University of Delaware
(1)) Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

FAME: Financial Application with Many-core-on-a-chip
architecturE

Weirong Zhu  Parimala Thulasiramantt Ruppa K. Thulasiramt Guang R. Gao,

CAPSL Technical Memo 76
February 17th, 2006

Copyright (© 2006 CAPSL at the University of Delaware

1Dept. of Computer Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2.
Email: {thulasir,tulsi}@cs.umanitoba.ca
TAuthor for correspondence: Parimala Thulasiraman, Email: thulasir@cs.umanitoba.ca

University of Delaware e 140 Evans Hall e Newark, Delaware 19716 ¢ USA
http://www.capsl.udel.edu e ftp://ftp.capsl.udel.edu e capsladm@capsl.udel.edu






Abstract

Research in financial derivatives is one of the importanasiie computational finance. The
computational requirements for solving models of finandeivatives such as the option pricing
problem are huge and demand efficient algorithms and higioqmeance computing capabilities.
In this paper, we focus on the development of a Monte-Cagdori#hm with historic volatility and
GARCH fitted volatility to price options accurately on a magdenulti-core chip architecture. By
fabricating hundreds of millions of transistors on a singdjie, multi-core or many-core-on-a-chip
architecture incorporates a complete multiprocessoudiob the CPU and memory on a single
chip. In this paper, we have used Cyclops-64, many-cora-ohip architecture, a petaflops super-
computer project under development at IBM T.J. Watson latooy as the experimental platform
for our study in pricing options. In this paper we have shohat the use of incorrect volatilities
of the asset prices in the Black-Scholes model would reaulhd@derate to large errors in option
prices. The timing results on C64 show that various setshdilgitions could be done in a real-time
fashion while yielding high performance/price improvernewer traditional microprocessors for
computational finance applications.
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1 Introduction

We present the motivation and background for the curremtysituthis section.

1.1 Motivation and Contribution

Research in financial derivatives is one of the importandsuef computational finance. The investor
selects an asset based on the price, the budget and the mnankktFinance models used for evaluation
and forecasting purposes to help the investor with the sefeprocess typically lead to large dynamic,

nonlinear problems that have to be solved in a short time gpdreat the competitors in the market

place. The computational requirements for solving suchfir@ models are huge and demand efficient
algorithms and high performance computing capabilitigs Bolution of such systems on a sequen-
tial computer will require hours or may be even days depandm the size of the problem. Parallel

computing speeds up the computational process by assitaskg to multiple processors.

In this paper, we focus on development of a Monte-Carlo #hlyor with historic volatility and
GARCH (Generalized Auto Regression Conditional Heterdak#city) fitted volatility to price options
accurately on a modern multi-core chip architecture. Thegse is to facilitate pricing of options in a
real time fashion. In section 4 we describe the architegtunenich our algorithm is studied; we provide
some fundamental background on option pricing in the falhmasubsection.

Our contributions from the current work are: (a) devisingeams to study a finance application on a
many-core-on-a-chip architecture; (b) developing a Mddelo algorithm with two different volatility
generation mechanisms; and (c) implementing the algorahr@64 architecture.

1.2 Background and Related work in Option Pricing

Options on stocks were first traded in an organized exchanf@73. Since then there has been dramatic
increase of trade in the options market. The underlyingtagdeoptions include stocks, stock indices,
foreign currencies, debt instruments, and commodities |8 introduce some basic definitions on
financial derivatives here and provide brief survey on waicomputational techniques.

A Call Option[2] is a contract that gives the right to its holder (i.e. bQyeithout creating an obli-
gation, tobuya pre-specified underlying asset at a predetermined widkg pricd. Usually this right
is created for a specific time periochéturity dat¢, e.g. six months. Everything else being samBua
Optiongives to its holder the right teell. If the option can be exercised only at its expiration/migtur
date (i.e. the underlying asset can be sold only at the erttedifé of the option), the option is referred
to as an European style Call/Put Option Emropean Call/Pyt If it can be exercised on any date before
its maturity, then the option is referred to as an Americgfestall/Put Option (o American Call/Puk

Black and Scholes [3] proposed a model to price option, whchbecome a classical and celebrated
model for pricing options. This Black-Scholes model is bally a stochastic partial differential equa-
tion with option price as the unknown and underlying asseemnd the time being dependent variables
together with various parameters such as volatility of th&etprice, expiration date, strike price and



interest rate. While values of most of these parametersidmfixed for the contract, future asset price
and volatility of the asset price are two parameters to berdebed by forecasting mechanisms. In the
current study future asset prices are generated with ramdwnber generated in the Monte-Carlo (MC)
simulation and volatility is generated by two methods: dnistvolatility (based on the past changes in
the asset price) and GARCH fitted volatility.

Many numerical methods are used to solve the option pricioblem [2], including: (i) MC sim-
ulation, for example [4-6]); (i) lattice or tree based teitfues (such as binomial, for example [7, 8)]);
(iii) fast Fourier transform (FFT) based techniques [9+1i}) finite-difference techniques (for exam-
ple [12,13]). Any of these methods can be employed, depgraiirthe user’s accuracy requirement and
on the availability of computational resources. The birarattice and MC methods have been used
predominantly.

Clark [13] and Thulasiram et al. [8] developed parallel aitpon for the binomial lattice approach
to price options. Their techniques involve constructingireotmial lattice representing possible stock
price movement from the present to the expiry date of theogpti an intuitive fashion. Further, small
machine size is a bottleneck when the problem size is largeth® other hand, multiprocessing does
not always provide modest speedup for option pricing proklé inefficient algorithms are used (see,
for example [13]).

Srinivasan [6] used the quasi MC simulation technique fdrooppricing while Rahmail et al. [5]
used the traditional MC simulation to study the effect ofarrect volatilities for underlying assets on
option pricing errors. In simulations, increasing the shngpsize increases the accuracy of the results.
However, as the sampling size increases, computationahtsusincreases.

Use of fast Fourier transform (FFT) technique for optioncimg was introduced by Carr and
Madan [10]. Extending this model, Barua et al. [9] have depet an efficient parallel algorithm to
enable quicker and accurate pricing of options by intratlyiclata swapping technique in FFT.

Mayo [14], for example, evaluated American options using ithplicit finite-difference method.
The algorithm gave fourth order accuracy in the log of theetapsice and second order accuracy in
time. Thulasiram et al. [15] have designed a second ofgestable algorithm for the pricing prob-
lem. This algorithm achieves the same error bound as théedfraditional Crank-Nicholson scheme,
while at the same time assures that the error will not pragagbience, their scheme is better than
Crank-Nicholson scheme, which is typically known to be abkt for PDEs. Although finite-difference
methods are reasonably straightforward and the disctietizaf the problem domain is almost uniform,
these methods are computationally intensive and prodsgsesjgeedup as compared to the lattice meth-
ods [13]. However, the accuracy of the option values fromfithige-difference technique are typically
much better than the lattice method.

Valuing options using lattice and finite-difference methoften demands additional computational
effort to achieve higher accuracy of results with finer godsattices, while MC requires larger number
of simulations. Andricopoulos et al. [16] developed a mdthdich curtails the price ranges of the un-
derlying assets for which computations are carried oufigaciyg considerable savings of computational
effort with virtually no loss in accuracy. Such shorter raagf asset prices implies smaller volatility
of the asset, which indicates to a well informed trader&twethe lesser value of the option. In other
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words, coarser grids on asset prices are good only for atbsettare less volatile. Generally, as the ex-
piration time approaches, the volatility of the asset pdeereases, decreasing the value of the option.
Therefore, having uneven step sizes in the asset pricetidine@spatial direction) especially coarser
step size near the expiration time should reduce computdtaost in all these methods including MC
simulation. However, we do not consider uneven step sizéssrstudy.

Since the finite-difference and finite-element techniquesse@dditional challenges for parallel com-
puting, as a first step, we use the MC simulation on many-oara-chip architecture for its simplicity
in parallelization. In particular, we target an ambitiol&43core-on-a-chip design, Cyclops-64 (C64)
architecture, which is a petaflop supercomputer projeceuddvelopment at IBM research laboratory.
Unlike other academia projects, a first C64 system is platméeé installed in 2007.

2 MonteCarlo Algorithm

Most commonly used numerical methods in finance includerbiablattice and Monte-Carlo (MC)
simulation.Binomial lattice records the asset price mosenhinto a binomial tree, and then uses risk
neutral valuation to obtain option prices at all nodes. MGhuod values the option based on simulated
distribution of asset prices. These two methods can be wseffetctively solve simple models. When
the underlying assets become more complicated, researaeerMonte-Carlo simulation to evaluate
complex options with high dimensionality. MC method [2]eef to the use of stochastic techniques to
arrive at a solution for a physical problem. MC method getmsratock prices repetitively, which are
then used to value the option based on the simulated distmibaf stock prices. The convergence rate
of MC simulation is generally independent of the number eftinderlying state variables. Therefore,
it is particularly useful for financial problems with highnaiensionality.

MC simulation is a forward-based procedure. Option priciltgMC can be divided into three basic
steps: (1) simulate the stochastic process underlyink s&iarns, where each realization is a sample
path; (2) evaluate the value of the option in a backward mamnerder to find the early exercise point
and obtain a sample point estimate; and, (3) average oveiphetdample estimates to form an interval
estimate that includes some measure of precision (e.gdata error). Obviously, the existence of the
precision measure is an advantage of MC over other numenetiods.

One major difficulty with MC simulation is that it requiresardie number of simulations to achieve
convergence. Simulations of the order of several milliores reot uncommon in practice. However,
this is the impetus for the current study, trying to do largeutation in shortest possible time, using
many-core-on-a-chip architecture.

3 Many-core-on-a-chip Architecture

As advances in IC processing technology allow the featwestsi drop, density of transistors and clock
frequency on silicon chips are to continue increasing ferriext few years following Moore’s Law.
At this pace, a billion-transistor chip is approaching [1Fjowever, the delivered performance versus
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number of transistors integrated in a chip for microardaitee, keeps declining over time [18]. Power
consumption and dissipation considerations also placiiawaial obstacles to improve the performance.
Due to fundamental circuit limitations, limited amountdrstruction level parallelism, and the memory
wall problem, computer architects look for new designseothan the single-thread wide-issue super-
scalar approach, to utilize the transistor budget and atéi¢he effects of high interconnect delays. On
the other hand, by fabricating hundreds of millions of tistogs on a single die, it becomes possible
to put a complete multiprocessor, including both CPUs antharg, on a single chip, what is known
as multi-core or many-core-on-a-chip architecture. budtef devoting the entire die to a single and
complex processor, the many-core-on-a-chip design iategra large number of simple processors on
a single die.

It is believed that the many-core-on-a-chip architectuas many advantages over the single core
chip. First, by partitioning the chip resources into indival small, localized simple cores, the effect
of the interconnect delay is limited. By enabling multipleres to share the chip resources, such as
on-chip memory (or L2 cache), interconnect network, anahip/off-chip memory bandwidth, the re-
source utilization is improved. Second, given the fact ttap power consumptions drop significantly
with reductions in frequency, many-core-on-a-chip aegtiire alleviates the power dissipation problem
without reducing the computation capability by running myéanumber of cores with moderate clock
rate. Finally, many-core-on-a-chip architecture natyrexploits thread-level and process-level paral-
lelism, which are expected to be widespread in future agptins and multiprocessor-aware operating
system and environments [19]. Not surprisingly, all majécnoprocessor manufacturers have already
begun to move its microarchitecture towards multi-core anyacore-on-a-chip design [20—25]. In this
paper, we develop and implement one important financiali@gfin, option pricing using the Monte
Carlo simulation on one such many-core-on-a-chip architec Cyclops 64.

With the emergence of many-core-on-a-chip architectdiig,important to employ multithreading
techniques to avail massive on-chip parallelism providéditithreading is a technique that has proved
very efficient in exploiting thread-level parallelism anshabating the latency problem in parallel com-
puting. Over the past few years, multithreaded algorithensetbeen developed for problems involving
irregular high level data structures arising in traditioaad non-traditional areas such as network opti-
mization [26], computational finance [11], and computasiomedicine [27]. In irregular applications,
the data size operated on by each processor changes dytai@8h which in turn, affects the com-
putational requirements of the problem leading to commatioo/synchronization latencies and load
imbalance. These latencies can be tolerated by multithrgatload imbalance is handled by (i) repar-
titioning/remapping data onto processors at runtime (afitiadal overhead) or (ii) migrating threads
between processors (not possible on current clusters)ugFhmultithreading solves the latency prob-
lem to some extent by keeping all processors busy explofiargllelism in an application, it has not
been enough. Accessing data in irregular applicationsd&itly affects memory access efficiency due
to the non-uniform memory access patterns that are unknatimuntime. In addition, the gap between
the processor and memory speeds is widening as processat isypeeases more rapidly than memory
speed. State-of-the-art many-core-on-a-chip architest(such as Cyclops-64) provide explicitly vis-
ible memory hierarchy, with which techniques, such as miadat placement and prefetching [29],
can be used to decrease the effective memory latency. Tdtemultithreading, efficient support for
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thread level execution and synchronization is integratetie design of many-core chip architecture.

4 Cyclops-64 Architecture
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Figure 1: Cyclops 64 Supercomputer

The Cyclops-64 (C64) is a petaflop supercomputer (see Figumject under development at IBM
T.J. Watson Laboratory. For its chip architecture (see fei@), C64 employs the Many-Core System-
on-Chip (SoC) approach, which leverages state-of-th&4a8l fabrication technology, to achieve high
computation rates (even real time performance), low powasemption, and low cost. Based on a cel-
lular architecture, a maximum configuration of a C64 systemsisting of 13,824 C64 chip, connected
by a 3D mesh network, is expected to achieve over 1 petafldp pedormance. The C64 system is
intended to serve as a dedicated compute engine for runmgigemd computing applications, such
as molecular dynamics to study protein folding [30], or imggocessing to support real-time medi-
cal procedures. This paper shows that C64 is also an ide&bnorafor real time finance computation
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applications, such as option pricing. To the best of our Kedge, the C64 project is one of the most
ambitious petaflop supercomputer projects currently uadgve development. Unlike other academia
projects, a first C64 system is planned to be installed in 2007

The C64 chip architecture (Figure 2) employs a many-cora-chip design with 160 hardware
thread units, half as many floating point units, same amomfeelded SRAM memory banks, an inter-
face to off-chip DDR SDRAM memory, and bidirectional intrp connection ports on a single silicon
chip. A C64 chip consists of 80 processors, each with twaathumnits, a floating point unit, and two
SRAM memory banks of approximately 32KB each. Five processbare a 32KB instruction cache,
which is not shown in the figure. Instead of data cache, agodf each thread unit’'s corresponding
on-chip SRAM bank is configured as the scratchpad memory. (Sfyefore, a thread unit can achieve
fast access to its own SP, i.e., one cycle for a store, andywlesfor a load. The remaining sections of
all on-chip SRAM banks together form the global memory (GN3ttis uniformly addressable from all
thread units. The C64 also employs the Network-on-Chip (Nm@cept, all on-chip resources are con-
nected to a 96 ports on-chip crossbar network, which prevédéGB/s bandwidth per port per direction,
384 GBY/s per direction in total. This huge bandwidth sustaiththe intra-chip traffic communication
and the six routing ports that connect each C64 chip to itseseaeighbors in a 3D-mesh network.
Besides the crossbar network, all the thread units withihip connect to a 16-bit signal bus, which
provides a means to efficiently implement barrier. A C64 scp@puter is built out of tens of thousands
of such C64 nodes.

Node Chip
Processor
Isp[sp]||[sp][sp ]| |[sp]]sP] [sp||spP]
I I I I I I I I
2> ‘TUHTU‘ ‘TUHTU‘ ‘TUHTU‘ ‘TUHTU‘ £
2E7| | ] |
[}
i
53] | L N
Crossbar Network g H—
58 L. 1 1 | L
o GM || GM GM || GM GM || GM GM || GM _—
So| | ATA

Figure 2: Cyclops 64 Node

In summary, the C64 chip architecture represents a majartiep from mainstream microproces-
sor design in several aspects:

1. The C64 chip integrates a large number of (160) processdements, embedded memory and
communication hardware in the same piece of silicon.
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2. Athread unit, the C64 computational cell, is a simple G4single issue, in-order RISC processor
with a small instruction set architecture (60 instructioaups) operating at a moderate clock rate
(500MHz). And the execution on a thread unit is non-preevapti

3. C64 incorporates efficient support for thread level ekenu For instance, a thread can stop
executing instructions for a number of cycles or indefigitaind when asleep it can be woken up
by another thread through a hardware interrupt.

4. C64 provides no resource virtualization mechanisms.irflstance, execution is non preemptive
and there is no hardware virtual memory manager. The forneansa single application can run
at a given time on a set of C64 nodes. Additionally, the OS moll interrupt the user program
running on the thread units unless the user explicitly $@sgpreemption or an exception occurs.
The latter means the three-level memory hierarchy of thec®ais visible by the programmer.

5. In the C64 chip architecture there is no data cache. ldsgeportion of each SRAM bank can be
configured as scratch-pad memory. Such a memory providest tefaporary storage to exploit
locality under software control.

6. The integration of processing logic and memory is furlbeeraged with a rich set of hardware
supported in-memory atomic instructions. Unlike similastructions on common off-the-shelf
microprocessors, atomic instructions in the C64 only blikekmemory bank where they operate
upon while the remaining banks proceed servicing otherastigu This functionality facilitates
the scalability of multithreading programs with intenssyachronization operations.

5 Experimental Results

5.1 Monte Carlo Experiment Design

Out of all inputs (refer to section 1) into the Black-Schabgsgion pricing model, it is only volatility that
is not observable. In the experiments we consider the fallgw(a) use of historical volatility of con-
tinuously compounded stock returns; (b) use of GARCH-fitteldtility of continuously compounded
returns.

During the experiments we generated stock price seriesruihdeassumption that prices follow a
random walk with drift. We generated increments using themab probability distribution function.
In various stages of the experiment volatility of incrensemtas: (i) Constant; (ii) Decreasing; (iii)
Increasing; (iv) Stochastic; (v) Decreasing and stocbastnd, (vi) Increasing and stochastic. The
whole idea about using different volatility schemes sterosftwo earlier studies [31, 32], where it
was found that volatilities of individual stock returns ieased over the period 1962-1997, while the
market volatility did not exhibit any significant patternhd parameters of the normal distribution used
in simulations are taken from the real data set, which werdesbelow.

Using these generated volatilities and a pseudo-random number generator, we generate stock
price series that follow the geometric Brownian motion psx

lnSt =5+ 5lnSt_1 + v (1)
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where~ is the drift in the stock pricer is the variance rate (volatility) of the stock price, In etioa 1
we havey > 0 to make sure that prices do not fall below zero and that theement is normally
distributed:

vy = N(0,07) )

We assumed the continuously compounded interest rate ohB%tha flat and deterministic yield curve,
as it is assumed in the Black-Scholes model. Expirationwateset at 3 months from the starting point
(time t), and strike price was varying from 5 to 105 with the step €i220. The starting pricesqP

in all cases were $5.00. Using these parameters, we cadutall prices for the non-dividend paying
stocks for each point in timeusing all inputs as known. The formula used in calculatisribe classical
option pricing formula (see [2]). Next, we calculated optrices with all the same inputs but measured
volatility.

In the first run of the experiment we estimated conditiondatiities and used them in the option
pricing formula. In the second run of the experiment we estad historical and GARCH-fitted volatil-
ities of continuously compounded stock returns [33]. Aftatculating option prices (E*VF) using
known data and option prices using observable and measatad @’ “4SUEED) e calculated the
option pricing errotE in the following way:

E = CMEASURED _ CTRUE (3)

This error would give us a dollar estimate of the mistake isecaf using an improper measure of
volatility in the Black-Scholes option pricing formula).

5.1.1 Option Pricing Results

Figure 3 depicts one of the many sets of pricing errors thailte from the experimental study. This
graph shows, which of the data generating processes ctagges errors when we use GARCH-fitted
volatility of continuously compounded returns. The x-axigll these figures corresponds to the strike
prices ranging from $5 -$105 and the y-axis correspondset@ttion pricing errors: -0.004 to 0.003 in
fig 3 (a); -0.05 to 0.03 in fig 3 (b); -0.06 to 0.01 in fig 3 (c); -8.t® 0.04 in fig 3 (d); -20.0 to 140.0 in
fig 3 (e); -0.20 to 0.06 in fig 3 (f).

Figure 3 (a) corresponds to constant volatility, Figure Bdtrresponds to decreasing volatility,
Figure 3 (c) corresponds to increasing volatility, Figur@Bcorresponds to stochastic volatility, Fig-
ure 3 (e) corresponds to decreasing and stochastic viglailgure 3 (f) corresponds to increasing and
stochastic volatility. The six legends below each of thegerés identify the prices starting from $5 to
$105 in steps of $20 for respective figures.

During the experiments the drift component of the stockepig $0.006t, where stands for the
number of days. Therefore, we are able to plot call pricimgreagainst various exercise prices and
unconditional expectations of stock pricds|6;] = 0.006 x t). In this part of the experimen; ARC H
model is estimated for the sample sizewith the mean equation that regresses continuously com-
pounded returns on a constant. We generate fitted voladifity record the last value,. This is our
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Figure 3: Option pricing errors for stock prices generatsithgi various patterns of volatility, average
across series. GARCH-fitted volatility estimates basedamiguously compounded returns are used to
generate option prices.

input into the Black-Scholes formula for calculating theasered call priceQ FASURED - Next, we
add one more data point to the stock price series, estimat& #RCH model for the sample &f+ 1
observations, and use.; to calculateC}!FASURED  Using this process, we generate the time series
of measured call price§ PASURED,

As we can infer from Figure 3, in some cases (for example,stas@d e) option pricing errors
grow with higher sample size. This can be attributed to thestationarity of option prices: as sample
size increases, sample volatility of data approaches ipfifiherefore, we get upward-biased estimates
for the volatility of stock prices. The comparative statistof Black-Scholes model show that call price
increases when stock price volatility increases. Theegfgpward-biased estimates of stock prices result
in upward-biased estimates of option prices. This sitmatiould result in a false belief that there exists
a Put-Call-Parity arbitrage strategy based on erroneaadtulated call prices. In case of constant and
stochastic volatility of prices (Fig. 3:(andd)) the situation is not as clear. Option pricing errors seem
to be fluctuating around zero on the average.

These results were obtained first on a statistical packdbgs&aViews We reproduced the results
first with the in-house developed sequential code beforallplizing our code and implementing on
the many-core-on-a-chip architecture. On a AMD-K7-Il mesor, with 6 possible exercise prices, 6
patterns of volatility, and 1000 data points, one run of tkgeeiment using the E-Views package for
only 20 iterations took 4 hours and 45 minutes.

In the next section, we demonstrate the performance resiuitenning the simulation on the C64
architecture.



5.2 MonteCarlo Simulation on C64

Table 1: Processor Configurations

Processor Clock Cache off-chip Compiler
Rate Memory
Cyclops-64 500MHz | No data cache | 1GB DRAM | gcc-3.2.3
Thread Unit 5MB on-chip for C64
SRAM memory

AMD Opteron | 2.4GHz | 1MB L2 cache 3GB gcc-3.2.3
for x86.64

Intel Centrino | 1.86GHz| 2MB L2 cache 512MB gcc-3.3.6

Intel Pentium4| 3.2GHz | 512KB L2 cache 1GB gcc-3.4.3

The performance of the Monte Carlo algorithm on C64 is coregbao different representative off-
the-shelf processors: AMD Opteron 250, Intel Centrino, kmel Pentium 4. The basic configurations
of those processors are shown in Table 1. The computatioducted on C64 is simulated with the
FAST simulator [34], which is a functionally accurate simtidn tool set for the C64 cellular architec-
ture. The parameter setting for 4 different simulationshiman in Table 2

For C64, a portion of each SRAM bank can be configured as ttecbgrad memory (16KB, in
this case), which guarantees fast and predictable acdessydor the corresponding owner thread unit.
For the Monte Carlo simulation, we carefully design the ¢adreh that the intermediate results of the
computation can completely fit into a thread unit's scratchmemory. Only the latesti simulation
results were stored on-chip for the next (i#1¥imulation. The previous, ...... .4 — 1 results were
stored off-chip. For the parallel version, since no synolration is needed, the performance increase
is proportional to the number of threads employed.

We performed on average ten runs on each of the machine aath@dtthe execution times as
shown in Figure 4 for the simulation parameters chosen iteTabPlease note that only one C64 thread
unit is used for this comparison.

The Monte Carlo simulation is known to be embarrassinghalper i.e., all the thread units can
work independently without involving synchronization ohgr the simulation. Since all the intermediate
data needed for a thread unit's computation can fit into its seratchpad memory, there is no runtime

Table 2: Parameters for Monte Carlo Simulation

Parametell begprice| step| variety | ARSIZE |

sim-1 5 20 6 1000
sim-2 5 40 8 1000
sim-3 5 40 8 2000
sim-4 5 100 10 5000
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Figure 4: Execution Time of Monte Carlo Simulation

competition and conflict for shared resources, such as btobahip memory. As a result, the speedup
of the parallel version can increase linearly with the nundiehreads used (This is also demonstrated
with the simulation). By conducting all 160 thread units foe Monte Carlo simulation, a C64 chip
can complete 160 times simulation task with the same amduatexution time shown in Figure 4.
For all other three processors, the execution time incseepsaportionally. Through calculations for
all four groups of simulations, for the Monte Carlo optionicprg simulation, we can conclude that
C64 node delivers the performance equivalent to 18 Opte&kth@PU, 32 Intel Centrino CPU, and
28 Intel P4 3.2GHz CPUThe approximate price for a C64 node would be quite simdamachines
built with those CPUs compared. Therefore, the C64 delieige performance/pricémprovement
over traditional microprocessors for computational firmapplications. Moreover, for the Monte Carlo
simulation, since all data fits into the scratchpad memdiytha computation is performed locally
for each thread units and the power on the very long wiresggtinand from the crossbar is saved.
In such a situation, the power consumption of a C64 node igddivan or close to machine built
with conventional microprocessor. Given a C64 node dditens of times performance, the C64’s
performance/power consumptisatio is much higher compared to other microprocessors.ikeJra
traditional microprocessor, which dies if any parts on th#ds broken, the C64 chip can still be in
working condition, even if one or more thread units/memaphs fail.

6 Conclusions

The current work has paved a way to study a finance problem o-e@re-on-a-chip architecture. As
a first attempt we have analyzed a embarrassingly paratdblgn of MC simulation for an important
option pricing problem.
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In this paper we showed that the use of incorrect volatditéthe asset prices in the Black-Scholes
model would result in moderate to large errors in optiongsic

We could achieve this conclusion by conducting many expamisifor various asset price ranges,
strike price ranges and 3 different volatilities. The tigniresults on C64 show that these various sets
of simulations could be done in a real-time fashion. For thend-Carlo option pricing simulation
done in the current study, we can conclude that 1 C64 nodeedglihe performance equivalent to
18 Opteron 250 CPU, 32 Intel Centrino CPU, and 28 Intel P4 B2GPU. This translates to high
performance/pric@ndperformance/power consumptionprovement over traditional microprocessors
for computational finance applications.

With the promising results from the current study we are bpieg a FFT algorithm for C64
architecture to study option pricing problem based on alegeatudy [9].
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