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Abstract

Large scale graph analysis algorithms—such as those in @Qf@Achmarks studied in this
paper—play an increasingly important role in high perfanoecomputing applications. Different
from most of traditional scientific computing applicatipmgaph algorithms often show dynamic
and irregular computing behavior. It is difficult to attainayl performance on large scale conven-
tional parallel architectures because these programsiexbi little locality and data reuse, (ii).
dynamically non-contigous memory access pattern thasssdenendable to static analysis and (iii).
fine grain parallelism requring lock synchronization. Witie rapid advance of multi-core/many-
core chip technology , some new architecture features asgging: the traditional data cache is
being replaced with fast memories (sometime called scrgathmemories) local to the cores in an
explicity (user visible) memory hierarchy, and a large nemtif processing cores (sometime upto
hundreds) are becoming available on a single chip. Thissptedoth challenges and opportunities
for mapping graph algorithms to be studied in this paper.

In this paper, a scalable parallel algorithm for computiegweenness centrality in scale free
sparse graph is proposed and its performance and scalabilivestigated. In particular, our algo-
rithm addresses the parallelization challenges in thevioig ways:

1. We restructure the parallel algorithm to address thelitycehallenges by overlapping the
latency of prefetching off-chip data into on-chip memoria(an explicit memory heirarchy
of the underline many-core architcture) with computatioa pipelined fashion;

2. We “gather” the dynamically non-contigous off-chip magnaccesses and convert them into
contigous on-chip memory accesses - i.e. “create” on-ghagia locality just in time;

3. The fine-grain synchronization overhead due to lockingdsiced by taking advantage of a
specific fine-grain lock mechanism on a many-core architecnd a novel lock free algo-
rithm through exploiting addtional parallelism;

4. Our solution above take full advantage of the ample harelaead unit resource to assist
the parallel computation to manage data movement throughamehierarchy as well as fine-
grain data synchronization.

We have implemented our algorithm on the 160 core IBM Cyclep<hip architecture. Our
experiemental results confirmed the effectiveness of otihoas in addressing the performance and
scalability challenges of the studied graph problems.



Contents

1 Introduction 1
2 Related Work 3
3 TheGranularity of Parallelism 4
4 Scalable Multigrain Parallel Algorithm 6
4.1 Task-Thread Mapping . . . . . . . . . oo e 6
4.2 Optimization of Explicit Memory Hierarchy . . . . . .. ... ... ... ...... 9
4.3 Optimization of Lock Synchronization . . . . .. ... ... ... ... ... ... 10
4.3.1 LockFreeforBacktrace . ... .. .. .. ... ... ... 11
4.3.2 Fine-grainLockforBFS . . . . .. ... ... .. ... 21
5 Experimental Results 12
5.1 Experimental Platform . . . . . . . . . ... . 13
5.2 Performance Evaluation . . . . . . . . .. ... 14
5.2.1 Performance of Memory Hierachy Optimization . ... ............ 5 1
5.2.2 Performance of Synchronization Optimization . ... .. .. .. .. .. .. 17
5.2.3 Comparison with Other Architectures . . . . . . . ... ... ... ...... 19
6 Conclusions 19
List of Figures
1 The running time of a fine-grain parallel betweenness centrality algorithenroany-
core system. The algorithm refers to Bader's work &ddALF =10.. . . . . . . .. 2
2  (a) A coarse-grain decomposition according to different sourceexer(b) medium-
grain parallelism exploited for a queue/stack at each level of BFS. @Yfiain paral-
lelism visits all neighbors ofeachvertex . . . . ... ... ... ... ........ 6
3 The adjacentarray data structure . . . . . . . .. .. .. .. ... .. .0 9
4 An example of memory images in double buffering framework. It depicts tble
buffers of adjacent array between two time steps. In each stejpathandcomputation
occurs concurrently. Because of the limitation of buffer size in on-chip nmgntloe
green block inadjacent array have to be split and transferred to on-chip memory in
serveral time steps. Only the double buffé#& FNWW are depicted. Another double
buffers BU F'QQ which are alternatively read/writen lmpmputation andstore threads is
not presented in thisfigure. . . . . . . . . .. L 9
5  Anexample of computing array (DELTA in this figure) without lock synchronization.
In this algorithm, only onéoad and onestorethread areused. . . . . .. .. .. ... 11
6  Srong scaling results of parallel betweenness centrality algorithm. The number of ver-
ticesn =259 E(n)=Tn. . ... ... ... ... 14
7 Time distribution and achieving off-chip memory latency tolerance. . .. ... . 14
8 The comparison of running time using different sizes of buffers. . . 16
9 Comparsion of off-chip memory latency tolerance achieved by tunlng uheber of
on-chipbuffers. . . . . . . . . ... 16
10 Overhead of barrier synchronization for scale = 10. The measareers include the
barriers in both BFS and backtrace phase. . . . . ... ... ... ... . ..., 17
11 The execution time of the BFS phase using two kinds of lock synchromzagehanisms 17
12 The execution time of the backtrace phase with/without lock synchromizatio . . . 18



List of Tables

1 The comparison of TEPS on three platforms.



1 Introduction

Larg scale network analysis is one of the most important reasearcheaiiety of applications such

as social networks, transportation networks and biological networksioist applications, graph ab-
stractions and algorithms are naturally used to capture key featuresaadt interesting information.
For a given real world application, network analysis and modeling, whidistcuct a graph for a real
world dataset, is the primary step and has been paid considerable attermti@mtli® a scale free graph,
where the degree distribution follows a power of law, has been usedsasg¢nto model the networks
from some important applications including building protein interatction netsvfik, 23, 28], study

of sexual networks and AIDS [26]and identifying key actors in tertamstworks [12, 25]. In these
applications, betweenness centrality [19] is a popular quantitative irtehd analysis of large scale
complex networks. This metric can be considered as nhomalized centrality.alumes the control a
vertex has over commnication in the network, and can be used to indentifyekigges in the network.

High cetrality indices indicate that a vertex can reach other vertices divedyashort paths, or that a
vertex lies on a considerable fractions of shortest paths connecinsgopather vertices.

Although graph analysis algorithms have been extensively used in maltigadioms, there are still

several grand challenges, which are different from traditional sficoomputing in high performance
computing field.

e Little locality and data reuse. Real world networks are often very large, which size ranges from
several hundreds of thounsands to billions of vertices and edegsack-gificient data structure
of such graphs is itself a big challenge. For huge graphs, parallefawgre algorithms [31] are
alternative methods to improve the performance on parallel computer with limiyesicphmem-
ory. The data structure is partitionable to fit phsical memory in out-oé-afiyorithms. This is true
for most scientific computing with regular computing behaviors; howevahwerld networks are
highly unstructured. The degree or neighbors of a vertex in sucthgsapghly variable. The
unstructured degree distribution leads to variable strides for memorysasodkat it is difficult
to achieve locality on cahe-based architecutre. From the view point of nydmbavior, it is ac-
tually a random access. Even in some graph travese algorithms, somesvardamly accessed
at once. Therefore, little data reuse can be exploited.

e Dynamically non-contiguous access pattern. In most graph algorithms, there is essentially no
computation to hide memory costs. Furthermore, the memory access pattaratdzan deter-
mined statically. For example, in graph travese algorithms, the vertices aszi\esel by level,
the memory access pattern in the next level is dynamically determined in thatdewa. That is,
the memory access pattern is data dependent so that prefetching emtconventional architec-
ture unlikely to help. Because the neighbors of two vertices are randoméraed, a significant
number of non-contigous memaory access are involved.

e Finegrain parallelism. Due to the data dependence, i.e. in level-wise graph traverse, we can not
directly exploit parallelism among levels because of the data dependeheee &xists explicit
parallelism when exploring the neighbors of a vertex. On large scalégda@mputers, this kind
of parallelism is very fine grained. We may exploit the parallelism within acog$se neighbors
of all vertex in the same level, but a high efficient lock synchronizationhaeism is needed to
handle conflicts.
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Figure 1: The running time of a fine-grain parallel betweenness centridityidam on a manycore
system. The algorithm refers to Bader’s work &8ldALFE = 10.

Obviously, these characteristics of graph algorithms discourage abitva high scalability on conven-
tional parallel computers because most of cache-based parallel compreenspired by high degree
of locality, regular memory access pattern and coarse grain parallelism. Wittapid advance of
multi-core/many-core chip technology [1, 2,18, 21], some new archieddatures are emerging: the
traditional data cache is being replaced with fast memories (sometime callezhsgaal memories) lo-
cal to the cores in an explicity (user visible) memory hierarchy, and a langgoar of processing cores
(sometime upto hundreds) are becoming available on a single chip. No weeres that an explict
memory hierachy is exposed to programmers and algorithm’s designerse@ewharchitecture with
explicit memory hierarchy, we may have to develop a new algorithmic techricadidress the issues of
poor locality and irregular memory access pattern. Many threads unitgpacally available on many-
core architectures. In order to utilize the threads efficiently, it is necegsa@&xploit more parallelism
in algorithms. Therefore, unlike the coarse paralell algorithm design nveational parallel comput-
ers, this requires indentification of an addtional level of concurreneyfiile grain parallelism through
restructuring parallel algorithms. The new features of manycore artlviéscraise a new challenge to
high performance algorithms. We may not simply adopt the algorithmic optimizatadmitgues on
the emerging manycore architectures. In order to give an intuition of gvisahift, figure 1 plots the
performance results of a simple fine grain parallel betweenness cenélgidsithm, which is imple-
mented using OpenMP [3, 14] on a manycore system. When the numberegfisanore than 8, the
performance degrades, even beginsg@eddown when the number of cores is more than 16. The poor
scalability forces us to take a fresh look at the parallel algorithms on mesgcohitectures. However,
the trend of scaling performance by scaling parallelism also providesaa gpgortunity to develop
new high performance algorithms, especially the graph algorithms. In thés,pa@ propose a scalable
parallel algorithm for computing betweenness centrality of vertices in a fesegraph, and its per-
formance and scalability is investigated. We address the challenges arebstge dhoices involved in
mapping the betweenness centrality algorithm to manycore architectures thiegkey point is to take
full advantage of the ample hardware thread unit resource to assisathéepcomputation to man-
age data movement through memory hierarchy as well as fine-grain dataresgization. Our specific
contributions are as follows:

e A detailed analysis of parallelism in the betweenness centraility algorithm.riégympse a multi-
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grain parallel algorithm, which puts emphasis on the domain decomposition apig&pmany
threads in the two phases: forward breadth fist search (BFS) akd/dataccumulation (back-
trace).

e We restructure the parallel algorithm to address the locality challengesdrapping the la-
tency of prefetching off-chip data into on-chip memory (via an explicit menhaiyarchy of the
underline many-core architcture) with computation in a pipelined fashion.

e We “gather” the dynamically non-contigous off-chip memory accessdscanvert them into
contigous on-chip memory accesses - i.e. “create” on-chip spatial locaitinjtime.

e The fine-grain synchronization overhead due to locking is redugddiing advantage of a spe-
cific fine-grain lock mechanism on a many-core architecture and a noslelftee algorithm
through exploiting addtional parallelism.

¢ In order to provide insight on the performance impact of architecturdl agorithmic design
choice, a comprehensive experimental evaluation of the proposeelpakgorithm is included
in this paper. The more interesting points are our experimental indicationatimaiand archi-
tecture design.

The rest of this paper is organized as follows. In section 2 we summarizadkimus work on par-

allelizing similar graph algorithm on parallel architecture, especially manya@tatecutre. Then, we
give a simple description of the original algorithm for computing betweennestrality in section 3,

then discusses the granularity of parallelizing betweenness centralitjtialgoBased on the analysis
of parallelsim, in section 4, we proposed a multigrain parallel algorithm whidnezdes the locality
problem on explicit memory and reduces the overhead of lock synclattmz Section 5 describes
the experiments we have performed to measure the performace of thes@uqperallel algorithm on a
manycore architecture—IBM Cyclops64. Finally, the conclusions asgmted in section 6.

2 Related Work

Due to the importance of graph algorithms, there are many researchesadielzation and optimiza-
tion. A great deal of parallel algorithms based on PRAM model have pegposed, especially for
graph theory [13, 20, 24]. However, to parallelize and optimize gedgbrithm on current real parallel
computers is also an nontrivial problem. Bader et.al. [7] discussesdeatqd algorithms for evaluating
several centrality indices frequently used in complex network analysey pfoposed the first parallel
implementations of betweenness centrality algorithm on high-end shared gpngynometric multipro-
cessor and multithreaded architectures. Their work simply exploited tHieiexwo level parallelism
and did not address the problems of memory behavior and synchronizdtienmain kernel of be-
tweenness cetrality algorithm is breadth first search (BFS), whiclalicta a typical representation of
graph analysis algorithms. Therefore, we present a brief summarjatédegraph search algorithms.
Park et.al. [27] developed algorithmic optimizations to improve the cache pafare of four funda-
mental graph algorithms. For dense graph, they focused on the datd tzfythhe matrix of a graph
and a cache-oblivious technique is used to optimize the performance on yngyatem based on cache
hierarchy. In order to improve the poor locality of sparse graph searspace efficient data structure—
adjacent array—is used. In our work, we usadjacent array to represent the scale free graph. In [6],
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Bader et.al. designed a multithreaded algorithms for BFS on multithreadedeatahét such as Cray
MTA-2 [4]. The algorithm leverage the efficient architectural featstesh as atomic operations and low
overhead of lock synchronization to achieve speedups. Howevik:Muses a flat memory structure
so that the algorithm can not be simply adaptive to manycore architecture xpiibiememory hier-
archy. Yoo et.al. [32] presented a scalable distributed BFS schen@MmBlueGene/L. On the large
scale distributed memory parallel computer, the efficiency of message g&sstressed for improving
the scalability of parallel algorithms. In their work, they noted the optimizatidoaal memory usage
when the 2D matrix is partitioned, but the technique is designed for the dgems@s data structure—
adjacent matrix. The most recent work on parallel BFS on mulit-core acciiteis described in [30].
The authors presented the challenges and algorithm of parallelizing B& State-of-the-art multi-core
processor, the IBM Cell broadband engine [21]. The algorithm udéa Rttached to each SPU to
hide memory latency in the explicit memory hierachy. An additional preprotgssrequired in their
algorithm, where all vertices are partitioned into several disjoint sets. iThatvertex is exclusively
mapped to a SPU. This idea is similar to the 2D adjacent matrix partition in [32], lé&kalgorithm in
distributed memory architecture, it involves a number of collective communicaperations.

3 TheGranularity of Parallelism

We follow the convention of introduction to betweenness centrality pteddsy Bader’s work [5]. Con-
sider a graplG = (V, E), whereV and E is the set of vertices and edges, respectively. In the graph
model, vertices repsent actors in social network, or proteis in proteiragiien network, edges repre-
sents the relationships/inertaction between actors/proteins in the sociafpretieork. The nubmer of
vertices and edegs are denotedrbgindm, respectively. Each edgec F may be associated with an
positive integer weightv(e) (w(e) = 1 for unweighted graphs). Define a path freane V tot € V as

an sequence of edgeswv;, v;11 >,0 < i < [, wherel is the length of a pathyy = s andv; = t. The
length of a path is the sum of the weights of its edges. Wed(sg) to denote the distance between
verticess andt¢. Let us denote the total number of shortest paths between vestaed: by o4, and

the number passing through verteky o (v). Then, betweenness centrality of a verteis defined as

follows: BO() = Z o5 (V) "
s#vFELEV st
The main contribution of Brandes [9] algorithm is the elimination of explicit rethnt summation of all
pair-wise dependencies. Actually, this fast algorithm uses a dynantcgimmming technique to reduce
the search space. A typical graph traversal algorithm like breadthsiarch (BFS) and Dijkstra’s
algorithm can be used for unweighted and weighted graph, respectirelyn a given source vertex, it
discovers all shortest path to compute the pair-wise dependenciese Erediget opredecessors of a
vertexv on shortest path fromas

P;(v) ={u eV :{u,v} € E,dg(s,v) = dg(s,u) + w(u,v)} 2

whered (s, v) is the distance from to v. For a unweighted graphy(u, v) = 1. The time of a direct
augment of BFS or Dijkstra’s search is still dominated by counting all paie-aependencies. In order
to eliminate the need of explicit summation of all pair-wise dependencies, ieddfiedependency of
a vertexs € V on a single vertex € V as
(Ss(v) = Z (Sst(v) (3)
teV

Obviously, §5s(v) is one partial sum oBC(v) and the betweenness centrality of a vertegan be
expressed aBC(v) = >,y 0s(v). A crucial observation of Brandes algorithm is that the partial
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sum obey a recursive relation:

)= Y T4 6 (w) @)

T g4
wwePs(w)

Like a dynamic programming algorithm, this fast algorithm proceeds as twegliasvard BFSand
backward accumulation (backtrace). The algorithm is stated as follows. FiratBFS/Dijkstra’s searches

from eachs € V are done in the forward phase. The predecessorg%ét$ are maintained and the
numbers of shortest path through the internal vetteare recorded during these computations. Next,
for everys € V, using the information from the shortest paths tree, where the numiseodest paths
through a vertexv is stored ino(w), and predecessor sets along the paths, compute the dependencies
ds(v) for all otherv € V. In the end, the sum of all dependency values of a vertexcomputed
according to recursive relation.

The procedure of computing betweenness centrality starts with eachesmntex, search the graph
using BFS, then backtrace the tree to accumulate betweenness centrabity. vélilne search starting
with a vertex is consider as a task, the algorithm needs |V| sub-tasks to get the betweenness
centrality of each vertex. The concurrency can be exploited at threkdegranularity for the sequential
algorithm: (i) coarse-grain among the sub-tasks (parallelism in line 3). (iljunegrain at queue/stack
level (parallelism in line 10 and 21). (ii) fine-grain at the neighbors lgvatallelism in line 13 and 23).

The three levels of parallel granularity are depicted in Fig{;ur_e 2. . i
e Coarse-grain: For the"BFS phdse, the coarse-grain implementation is embarrassinglglpara

The sum of betweenness centrality is partitioned iNto> P, whereP is the number of threads.
Each BFS from a vertex independently proceeds in parallel. Each thesaal partial sum of be-
tweenness centrality value. In the end, there is a reduction operatiorgathtiireads. Although
the coarse-grain parallel algorithm can achieve dynamic load balanaimdjdd by a library or
runtime, it needs a whole copy of graph data structure on every payétbssad. For a large scale
graph, it easily exceeds the available physical memory, and, everwbeslocal memory on
each core in manycore architecture is very small, therefore the problpooofocality becomes
more sharp.

e Medium-grain: The medium-grain parallelism is exploited when the algorithm visits the neigh-
bors of a vertex in the queue/stack in the same BFS level. In each BHSdew®e vertices are
selected and organized in the queue (which is a stack when backtrac8\g&F). Each thread
dequeues/pops a vertex and tries to visit its neighbors. If a neighboitexiMiar the first time, the
neighbor vertex is enqueued. The efficiency of medium-grain paratielespends on the length
of the queue in a BFS level and the conflicts of neighbors. The numbearqfegied vertices
in each BFS level is dynamic which results in load balance problem. Becaaiseighbors of
dequeued vertices are marked if they are visited for the first time, tlessito the same neighbor
needs to be ordered by a synchronization mechanism which defectgplbaeaxkparallelism.

e Fine-grain: The fine-grain parallelism in the innermost level loops is exploited by allowinl
tiple threads to coorperate during visiting the neighbors of a dequeuedfpepiex. The degrees
of a vertex determine the available parallelsim. This work studies a scalsffaese graph where
the degree of a vertex is low, therefore it is difficult to achieve loadizador large scale threads.
For the fine-grain parallelism, a lock is not needed unless there exatgd@dgesbetween two
vertices. In this case, we have to keep the order in which the same vertiskeid, using some
sychronization mechanism, such as a lock.
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Both the medium- and fine-grain parallel algorithm can not achieve ldadd@because of the sparisity
of scale free graph. Because the coarse-grain parallel agorithnmot&xploit more intristic parallelsim
of BFS and the locality is limited by the available size of physical memory, thekstiglas poor. It

is expected that we can achieve better performance using hybrid grategtsim. However, a simple
multigrain parallel algorithm can not achieve locality on explicit memory hieraBbgides, we have to
seriously take lock synchronization into consideration because we neggltot fine-grain parallelism.

P BN
Sebb ddb o &S SO

(a) coarse—grain

@ Leveli
AN
‘Cj O V O‘ ‘O O V O‘ et . . ' . Level i+1
PO P1 .- Pn

(b) medium—grain

Level i
O . O Level i+1
PO P1 ... Pn

(c) fine—grain

Figure 2: (a) A coarse-grain decomposition according to differentcgovertex. (b) medium-grain
parallelism exploited for a queue/stack at each level of BFS. (c) fiagrgarallelism visits all neighbors
of each vertex

4 Scalable Multigrain Parallel Algorithm

In this section, we propose the detailed parallel algorithm which exploits thiggnain parallelism for
computing betweenness centrality. First, we present the paralleltalgé framwork including the
mapping between threads and fine-grain tasks. Because we needdsstid@rissue of explicit memory
hierachy, then, the preliminary parallel algorithm is restructed to be agaptmemory hierachy. In the
end, the novel lock free algorithm and the technique of using specificsipnchronization mechanism
is described.

4.1 Task-Thread Mapping

In order to exploit multigrain parallelism, all threads are partitioned into segeoaips. The thread
groups themselves exploit coarse-grain parallelism and the threads véthiroEthese groups are used
to exploit medium- and fine-grain parallelism. For the coarse-grain parailediach BFS from a source
vertex is a task. The threads in the same group select the same task, St&ndiBEhe source vertex and
backtrace to compute a partial betweenness centrality value along the BHS parallel. We denote
S; as the source vertex set on thréad

The BFS algorithm traverses the graph level by level. Data dependexis¢ébetween two consecutive
levels, that is, the vertices in level 1 are the unvisited neighbors of vertices in leiein order to fol-
low the data dependencies, we use level a synchronization algoritbthersparallel BFS algorithms.
However, our proposed algorithm visits the neighbors of all verticeadh devel in parallel, not just
the neighbors of one vertices. When the algorithm finishes selecting tiwtad neighbors of vertices
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in leveli, it partitions all vertices in level + 1 among the threads in a group and repeats the same pro-
cedure. Let us denote the set of vertices in le\asV; = {v;1, vi2, ..., vin }. The neighbors set of each
verticesv;; is denoted a$l; = {w;1, wja, ..., wjm, } for 1 < j < n. Intuitively the multigrain parallel
algorithm compacts all neighbor sets into one largers8t; = U1gjgn W;, which is a union set of

the neighbor sets of vertices in leviethen distibutes the new neighbor $élV; among the threads in a
group. Because the graph has parallel edges and two differentegeirtithe same level may share the
the same neigbors, serveral threads may visit the same neiglsimsultaneously. The access to calcu-
late the distantced(w]) from the source vertex and paths informatieti{|, Pw]) through neighbors

w must be protected with some synchronization mechanism such as locks or ap@ratoins.

The parallelization of computing partial betweenness centrality values is simitattof BFS. Assume
that there aren vertices in level W; = {wj1, wja, ..., win } and the predecessors set of each vertex is
Vi = {vj1,vj2, ...,vjmj} for1 < 5 < n. In the same way, all predecessors sets are compacted into
one larger sePV; = U1gjgn P;, then partitioned among the threads in a group. Again, some mutex
mechanism is requred to protect the conflicts when calculating the same palti@l¢(v)) on some
different threads. In the end, a parallel reduciton operation happeall thread groups so that the final
betweenness centrality value is accumulated from the partial valuecloftie@ads. In Algorithm 1,

we give the pseudocode description of this high level parallel algorithma Feasonable simple opti-
mizaiton, the basic data structuyeeue representing BFS tree is shared by steek in this algorithm.

The preliminary version of parallel algorithm does not address the clgallehexplicit memory hier-
archy on manycore architecture and lock synchronization overtoeadfiti-thread systems. Although
lock synchronization has been a serious problem for the scalability aflglaalgortihms on conven-
tional architectures, the optimization of explicit memory hierarchy is a neWertyee on manycore
architecture. In the next sub-sections, we propose an efficientggttateptimize the parallel algorithm

for explicit memory hierachy, then reduce the lock synchronizaitonhmaat based on the optimized
algorithm.



Algorithm 1 A high level description for parallel betweenness centrality algorithmtbinesad of group

1
Input: G(V, E)

Output: Array BC[1...n], where BC[v] gives the
centrality metric for vertex v

Ifor allv € V pardo

2 BC;v]=0

3for all s € S; do

4 Plw] < empty listw € V

5 oft] —0,t € V;o[s] « 1;

6 d[t] ——1,t€V;d[s] <0
7

8

9

Q—empty queue

level =0

enqueus — Qieyel
10 while Qjever NOt emptydo
11 NWieper < neighbors{vicver, 1, Vievel, 25 -+ Vievel,n }» Qlevet)
12 for w € NWje,e; pardo

13 lock;

14 if djw] < 0then

15 enqueuey — Qevel+1
16 dlw] « dv] +1

17 if dw] = d[v] + 1then
18 olw] « olw] + ov]
19 append — Plw]

20 unlock;

21 level = level+1;

22 sync;

23 ] —0,v e V;
24 level =leve-1;
25 whilelevel > 0 do

26 PVieyer < predecessors({Wievel,1; Wievel,2; s Wievel,n }> Qlevel)
27 for v € PVieye pardo

28 lock;

29 Slv]  8[v] + 24 (1 + 6[w])
30 unlock;

31 if w+# sthen

32 lock;

33 BC;|w] < BC;[w] + é[w]
34 unlock;

35 level = level - 1;

36 sync;

37 ParReduction(BCBC;)




4.2 Optimization of Explicit Memaory Hierarchy _ _
On manycore architectures with explicit‘'memory hiérarchy, the on-chip meimanych smaller than

off-chip memory, but the on-chip bandwidth is much larger than off-chiglladth. The relatively high
latency of off-chip memory access creates a bottleneck in achiving peafare for memory intensive
applications, especially for that with irregular memory access. A genafiingue is to use DMA or
multi-thread to tolerate memory access latency. If there are sufficent t¢atigmubetween memory
access, the latency is not a problem. However, as shown in previstiensewe do not have enough
computation when traversing the neighbors of a vertex in the graph. foherevhen all threads access
memory concurrently, the off-chip memory latency and bandwidth becorbetlaneck.

viv2 . vn

‘ 0‘10‘ ...... ‘90‘ index array
0 10 \ 9(&4
‘vz‘ """ ‘vl ‘ """ ‘ """ ‘ """ ‘v8‘ """ ‘ adjacent arre

Figure 3: The adjacent array data structure

An efficient data structure representing a scale-free sparse gragra¢ent array. Figure 3 is an
example of the adjacent array. The adjacent array structure is cothpbs&o arrays:index array
andneighbors array. Theith element ofindex array locates the offset of the neighbors of vertex
neighbors array, where all neighbors of vertexare continously stored. Therefore, prefetch or blocking
techniques can be exploited on cache memory architecture when therprisgiaiting the neighbors of
a vertex. However, the neighbors of two different vertices may bheowsecutively store ineighbors
array. Similarly, the memory access to other arraygr (5, P) for keeping path information also are
non-continous. For simplicity, we only present the issueefhbors array in the following algorithmic
descriptions. The main memory access operations in BFS and bagitrases are to extract the neigh-
bors/predecessors of a vertexqoueue. Because the algorithm extracts the neighbors of all different
vertices in a level, it is possible that there are many non-continuous memassacc
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Futhermore, the low latency and high bandwidth of on-chip memory in memorgdhigideads to
following observations:

e To transform sparse off-chip memory access to continous on-chip meanoegs
e To decompose task into sub-tasks so that different level memory as@ssaverlapped.
e To exploit additional parallelism within on-chip memory.

The compaction of the neighbors of different vertices indbeue provides the opportunity to exploit
additional parallelism. Due to the limited on-chip memory, we have to load a small fsdagafrom
off-chip memory each time the neighbors of a vertex are visited, thus thédmaiansforming sparse
off-chip memory access to continous on-chip memory access is naturatiyngeed several sub-tasks.
In order to achieve overlapped memory access, double bufferringaternative technique (See Fig-
ure 4). In the framework of double bufferring, the threads in a greafather divided int@omputation
threads andhelper threads. Thehelper threads are exclusively used to load/store data between off-chip
and on-chip memory. Theomputation threads only access on-chip memory and proceed only when
the required data is available in on-chip memory, which means that the main Wwitvé @mputation
threads involves only on-chip memory accesses. For simplicity, we only give the higth &gorithmic
descprition of the parallel BFS in one level(See Algorithm 2). The pssadies describe the algorithm
iteration in one BFS level. Some neighbors, which have been visited whéoriegpother vertices be-
fore, are loaded into on-chip memory again because of the requirerhemtputing path information.

In case that the buffers are full when partial neighbors of a vereloaded, we need to keep an offset
in the adjacent array of the vertex. As an optimization for usadelper threads, the helper threads

are divided intdoad threads andstore threads.

Algorithm 2 A double-buffering framework for parallel BFS in betweennees cétyti@gorithm. The
backtrace to computing partial values can be implemented in the same way.
while Q;¢ve; NOt emptydo
if load thread
selectsveyer,i € Qrever Which has remained neighbors needed
to be loaded into on-chip memory
BUF NW,eyper <+ compact(adjacent arrayhe,e; i, bufsize)
elseif storethread
flush(BU FQieverv1, Qrever+1)
elseif computation threads
enqueueBU F'Qiever+1, BUFNWieyer)
[*including computing path information*/

4.3 Optimization of Lock Synchronization
Bacically, the on-chip images of compactadjacent array is evenly partitioned and mampped to the
threads in a group. A good load balancing is achieved using rourid-stiategy. However, as men-
tioned in previous sections, lock synchronizations are required feegting the conflicts when serveral
threads are visiting the same neighbor vertex. In this section, we prepgsethms to reduce the
overhead of lock synchronization.
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431 Lock Freefor Backtrace

In the adjacent array data structure, each edge is composedat andend vertex. From the view of
computing behavor, the parallel BFS algorithm only needs to exclusacdgss thend vertex. How-
ever, the inverse procedure of accumulating betweenness centréiligsvaqures an exclusive access
to bothstart andend vertex of an edge (See lir¥® and33in Figure 1). Here we propose a lock free
algorithm, which benefits from double-buffering for calculating betwessrcentrality in the backtrace
phase.

The helper threads are mainly used to transfer data between two level memory. lat¢kerdce phase,
our observation is that the ratio of computation to memory access is high, wharsmaultiplehel per
threads are not necessary, and the calculations are the accumulétensral partial values, which can
be computed independently. Because the worklodugler threads is low, we can exploit some addi-
tional parallelism, then assign soright weight computation sub-tasks twlper threads. According to
equation 3, we can divide the computationy¢f) into several? (1 + 6(w)) sub-tasks and_ .. ()
sub-tasks which only need addtion operations. Thereforegdimputation threads only compute the
partial values of somé&[v] in parallel. These partial values are stored in one on-chip buffer anethe
duction of sum is delayed to be done by dwekper thread, i.e storethread, in the next iteration. Figure 5
illustrates an example of the lock-free calculation of tharray. In current iteration, the computation
of partial values and the sum of partial values computed in previous itenatexeed in parallel, thus,
in addition to hide the off-chip memory access, some computation tasks arevattapped. Because
only oneload and onestore thread are used, there is no data race for accumulating the final values on
off-chip memory.
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Algorithm 3 The parallel algorithm for computing betweenness centrality values in laaekphase.
The double buffering keeps the order of read/writeBaf F'6 (v) amongcomputation andhel per threads
while Qjeve; NOt emptydo
if load thread
if somew;..ei,; all of which predecessors have been loaded
BC;w] « BC;[w] + §[w]
selectSwieyer,i € Qrever Which has remained predecessors
needed to be loaded into on-chip memory
BUF PVieyer <+ compact(predecessols;e e i, bufsize)
elseif storethread
for v € BUFPVeye; dO
0(v) «—sum@BU Fo(v), d(v))
else if computation thread
BU F$|0...bufsize}- 0
for v € BUF PVieye pardo
BUFé(v) «—accumulateBU F'é(v), BUF§(w))

In order to eliminate the lock synchronization of visiting #rel vertexw to accumulate between-
ness centrality valueBC'(w), we note that the accumulation operation is only performed after all pre-
decessors of the vertexw are visited to compute the valdetherefore, we assign the accumulation of
betweenness centrality valu&s” (w) to theload thread. For a given vertexv in the shortest path, the
load thread updates its betweenness centrality vali&s(w) after the traverse of its all predecessors
is completed. Thus, the parallel algorithm of backtrace to compute betwseneetrality values in a
level is presented in Algorithm 3.

4.3.2 Fine-grain Lock for BFS
When the threads are traversing the neighbors of some vertices in the saiedaflicts occurs only

if they are visiting the same vertex. That means a lock synchronization shewdsociated with a
single vertex, not the whole adjacent array. It is intuitive that a finendoak can handle this problem.
In conventional architecture, we have to use an additional lock array termngnt the fine grain lock
mechanism. The size of lock array is the same with the number of vertices,. fohasarge scale graph,
the lock array locates in the off-chip memory and the performance deghsaause of relatively high
latency of off-chip memory on a manycore architecture. In order to $avadditional lock array, we
use the fine grain machanism—Synchronization State Buffer (SSB) [8pbped for IBM Cyclops64
manycore architecture. Unlike the full/empty bits on MTA-2, SSB is a small baffiached to the
memory controller of each memory bank. It records and manages statetsvefyasynchronized data
units to support word level synchronization. SSB associates lockirgifuns with memory locations
dynamically. When a memory location needs to be accessed exclusivelyckhegderation is issued
with the address of the location, instead of a location in a lock array. Algorthletails the fine grain
lock synchronization algorithm using SSB on IBM Cyclops64.

5 Experimental Results

This section describes the experimental results and a comprehensuetieveof the proposed parallel
algorithm. We implemented the algorithm using a multi-thread libray on IBM CyclofS64), which

12



Algorithm 4 Fine grain lock synchronization algorithm using SSBlock | andsunlock are the func-
tions issuing a lock/unlock operation at a memory location, respectively.
for w € NWeper pardo
rt = swlock I(& (d[w]), &dd);
if rt==
if dfw] < 0 then
enqueuer — Qevel+1
dlw] « dv] +1
olw] « olw] + o[v]
appendy — Plw]
eseif djw] = d[v] + 1 then
ofw] « ow] + o[v]
appendy — Plw]
sunlock(& (d[w]));
elseif djw] = d[v] + 1 then
while ((rt = swlock (& (d[w]), &dd)) != 0);
olw] « olw] + ov]
appendy — Plw]
sunlock(& (d[w]));

is a 160-core chip architecture. C64 represents a class of manychitatures featuring no cache and
many threads.

5.1 Experimental Platform

C64 has evolved from a preliminary design of BlueGene/Cyclops acturge[10]. The C64 chip con-
tains 160 thread units (TU) (running at 500MHz) and 160 embedded SR¥kory banks (32KB
each) in a single silicon die, and with a peak performance of 80GFLORSeHre 80 floating point
units, each of which is shared by two TUs. A 32KB instruction cache, isesheEmong 10 TUs. C64 has
efficient support for thread level execution, such as ISA-levamigakeup instructions. C64 features
an explicitly addressable three-level memory hierarchy without dateecaktportion of each SRAM
bank can be configured as theratchpad memory (SP), which can be accessed by a corresponding TU
with very low and deterministic latency. The remaining sections of all on-chigNsBanks, together,
form theglobal memory (GM) that is uniformly addressable by all TUs. There are 4 memory controllers
connected toff-chip DRAM banks (up to 2GB). All memory words are 8 bytes wide and the memory is
byte-addressable. The memory accesses to contiguous addresargpaterleaved. For example, the
access to GM is interleaved to SRAM banks by a 64-byte boundary, velmistires the full utilization

of the bandwidth and the SSBs attached to all memory banks. Memory aste$3® and DRAM go
through an on-chip crossbar network, which sustains a 384 GB/siprahdwidth. The crossbar also
guarantees a sequential consistency memory model for the C64 chip etiaigiteFence-like instruc-
tions are not needed to ensure the order between memory operation€gBprovides no hardware
support for context switching, and currently uses a non-preemptigadrexecution model.

IBM Cyclops64 supercomputer is an on-going project and there is nonaehine to date. The simu-
lation tool, named Functionally Accurate Simulation Toolset (FAST) [15], isgthesl for the purpose
of architecture design verification and software development. BasededfABT simulator, a thread
virtual machine (TNT) [16] and OpenMP runtime [14] are implemented to st@pmulti-thread pro-
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gramming environment. The parallel algorithms are implemented using TNT library.

performance scaling for exact algorithm
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Figure 6: Strong scaling results of parallel betweenness centrality algorithm. The number of vertices
n = 25¢e F(n) = Tn.
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Figure 7: Time distribution and achieving off-chip memory latency tolerance

5.2 Performance Evaluation
On traditional supercomptuers, most parallel applications have put emsphaveak scaling, where

speed is achieved when the number of processors is increased whileobhenp size per processor
remains constant, effectively increasing the overall problem size.wEhk scaling measures the ex-
ploitable parallelism to solve a larger problem. We can achieve beéalk scaling by increasing the
computational power of a single processor. However, on the emergimg-owgie architectures, although
the number of cores grows rapidly, the speed of individual proceséémgent is reduced. Therefore, we
should measure the achieved speed when the number of processeas@ttwhile the overall problem
size is kept constant, which effectively decreases the problem sizergeessor. That mearsrong
scaling is greatly emphasized for the fine-grain parallel algorithm on many-aofétectures. Due to
the limitation of simulator, we only can give the experimental results for small@mobizes, where the
weak scaling is not addressed.

In our performance evaluation, we use the meffiERS (traversed edges per second), which is defined
in the SSCA2 specification [5]. The implementation of our algorithm follows #xact algorithm in the
SSCA2 specification. Assume that the number of vertices &nd the number of edges i8(n)*. Let

In some casesE(n) only include the edges which satisfies some constraint. For an exa8¥ila2 selects the edges
which weight is evenly divsible by 8
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T'(n) be the execution tim&EPSis defined a§’EPS(n) = "*T’fg)

Figure 6 reports thetrong scaling results. ThEEPSperformance in Figure 6(a) has a favorable sacabil-
ity with the increasing number of threads. Figure 6(b) plots the correspgnainning time. Compared
with the performance of simple fine-grain parallel algorithms (See in FiguiEh&)overall running time

is reduced greatly and scales well with the number of threads. Althouglrab&em size is small, the
parallel algorithm achieves linear speedups for all test cases whenrtitgen of processors is less than
32. For the test case with problem sizele = 8, the performance stops increasing when the number of
threads reachel28. However, the parallel algorithm can ahieve better performance wherdbéem
size increases, i.escale = 9,10. Note that the parallel algorithm exploits fine grain parallelism when
the neighbors of a vertex are visited and obviously, the degree of ac\atermines the parallelism
we can exploit. Our multi-grain algorithm adapts medium-grain parallelism tacesthe number of
idle threads, but the maximum degree of the casge = 8 is 64. Therefore the available parallelism
for this small problem size leads to the limited performancd 2#hthreads. Foscale = 9,10, the
maximum degrees afel and348, the parallel algorithm improves the performance further.

5.2.1 Performance of Memory Hierachy Optimization

In the programming model of many-core architectures with explicit memonacttgr where on-chip
memory is small, we use the on-chip double buffers to hide the off-chip melat@rycy and théel per
threads are used to transfer data between two level memory. Figurevg gt the effect of mem-
ory latency tolerance using double-buffering. In order to figure oaitaverlapped time, we profiled
the execution time ofomputation andhelper threads. Although theomputation threads only access
on-chip memory, the overall execution timeafmputation threads is more than that bélper threads
because lock synchronization is required amongtimgputation threads in the BFS phase. The parallel
algorithm has to load thadjacent array into on-chip buffers block by block. According to the feature of
BFS algorithm, the computation behavior of each vertex may be differenarFexample, if a vertex is
not one of the predecessors of the loaded neighbor, we do not neesgkbthis vertex to the predeces-
sor set of the neighbor, where serveral addtional memory accessas Therefore, the execution time
of each block may be different that means workload may not be balameedgthreads. Thus, we can
not achieve a perfect overlap betwemmputation andhelper threads. With the increasing number of
threads, the workload on each thread decreases so that the di€fefahe workloads is little, then the
portion of overlapped time becomes larger. This indicates that a fine-gueatigd algorithm is better
for achieving memory latecy tolerance.

Like memssage buffers in message passing on distributed memory compuigffer aize is an impor-
tant factor of the scalability of parallel algorithms [22], where the busiee based on the number of
processors/threads prohibit a parallel algorithm scaling on lardesagallel systems. In our proposed
algirthm, the buffer size is independent of the number of threads. fneréhe scalability of our par-
allel algorithm is confined by hardware parameters like on-chip memonasiddandwidth, instead of
the buffers required by the algorithms. Acctually, an important observéaithat a larger buffer has
little effect on improving the performance. Note that degree of each vertale-free graph is low so
that we can not hide more off-chip memory access by increasing ther Isife Figure 8 shows that
increasing buffer size does not achieve better performance.
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Figure 9: Comparsion of off-chip memory latency tolerance achieved bigguhe number of on-chip
buffers.

Our multi-grain parallel algorithm also exploit coarse-grain parallelism, evttez threads are par-
titioned into serveral groups, each of which has independent doubiersduThe coarse-grain paral-
lelism can avoid the lock synchronization caused by fine-grain parallelisheiBFS phase, but current
manycore architectures with small on-chip memory size do not allow us toierpboe coase-grain
parallelism. In other words, the coarse-grain parallel algorithm means muliiffilerdy which has
been proven to get better performance for applications on some multaochgectures such as IBM
CELL [11]. On IBM Cyclops64 manycore architecutre, as shown in Eidyrthe multiple-buffering
techinque achieves better performace, too. However, we have to ma&demftrbetween multiple
buffers and memory size. With a more coarse-grained level of parallelisne, bbnffers are needed (one
for each coarse-grain task). Therefore, on current manycohétactures with small memory size, a
scalable parallel algorithm prefers to be fine-grained, where orfertiafshared amongst many more
threads.

Through the detailed performance analysis, we observe that the parfoe of memory latency toler-
ace is determined by the size and number of on-chip buffers. Howewerto the irregular behavior
(i.e. the degree distribution), it is difficult to build a static performance rtaldetermine an optimal
performance by tunning the two buffer parameters. But it is optimistically @rpehat performance
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can be achieved by dynamically scheduling the threads at runtimeybhowlas topic is out of scope of
this paper. For these experiments we have selected the optimal resultshttwongg the two buffer
parameters by hand.

5.2.2 Performance of Synchronization Optimization

One of the most important approaches to improve scalability of parallel algariihto reduce sychro-
nization overhead. In the parallel betweenness centrality algorithm, symizhtion overhead comes
from (a). the barrier synchronization between two consecutive le¥bls the lock synchronization
when visiting the neighbor/predecessor vertices.

percent

0 T T T T
4 24 44 64 84 104 124
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Figure 10: Overhead of barrier synchronization for scale = 10. mMkasured barriers include the
barriers in both BFS and backtrace phase.
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Figure 11: The execution time of the BFS phase using two kinds of lock synidation mechanisms

A synchronization for a group of threads is used to keep consistdribg queue/stack after a level
of neighbors/predecessors has been visited. The overhead afueisynchronization also relates to
the degree distribution of the scale free graph, because the distributivemmimber of edges per vertex
is not uniform. Obviously, there is a maximal level synchronization if theeegf each vertex is only
one. This work just implements the level synchronizaion using a bareémptimizing this kind of
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synchronization through algorithm and software. We measured theeagiof level synchronization
in Figure 10. This figure plots the percent of barrier synchronizationaroterall execution time. With
an increasing number of threads, the overhead of barrier symigation becomes a main performance
bottleneck of the parallel algorithm. Note that our proposed paralldbggpmulti-grain parallelism
and the threads are partioned into serveal groups. Thereforetiertsmchronization occurs among
the threads within a group. In the experiments for figure 10, we keep tideruof threads within a
group constant, while the number of groups increases with the total nuhilereads. To a certain
extent, this strategy can reduce the side effects of barrier algorithm iteledfre the overhead of a
barrier increases with number of threads involved with the barrier. Becaach task assigned to each
thread group is different, the number of barriers may be different, tike the case in multi-buffering,

it also provides an opportunity to dynamically schedule at runtime. Meanwhiteakes sense that a
manycore architecture can support multiple hardware barrier for gxgjonulti-grain parallelism.
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Figure 12: The execution time of the backtrace phase with/without lock syniziation

In the BFS phase, the fine-grain lock synchronization algorithm assigrisdependent lock to
each vertex. Thus, it avoids the additional data race in coarse-grdirsyochronizaiton, where all
threads have to acquire a global lock even if they are visiting differertces. In the fine-grain lock
synchronization algorithm, a confilict of acquiring a lock occurs only if twiedds are visiting the
same vertex. An additional lock array, whose size is the same with the nurbertioes, is used to
implement the fine grain lock. However, due to require/release a lockultsea additional memory
accesses to the lock array. The access to lock array is also irregukndeeeach lock is associated
with each vertex. The fine-grain lock mechanism based on SSB, whickiates locking functions
with memory locations dynamically. Note that our optimizations for memory hibyaanly parts of
adjacent array are loaded into on-chip memory. Therefore, when adtheguires a lock, it accesses
the associated memory location in the on-chip memory because the vertidesded into on-chip
memory byhelper threads, instead of accessing the memory locations in the off-chip memouye Hit
compares the performance of two kinds of fine-grain lock synchraaizapproaches. The fine-grain
lock mechanism based on SSB reduce the execution time by two times. CompittinthevBFS
phase, the backtrace phase consumes little running time, but our pddpokdree algorithm improves
the performance further. Figure 12 shows the performance improvenfientr proposed lock free
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algorithm.

5.2.3 Comparison with Other Architectures

In this paragraph, we compare the results obtained on C64 with that en atthitectures. When
we were doing this work, the platforms we can reach are Intel 4-walfawas Xeon SMPs and 40-
processors Cray MTA-2. The program on SMPs is fine-grain péiztbusing OpenMP by Bader et.al.
The codes on Cray MTA-2 came from the personal commnication with JobimReray Inc. Because
the limitation of C64 simulator, we only can get the full results of experimentsraviie scale is less
than 10. Table 1 reports thEEPS metrics on the three platforms. It is not necessary to compare the
performance on SMPs with more than 8 threads because the numberssécaitable is 8. Although the
L2 cache size is 2MB on Xeon and it can contain the whole graph data sedotithis small problem
size, the peformace degrades with the increasing number threadsédbaudock synchronization is
not optimized. The low performance on MTA-2 is caused by low utilization afabrstreams for the
small problem size. When the scale is more than 16, The mEERS increases greatly and scale well
with the incrasing threads. In fact, We got thEPS for scale = 16 and 4 threads on C64, it is two
times less than that on MTA-2. This comparison indicates that the algorithms oR2ViB& betteweak
scaling, but our algorithm has betteirong scalability. This evaluation is to compare one C64 chip with
mulitple MTA-2 processors, each of which has 128 streams. When théepratize is large enough
(i.e. scale > 16), the streams is effectively utilized on a MTA-2 processor. Howevergettperiments
on C64 only used a few thread units specified by user parametersedtismable that the performance
is lower on C64, while it indicates that our proposed parallel algorithmsGzhi€comparable with that
on the MAT-2 system.

Table 1: The comparison of TEPS on three platforms.

#threads| C64 SMPs MTA-2
4 2917082 | 5369740| 752256
8 5513257 | 2141457| 619357
16 9799661 | 915617 | 488894
32 17349325| 362390 | 482681

6 Conclusions

We have demonstrated an algorithmic reconstruction to achieve goadrparfce on a manycore archi-
tecture. In order to utilize the large scale cores in a processor, weitexpilbe multigrain parallelsim in
betweenness cetrality algorithm. This is a shift from traditional parallel céimguwvhere parallelism
is typically expressed in a single granlarity such as coarse grain parallefsalogous to the term
of dependence, in the levels of parallel betweenness cetrality algoriterop#rse grain parallelsim is
control parallelsim and the fine grain parallelism is data parallelism. Thisdigm is important for
a runtime to gain good performance through automatically exploiting multigraalesm. In fact,
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Filip et.al. [8] presented a runtime system for dynamically scheduling multigraalleism on Cell
processor and achieved a reasonable performance for RAXMLithlgsr[29].

Another important fact is that manycore architecture has an explict menemachy. A generic tech-
nique to improve the performance of memory access at algorithmic level isliasirate and schedule
data through multi-threading. This requires a very careful algorithmigdehiat explicitly organizes
the hierachy of data and movement between these levels. Obviouslyjsttieenore complex software
developments.

The critical factor of fine grain parallelism is the performance of synhigedion. Although we can
develop some lock free algorithms for some specific problems, it is more blestreat a manycore
architecture can provide an effcient synchronization mechanism.

For the irregular computation like graph algorithms, we have to perform someivial techniques to
map a serial program to parallel computers. That is more important to shiftngomee era, where
the performance is improved through scaling more parallelism. Although thethlgoand program
development is suffering from the evolution to manycore architecturepvighe a great opportunity to
achieve better performance for a class of irregular computation, whrébrpence can not be improved
in conventional architecture.
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