. Although this implementation includes an algorithm
to solve the two triangular systems that result from the LU algorithm, the largest percentage of the computation
is actually performed in the latter. The usage of BLAS-3 routines to process the elements within each block
provides the base to achieve high-performance on cache based systems.

The SPLASH-2 [18] implementation of the algorithm targets shared-memory systems. It uses small blocks
and BLAS-1 routines to achieve a good balance between load-balancing and memory locality. Although this
works well for cache based systems, architectures that lack a cache seem not to benefit from this approach.

A recursive algorithm for LU has been proposed for uni-processor systems [9]. The main characteristic of
this algorithm is that it tries to reduce the working set at each level of recursion, exploiting in a better way the
cache. In our case, however, we applied recursion on a parallel algorithm and with a totally different goal, i.e., to
improve load-balancing among processors.

Pipelined and hyperplane (or wavefront) algorithms have also been studied for shared-memory systems [12].
The first category divides the matrix into horizontal stripes. As soon as the first processor finishes with the first
column in its stripe, it moves to the second column and informs the second processor that it can start calculating its
own first column. After the second processor finishes, the third can start, etc. This creates a pipelined execution,
which is again specifically designed to take advantage of the cache hierarchy. Wavefront algorithms, on the other
side, fail to exploit effectively the cache, but allow more parallelism. Their drawback is that they require much
more fine-grained synchronization. However, they are extremely suitable for specific parallel architectures, i.e.,
systolic arrays.
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10 Future Work and Conclusions

In this report we presented an implementation of the LU application for C64. The design of our algorithm
significantly differs from other algorithms that solve the same problem. These differences stem from the fact that
the design of our target architecture is decoupled from other contemporary and more conventional architectures.
The key differences between these architectures is the lack of a hardware controlled cache-hierarchy in C64,
which has been replaced with a software-controlled memory hierarchy, and the large number of cores that have
been integrated into a single chip.

Our first conclusion during development was the fact that the design of most algorithms that solve the problem
under consideration, implicitly assume that most architectures include a cache-hierarchy. As a result, many
decisions are driven by this assumption. However, we have shown in this report that these assumptions are not
adequate for multi-core architectures that lack a cache. Our point of view is that algorithms have to be rethought
and redesigned, in order to comply with the idiosyncracies of the underlying architecture, if high performance
is to be achieved. Our Dynamic Repartitioning algorithm, enhanced with Recursion on the Diagonal Block and
Processor Adaptation, highlights some important points that have to be taken into consideration in this case. We
believe that similar inefficiencies occur in many algorithm, dye to these implicit assumptions. Other optimization
techniques used to improve performance on conventional architectures may give excellent results on multi-core
architectures, if properly modified. Currently, register tiling depends on the ability of the compiler to discover
data dependencies among elements that are accessed in loops. However, the current status of compilers only
allows them to have a narrow view of these dependencies, within the limits of the loop itself. Starting, however,
from both ends, the high-level algorithm and the multi-core architecture, allows register tiling to connect them
in a much more efficient way. Finally, other aspects of application optimization, such as instruction scheduling,
retain their importance across architectures.

Our next step in the development of the LU application, is to further improve the low level integration with
the underlying architecture. We believe that it is possible to further improve instruction scheduling, according to
the execution traces of our experiments. Another important aspect is the fact that the C64 architecture actually
includes a large number of nodes, creating a distributed-memory system across nodes and a shared-memory
system within each node. Currently, however, our application only runs on one node. Our work up to this point
remains relevant, even if we decide to expand our algorithm to run on more nodes. As previously mentioned, the
update of the diagonal block is in itself an LU decomposition of smaller size. Therefore, in a version of our code
that would be able to run on several nodes, the code that has been developed up to this point would be reused to
process the diagonal block on just one node. However, routines that would handle all other kind of blocks would
have to be written in this case.
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