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Abstract

Research in financial derivatives is one of the important areas in computational finance. The
computational requirements for solving models of financialderivatives such as the option pricing
problem are huge and demand efficient algorithms and high performance computing capabilities.
In this paper, we focus on the development of a Monte-Carlo algorithm with historic volatility and
GARCH fitted volatility to price options accurately on a modern multi-core chip architecture. By
fabricating hundreds of millions of transistors on a singledie, multi-core or many-core-on-a-chip
architecture incorporates a complete multiprocessor including the CPU and memory on a single
chip. In this paper, we have used Cyclops-64, many-core-on-a-chip architecture, a petaflops super-
computer project under development at IBM T.J. Watson laboratory as the experimental platform
for our study in pricing options. In this paper we have shown that the use of incorrect volatilities
of the asset prices in the Black-Scholes model would result in moderate to large errors in option
prices. The timing results on C64 show that various sets of simulations could be done in a real-time
fashion while yielding high performance/price improvement over traditional microprocessors for
computational finance applications.
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1 Introduction

We present the motivation and background for the current study in this section.

1.1 Motivation and Contribution

Research in financial derivatives is one of the important areas of computational finance. The investor
selects an asset based on the price, the budget and the markettrend. Finance models used for evaluation
and forecasting purposes to help the investor with the selection process typically lead to large dynamic,
nonlinear problems that have to be solved in a short time spanto beat the competitors in the market
place. The computational requirements for solving such financial models are huge and demand efficient
algorithms and high performance computing capabilities [1]. Solution of such systems on a sequen-
tial computer will require hours or may be even days depending on the size of the problem. Parallel
computing speeds up the computational process by assigningtasks to multiple processors.

In this paper, we focus on development of a Monte-Carlo algorithm with historic volatility and
GARCH (Generalized Auto Regression Conditional Heteroskedasticity) fitted volatility to price options
accurately on a modern multi-core chip architecture. The purpose is to facilitate pricing of options in a
real time fashion. In section 4 we describe the architecturein which our algorithm is studied; we provide
some fundamental background on option pricing in the following subsection.

Our contributions from the current work are: (a) devising a means to study a finance application on a
many-core-on-a-chip architecture; (b) developing a Monte-Carlo algorithm with two different volatility
generation mechanisms; and (c) implementing the algorithmon C64 architecture.

1.2 Background and Related work in Option Pricing

Options on stocks were first traded in an organized exchange in 1973. Since then there has been dramatic
increase of trade in the options market. The underlying assets of options include stocks, stock indices,
foreign currencies, debt instruments, and commodities [2]. We introduce some basic definitions on
financial derivatives here and provide brief survey on various computational techniques.

A Call Option [2] is a contract that gives the right to its holder (i.e. buyer) without creating an obli-
gation, tobuya pre-specified underlying asset at a predetermined price (strike price). Usually this right
is created for a specific time period (maturity date), e.g. six months. Everything else being same, aPut
Optiongives to its holder the right tosell. If the option can be exercised only at its expiration/maturity
date (i.e. the underlying asset can be sold only at the end of the life of the option), the option is referred
to as an European style Call/Put Option (orEuropean Call/Put). If it can be exercised on any date before
its maturity, then the option is referred to as an American style Call/Put Option (orAmerican Call/Put).

Black and Scholes [3] proposed a model to price option, whichhas become a classical and celebrated
model for pricing options. This Black-Scholes model is basically a stochastic partial differential equa-
tion with option price as the unknown and underlying asset price and the time being dependent variables
together with various parameters such as volatility of the asset price, expiration date, strike price and
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interest rate. While values of most of these parameters could be fixed for the contract, future asset price
and volatility of the asset price are two parameters to be determined by forecasting mechanisms. In the
current study future asset prices are generated with randomnumber generated in the Monte-Carlo (MC)
simulation and volatility is generated by two methods: historic volatility (based on the past changes in
the asset price) and GARCH fitted volatility.

Many numerical methods are used to solve the option pricing problem [2], including: (i) MC sim-
ulation, for example [4–6]); (ii) lattice or tree based techniques (such as binomial, for example [7, 8]);
(iii) fast Fourier transform (FFT) based techniques [9–11]; (iv) finite-difference techniques (for exam-
ple [12,13]). Any of these methods can be employed, depending on the user’s accuracy requirement and
on the availability of computational resources. The binomial lattice and MC methods have been used
predominantly.

Clark [13] and Thulasiram et al. [8] developed parallel algorithm for the binomial lattice approach
to price options. Their techniques involve constructing a binomial lattice representing possible stock
price movement from the present to the expiry date of the option in an intuitive fashion. Further, small
machine size is a bottleneck when the problem size is large. On the other hand, multiprocessing does
not always provide modest speedup for option pricing problems if inefficient algorithms are used (see,
for example [13]).

Srinivasan [6] used the quasi MC simulation technique for option pricing while Rahmail et al. [5]
used the traditional MC simulation to study the effect of incorrect volatilities for underlying assets on
option pricing errors. In simulations, increasing the sampling size increases the accuracy of the results.
However, as the sampling size increases, computational cost also increases.

Use of fast Fourier transform (FFT) technique for option pricing was introduced by Carr and
Madan [10]. Extending this model, Barua et al. [9] have developed an efficient parallel algorithm to
enable quicker and accurate pricing of options by introducing data swapping technique in FFT.

Mayo [14], for example, evaluated American options using the implicit finite-difference method.
The algorithm gave fourth order accuracy in the log of the asset price and second order accuracy in
time. Thulasiram et al. [15] have designed a second orderL0 stable algorithm for the pricing prob-
lem. This algorithm achieves the same error bound as that of the traditional Crank-Nicholson scheme,
while at the same time assures that the error will not propagate. Hence, their scheme is better than
Crank-Nicholson scheme, which is typically known to be unstable for PDEs. Although finite-difference
methods are reasonably straightforward and the discretization of the problem domain is almost uniform,
these methods are computationally intensive and produce less speedup as compared to the lattice meth-
ods [13]. However, the accuracy of the option values from thefinite-difference technique are typically
much better than the lattice method.

Valuing options using lattice and finite-difference methods often demands additional computational
effort to achieve higher accuracy of results with finer gridsor lattices, while MC requires larger number
of simulations. Andricopoulos et al. [16] developed a method which curtails the price ranges of the un-
derlying assets for which computations are carried out, achieving considerable savings of computational
effort with virtually no loss in accuracy. Such shorter ranges of asset prices implies smaller volatility
of the asset, which indicates to a well informed trader/investor the lesser value of the option. In other
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words, coarser grids on asset prices are good only for assetsthat are less volatile. Generally, as the ex-
piration time approaches, the volatility of the asset pricedecreases, decreasing the value of the option.
Therefore, having uneven step sizes in the asset price direction (spatial direction) especially coarser
step size near the expiration time should reduce computational cost in all these methods including MC
simulation. However, we do not consider uneven step sizes inthis study.

Since the finite-difference and finite-element techniques pose additional challenges for parallel com-
puting, as a first step, we use the MC simulation on many-core-on-a-chip architecture for its simplicity
in parallelization. In particular, we target an ambitious 160-core-on-a-chip design, Cyclops-64 (C64)
architecture, which is a petaflop supercomputer project under development at IBM research laboratory.
Unlike other academia projects, a first C64 system is plannedto be installed in 2007.

2 Monte Carlo Algorithm

Most commonly used numerical methods in finance include binomial lattice and Monte-Carlo (MC)
simulation.Binomial lattice records the asset price movement into a binomial tree, and then uses risk
neutral valuation to obtain option prices at all nodes. MC method values the option based on simulated
distribution of asset prices. These two methods can be used to effectively solve simple models. When
the underlying assets become more complicated, researchers use Monte-Carlo simulation to evaluate
complex options with high dimensionality. MC method [2] refers to the use of stochastic techniques to
arrive at a solution for a physical problem. MC method generates stock prices repetitively, which are
then used to value the option based on the simulated distribution of stock prices. The convergence rate
of MC simulation is generally independent of the number of the underlying state variables. Therefore,
it is particularly useful for financial problems with high dimensionality.

MC simulation is a forward-based procedure. Option pricingvia MC can be divided into three basic
steps: (1) simulate the stochastic process underlying stock returns, where each realization is a sample
path; (2) evaluate the value of the option in a backward manner in order to find the early exercise point
and obtain a sample point estimate; and, (3) average over multiple sample estimates to form an interval
estimate that includes some measure of precision (e.g., standard error). Obviously, the existence of the
precision measure is an advantage of MC over other numericalmethods.

One major difficulty with MC simulation is that it requires a large number of simulations to achieve
convergence. Simulations of the order of several millions are not uncommon in practice. However,
this is the impetus for the current study, trying to do large simulation in shortest possible time, using
many-core-on-a-chip architecture.

3 Many-core-on-a-chip Architecture

As advances in IC processing technology allow the feature size to drop, density of transistors and clock
frequency on silicon chips are to continue increasing for the next few years following Moore’s Law.
At this pace, a billion-transistor chip is approaching [17]. However, the delivered performance versus
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number of transistors integrated in a chip for microarchitecture, keeps declining over time [18]. Power
consumption and dissipation considerations also place additional obstacles to improve the performance.
Due to fundamental circuit limitations, limited amounts ofinstruction level parallelism, and the memory
wall problem, computer architects look for new designs, other than the single-thread wide-issue super-
scalar approach, to utilize the transistor budget and mitigate the effects of high interconnect delays. On
the other hand, by fabricating hundreds of millions of transistors on a single die, it becomes possible
to put a complete multiprocessor, including both CPUs and memory, on a single chip, what is known
as multi-core or many-core-on-a-chip architecture. Instead of devoting the entire die to a single and
complex processor, the many-core-on-a-chip design integrates a large number of simple processors on
a single die.

It is believed that the many-core-on-a-chip architecture has many advantages over the single core
chip. First, by partitioning the chip resources into individual small, localized simple cores, the effect
of the interconnect delay is limited. By enabling multiple cores to share the chip resources, such as
on-chip memory (or L2 cache), interconnect network, and on-chip/off-chip memory bandwidth, the re-
source utilization is improved. Second, given the fact thatchip power consumptions drop significantly
with reductions in frequency, many-core-on-a-chip architecture alleviates the power dissipation problem
without reducing the computation capability by running a large number of cores with moderate clock
rate. Finally, many-core-on-a-chip architecture naturally exploits thread-level and process-level paral-
lelism, which are expected to be widespread in future applications and multiprocessor-aware operating
system and environments [19]. Not surprisingly, all major microprocessor manufacturers have already
begun to move its microarchitecture towards multi-core or many-core-on-a-chip design [20–25]. In this
paper, we develop and implement one important financial application, option pricing using the Monte
Carlo simulation on one such many-core-on-a-chip architecture, Cyclops 64.

With the emergence of many-core-on-a-chip architecture, it is important to employ multithreading
techniques to avail massive on-chip parallelism provided.Multithreading is a technique that has proved
very efficient in exploiting thread-level parallelism and combating the latency problem in parallel com-
puting. Over the past few years, multithreaded algorithms have been developed for problems involving
irregular high level data structures arising in traditional and non-traditional areas such as network opti-
mization [26], computational finance [11], and computational medicine [27]. In irregular applications,
the data size operated on by each processor changes dynamically [28], which in turn, affects the com-
putational requirements of the problem leading to communication/synchronization latencies and load
imbalance. These latencies can be tolerated by multithreading. Load imbalance is handled by (i) repar-
titioning/remapping data onto processors at runtime (an additional overhead) or (ii) migrating threads
between processors (not possible on current clusters). Though multithreading solves the latency prob-
lem to some extent by keeping all processors busy exploitingparallelism in an application, it has not
been enough. Accessing data in irregular applications [28]greatly affects memory access efficiency due
to the non-uniform memory access patterns that are unknown until runtime. In addition, the gap between
the processor and memory speeds is widening as processor speed increases more rapidly than memory
speed. State-of-the-art many-core-on-a-chip architectures (such as Cyclops-64) provide explicitly vis-
ible memory hierarchy, with which techniques, such as manual data placement and prefetching [29],
can be used to decrease the effective memory latency. To facilitate multithreading, efficient support for

4



thread level execution and synchronization is integrated in the design of many-core chip architecture.

4 Cyclops-64 Architecture
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Figure 1: Cyclops 64 Supercomputer

The Cyclops-64 (C64) is a petaflop supercomputer (see Figure1) project under development at IBM
T.J. Watson Laboratory. For its chip architecture (see Figure 2), C64 employs the Many-Core System-
on-Chip (SoC) approach, which leverages state-of-the-artVLSI fabrication technology, to achieve high
computation rates (even real time performance), low power consumption, and low cost. Based on a cel-
lular architecture, a maximum configuration of a C64 system consisting of 13,824 C64 chip, connected
by a 3D mesh network, is expected to achieve over 1 petaflop peak performance. The C64 system is
intended to serve as a dedicated compute engine for running high end computing applications, such
as molecular dynamics to study protein folding [30], or image processing to support real-time medi-
cal procedures. This paper shows that C64 is also an ideal platform for real time finance computation
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applications, such as option pricing. To the best of our knowledge, the C64 project is one of the most
ambitious petaflop supercomputer projects currently underactive development. Unlike other academia
projects, a first C64 system is planned to be installed in 2007.

The C64 chip architecture (Figure 2) employs a many-core-on-a-chip design with 160 hardware
thread units, half as many floating point units, same amount embedded SRAM memory banks, an inter-
face to off-chip DDR SDRAM memory, and bidirectional inter-chip connection ports on a single silicon
chip. A C64 chip consists of 80 processors, each with two thread units, a floating point unit, and two
SRAM memory banks of approximately 32KB each. Five processors share a 32KB instruction cache,
which is not shown in the figure. Instead of data cache, a portion of each thread unit’s corresponding
on-chip SRAM bank is configured as the scratchpad memory (SP). Therefore, a thread unit can achieve
fast access to its own SP, i.e., one cycle for a store, and two cycles for a load. The remaining sections of
all on-chip SRAM banks together form the global memory (GM) that is uniformly addressable from all
thread units. The C64 also employs the Network-on-Chip (NoC) concept, all on-chip resources are con-
nected to a 96 ports on-chip crossbar network, which provides a 4GB/s bandwidth per port per direction,
384 GB/s per direction in total. This huge bandwidth sustains all the intra-chip traffic communication
and the six routing ports that connect each C64 chip to its nearest neighbors in a 3D-mesh network.
Besides the crossbar network, all the thread units within a chip connect to a 16-bit signal bus, which
provides a means to efficiently implement barrier. A C64 supercomputer is built out of tens of thousands
of such C64 nodes.
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In summary, the C64 chip architecture represents a major departure from mainstream microproces-
sor design in several aspects:

1. The C64 chip integrates a large number of (160) processingelements, embedded memory and
communication hardware in the same piece of silicon.
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2. A thread unit, the C64 computational cell, is a simple 64-bit, single issue, in-order RISC processor
with a small instruction set architecture (60 instruction groups) operating at a moderate clock rate
(500MHz). And the execution on a thread unit is non-preemptive.

3. C64 incorporates efficient support for thread level execution. For instance, a thread can stop
executing instructions for a number of cycles or indefinitely; and when asleep it can be woken up
by another thread through a hardware interrupt.

4. C64 provides no resource virtualization mechanisms. Forinstance, execution is non preemptive
and there is no hardware virtual memory manager. The former means a single application can run
at a given time on a set of C64 nodes. Additionally, the OS willnot interrupt the user program
running on the thread units unless the user explicitly specifies preemption or an exception occurs.
The latter means the three-level memory hierarchy of the C64chip is visible by the programmer.

5. In the C64 chip architecture there is no data cache. Instead, a portion of each SRAM bank can be
configured as scratch-pad memory. Such a memory provides a fast temporary storage to exploit
locality under software control.

6. The integration of processing logic and memory is furtherleveraged with a rich set of hardware
supported in-memory atomic instructions. Unlike similar instructions on common off-the-shelf
microprocessors, atomic instructions in the C64 only blockthe memory bank where they operate
upon while the remaining banks proceed servicing other requests. This functionality facilitates
the scalability of multithreading programs with intensivesynchronization operations.

5 Experimental Results

5.1 Monte Carlo Experiment Design

Out of all inputs (refer to section 1) into the Black-Scholesoption pricing model, it is only volatility that
is not observable. In the experiments we consider the following: (a) use of historical volatility of con-
tinuously compounded stock returns; (b) use of GARCH-fittedvolatility of continuously compounded
returns.

During the experiments we generated stock price series under the assumption that prices follow a
random walk with drift. We generated increments using the normal probability distribution function.
In various stages of the experiment volatility of increments was: (i) Constant; (ii) Decreasing; (iii)
Increasing; (iv) Stochastic; (v) Decreasing and stochastic; and, (vi) Increasing and stochastic. The
whole idea about using different volatility schemes stems from two earlier studies [31, 32], where it
was found that volatilities of individual stock returns increased over the period 1962-1997, while the
market volatility did not exhibit any significant pattern. The parameters of the normal distribution used
in simulations are taken from the real data set, which we describe below.

Using these generated volatilitiesσt and a pseudo-random number generator, we generate stock
price series that follow the geometric Brownian motion process:

lnSt = γ + δlnSt−1 + νt (1)
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whereγ is the drift in the stock price,σ is the variance rate (volatility) of the stock price, In equation 1
we haveγ > 0 to make sure that prices do not fall below zero and that the increment is normally
distributed:

νt ≈ N(0, σ2
t ) (2)

We assumed the continuously compounded interest rate of 5% and the flat and deterministic yield curve,
as it is assumed in the Black-Scholes model. Expiration datewas set at 3 months from the starting point
(time t), and strike price was varying from 5 to 105 with the step sizeof 20. The starting prices P0
in all cases were $5.00. Using these parameters, we calculated call prices for the non-dividend paying
stocks for each point in timet using all inputs as known. The formula used in calculations is the classical
option pricing formula (see [2]). Next, we calculated option prices with all the same inputs but measured
volatility.

In the first run of the experiment we estimated conditional volatilities and used them in the option
pricing formula. In the second run of the experiment we estimated historical and GARCH-fitted volatil-
ities of continuously compounded stock returns [33]. Aftercalculating option prices (CTRUE) using
known data and option prices using observable and measured data (CMEASURED), we calculated the
option pricing errorE in the following way:

E = CMEASURED − CTRUE (3)

This error would give us a dollar estimate of the mistake in case of using an improper measure of
volatility in the Black-Scholes option pricing formula).

5.1.1 Option Pricing Results

Figure 3 depicts one of the many sets of pricing errors that results from the experimental study. This
graph shows, which of the data generating processes createslarger errors when we use GARCH-fitted
volatility of continuously compounded returns. The x-axisin all these figures corresponds to the strike
prices ranging from $5 -$105 and the y-axis corresponds to the option pricing errors: -0.004 to 0.003 in
fig 3 (a); -0.05 to 0.03 in fig 3 (b); -0.06 to 0.01 in fig 3 (c); -0.04 to 0.04 in fig 3 (d); -20.0 to 140.0 in
fig 3 (e); -0.20 to 0.06 in fig 3 (f).

Figure 3 (a) corresponds to constant volatility, Figure 3 (b) corresponds to decreasing volatility,
Figure 3 (c) corresponds to increasing volatility, Figure 3(d) corresponds to stochastic volatility, Fig-
ure 3 (e) corresponds to decreasing and stochastic volatility, Figure 3 (f) corresponds to increasing and
stochastic volatility. The six legends below each of these figures identify the prices starting from $5 to
$105 in steps of $20 for respective figures.

During the experiments the drift component of the stock price is $0.006t, wheret stands for the
number of days. Therefore, we are able to plot call pricing error against various exercise prices and
unconditional expectations of stock prices (E[St] = 0.006∗ t). In this part of the experiment,GARCH

model is estimated for the sample sizek with the mean equation that regresses continuously com-
pounded returns on a constant. We generate fitted volatilityand record the last valuehk. This is our
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Figure 3: Option pricing errors for stock prices generated using various patterns of volatility, average
across series. GARCH-fitted volatility estimates based on continuously compounded returns are used to
generate option prices.

input into the Black-Scholes formula for calculating the measured call price,CMEASURED
k

. Next, we
add one more data point to the stock price series, estimate the GARCH model for the sample ofk + 1

observations, and usehk+1 to calculateCMEASURED
k+1

. Using this process, we generate the time series
of measured call pricesCMEASURED

t .

As we can infer from Figure 3, in some cases (for example, cases b ande) option pricing errors
grow with higher sample size. This can be attributed to the non-stationarity of option prices: as sample
size increases, sample volatility of data approaches infinity. Therefore, we get upward-biased estimates
for the volatility of stock prices. The comparative statistics of Black-Scholes model show that call price
increases when stock price volatility increases. Therefore, upward-biased estimates of stock prices result
in upward-biased estimates of option prices. This situation could result in a false belief that there exists
a Put-Call-Parity arbitrage strategy based on erroneouslycalculated call prices. In case of constant and
stochastic volatility of prices (Fig. 3 (a andd)) the situation is not as clear. Option pricing errors seem
to be fluctuating around zero on the average.

These results were obtained first on a statistical package called E-Views. We reproduced the results
first with the in-house developed sequential code before parallelizing our code and implementing on
the many-core-on-a-chip architecture. On a AMD-K7-II processor, with 6 possible exercise prices, 6
patterns of volatility, and 1000 data points, one run of the experiment using the E-Views package for
only 20 iterations took 4 hours and 45 minutes.

In the next section, we demonstrate the performance resultsof running the simulation on the C64
architecture.
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5.2 Monte Carlo Simulation on C64

Table 1: Processor Configurations

Processor Clock Cache off-chip Compiler
Rate Memory

Cyclops-64 500MHz No data cache 1GB DRAM gcc-3.2.3
Thread Unit 5MB on-chip for C64

SRAM memory
AMD Opteron 2.4GHz 1MB L2 cache 3GB gcc-3.2.3

for x86 64
Intel Centrino 1.86GHz 2MB L2 cache 512MB gcc-3.3.6
Intel Pentium4 3.2GHz 512KB L2 cache 1GB gcc-3.4.3

The performance of the Monte Carlo algorithm on C64 is compared to different representative off-
the-shelf processors: AMD Opteron 250, Intel Centrino, andIntel Pentium 4. The basic configurations
of those processors are shown in Table 1. The computation conducted on C64 is simulated with the
FAST simulator [34], which is a functionally accurate simulation tool set for the C64 cellular architec-
ture. The parameter setting for 4 different simulations is shown in Table 2

For C64, a portion of each SRAM bank can be configured as the scratchpad memory (16KB, in
this case), which guarantees fast and predictable access latency for the corresponding owner thread unit.
For the Monte Carlo simulation, we carefully design the code, such that the intermediate results of the
computation can completely fit into a thread unit’s scratchpad memory. Only the latest ith simulation
results were stored on-chip for the next (i+1)th simulation. The previous1, ...... , i − 1 results were
stored off-chip. For the parallel version, since no synchronization is needed, the performance increase
is proportional to the number of threads employed.

We performed on average ten runs on each of the machine and obtained the execution times as
shown in Figure 4 for the simulation parameters chosen in Table 2. Please note that only one C64 thread
unit is used for this comparison.

The Monte Carlo simulation is known to be embarrassingly parallel, i.e., all the thread units can
work independently without involving synchronization during the simulation. Since all the intermediate
data needed for a thread unit’s computation can fit into its own scratchpad memory, there is no runtime

Table 2: Parameters for Monte Carlo Simulation

Parameter begprice step variety ARSIZE

sim-1 5 20 6 1000
sim-2 5 40 8 1000
sim-3 5 40 8 2000
sim-4 5 100 10 5000
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C64 Thread Unit, 500MHz
AMD Opteron 250, 2.4GHz
Intel Centrino, 1.8GHz
Intel P4, 3.2GHz
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Figure 4: Execution Time of Monte Carlo Simulation

competition and conflict for shared resources, such as global on-chip memory. As a result, the speedup
of the parallel version can increase linearly with the number of threads used (This is also demonstrated
with the simulation). By conducting all 160 thread units forthe Monte Carlo simulation, a C64 chip
can complete 160 times simulation task with the same amount of execution time shown in Figure 4.
For all other three processors, the execution time increases proportionally. Through calculations for
all four groups of simulations, for the Monte Carlo option pricing simulation, we can conclude that1
C64 node delivers the performance equivalent to 18 Opteron 250 CPU, 32 Intel Centrino CPU, and
28 Intel P4 3.2GHz CPU. The approximate price for a C64 node would be quite similar to machines
built with those CPUs compared. Therefore, the C64 delivershugeperformance/priceimprovement
over traditional microprocessors for computational finance applications. Moreover, for the Monte Carlo
simulation, since all data fits into the scratchpad memory, all the computation is performed locally
for each thread units and the power on the very long wires going to and from the crossbar is saved.
In such a situation, the power consumption of a C64 node is lower than or close to machine built
with conventional microprocessor. Given a C64 node delivers tens of times performance, the C64’s
performance/power consumptionratio is much higher compared to other microprocessors. Unlike a
traditional microprocessor, which dies if any parts on the chip is broken, the C64 chip can still be in
working condition, even if one or more thread units/memory banks fail.

6 Conclusions

The current work has paved a way to study a finance problem on many-core-on-a-chip architecture. As
a first attempt we have analyzed a embarrassingly parallel problem of MC simulation for an important
option pricing problem.
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In this paper we showed that the use of incorrect volatilities of the asset prices in the Black-Scholes
model would result in moderate to large errors in option prices.

We could achieve this conclusion by conducting many experiments for various asset price ranges,
strike price ranges and 3 different volatilities. The timing results on C64 show that these various sets
of simulations could be done in a real-time fashion. For the Monte-Carlo option pricing simulation
done in the current study, we can conclude that 1 C64 node delivers the performance equivalent to
18 Opteron 250 CPU, 32 Intel Centrino CPU, and 28 Intel P4 3.2GHz CPU. This translates to high
performance/priceandperformance/power consumptionimprovement over traditional microprocessors
for computational finance applications.

With the promising results from the current study we are developing a FFT algorithm for C64
architecture to study option pricing problem based on an earlier study [9].
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