
University of Delaware
Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

A Study of Parallel Betweenness Centrality Algorithm on a

Manycore Architecture

Guangming Tan†, Guang R. Gao

CAPSL Technical Memo 77

June 27, 2007

Copyright c© 2006 CAPSL at the University of Delaware

†Email: guangmin@capsl.udel.edu

University of Delaware • 140 Evans Hall •Newark, Delaware 19716 • USA

http://www.capsl.udel.edu • ftp://ftp.capsl.udel.edu • capsladm@capsl.udel.edu

Abstract

Large scale graph analysis algorithms–such as those in SCCA2 benchmarks studied in this
paper–play an increasingly important role in high performance computing applications. Different
from most of traditional scientific computing applications, graph algorithms often show dynamic
and irregular computing behavior. It is difficult to attain good performance on large scale conven-
tional parallel architectures because these programs exhibit (i). little locality and data reuse, (ii).
dynamically non-contigous memory access pattern that is less amendable to static analysis and (iii).
fine grain parallelism requring lock synchronization. Withthe rapid advance of multi-core/many-
core chip technology , some new architecture features are emerging: the traditional data cache is
being replaced with fast memories (sometime called scratch-pad memories) local to the cores in an
explicity (user visible) memory hierarchy, and a large number of processing cores (sometime upto
hundreds) are becoming available on a single chip. This presents both challenges and opportunities
for mapping graph algorithms to be studied in this paper.

In this paper, a scalable parallel algorithm for computing betweenness centrality in scale free
sparse graph is proposed and its performance and scalability is investigated. In particular, our algo-
rithm addresses the parallelization challenges in the following ways:

1. We restructure the parallel algorithm to address the locality challenges by overlapping the
latency of prefetching off-chip data into on-chip memory (via an explicit memory heirarchy
of the underline many-core architcture) with computation in a pipelined fashion;

2. We “gather” the dynamically non-contigous off-chip memory accesses and convert them into
contigous on-chip memory accesses - i.e. “create” on-chip spatial locality just in time;

3. The fine-grain synchronization overhead due to locking isreduced by taking advantage of a
specific fine-grain lock mechanism on a many-core architecture and a novel lock free algo-
rithm through exploiting addtional parallelism;

4. Our solution above take full advantage of the ample hardware thread unit resource to assist
the parallel computation to manage data movement through memory hierarchy as well as fine-
grain data synchronization.

We have implemented our algorithm on the 160 core IBM Cyclops-64 chip architecture. Our
experiemental results confirmed the effectiveness of our methods in addressing the performance and
scalability challenges of the studied graph problems.

i

Contents

1 Introduction 1

2 Related Work 3

3 The Granularity of Parallelism 4

4 Scalable Multigrain Parallel Algorithm 6
4.1 Task-Thread Mapping 6
4.2 Optimization of Explicit Memory Hierarchy .. 9
4.3 Optimization of Lock Synchronization 10

4.3.1 Lock Free for Backtrace .11
4.3.2 Fine-grain Lock for BFS . 12

5 Experimental Results 12
5.1 Experimental Platform .13
5.2 Performance Evaluation .. . 14

5.2.1 Performance of Memory Hierachy Optimization 15
5.2.2 Performance of Synchronization Optimization17
5.2.3 Comparison with Other Architectures . 19

6 Conclusions 19

List of Figures

1 The running time of a fine-grain parallel betweenness centrality algorithm on a many-
core system. The algorithm refers to Bader’s work andSCALE = 10. 2

2 (a) A coarse-grain decomposition according to different source vertex. (b) medium-
grain parallelism exploited for a queue/stack at each level of BFS. (c) fine-grain paral-
lelism visits all neighbors of each vertex .. 6

3 The adjacent array data structure 9
4 An example of memory images in double buffering framework. It depicts the double

buffers of adjacent array between two time steps. In each step, theload andcomputation
occurs concurrently. Because of the limitation of buffer size in on-chip memory, the
green block inadjacent array have to be split and transferred to on-chip memory in
serveral time steps. Only the double buffersBUFNW are depicted. Another double
buffersBUFQ which are alternatively read/writen bycomputation andstore threads is
not presented in this figure. .. 9

5 An example of computingδ array (DELTA in this figure) without lock synchronization.
In this algorithm, only oneload and onestore thread are used. 11

6 Strong scaling results of parallel betweenness centrality algorithm. The number of ver-
ticesn = 2scale, E(n) = 7n. 14

7 Time distribution and achieving off-chip memory latency tolerance. 14
8 The comparison of running time using different sizes of buffers. 16
9 Comparsion of off-chip memory latency tolerance achieved by tuning the number of

on-chip buffers. .. 16
10 Overhead of barrier synchronization for scale = 10. The measuredbarriers include the

barriers in both BFS and backtrace phase. 17
11 The execution time of the BFS phase using two kinds of lock synchronization mechanisms 17
12 The execution time of the backtrace phase with/without lock synchronization 18

ii

List of Tables

1 The comparison of TEPS on three platforms. .. . 19

iii

1 Introduction
Larg scale network analysis is one of the most important reasearches in avariety of applications such
as social networks, transportation networks and biological networks. In most applications, graph ab-
stractions and algorithms are naturally used to capture key features andextract interesting information.
For a given real world application, network analysis and modeling, which construct a graph for a real
world dataset, is the primary step and has been paid considerable attention. Recently, a scale free graph,
where the degree distribution follows a power of law, has been used extensively to model the networks
from some important applications including building protein interatction networks [17, 23, 28], study
of sexual networks and AIDS [26]and identifying key actors in terrorist networks [12, 25]. In these
applications, betweenness centrality [19] is a popular quantitative index for the analysis of large scale
complex networks. This metric can be considered as nomalized centrality. It measures the control a
vertex has over commnication in the network, and can be used to indentify keyvertices in the network.
High cetrality indices indicate that a vertex can reach other vertices on relatively short paths, or that a
vertex lies on a considerable fractions of shortest paths connecting pairs of other vertices.
Although graph analysis algorithms have been extensively used in many applications, there are still
several grand challenges, which are different from traditional scientific computing in high performance
computing field.

• Little locality and data reuse. Real world networks are often very large, which size ranges from
several hundreds of thounsands to billions of vertices and edegs. A space-efficient data structure
of such graphs is itself a big challenge. For huge graphs, parallel out-of-core algorithms [31] are
alternative methods to improve the performance on parallel computer with limited physical mem-
ory. The data structure is partitionable to fit phsical memory in out-of-core algorithms. This is true
for most scientific computing with regular computing behaviors; however, real world networks are
highly unstructured. The degree or neighbors of a vertex in such graph is highly variable. The
unstructured degree distribution leads to variable strides for memory access so that it is difficult
to achieve locality on cahe-based architecutre. From the view point of memory behavior, it is ac-
tually a random access. Even in some graph travese algorithms, some vertices are only accessed
at once. Therefore, little data reuse can be exploited.

• Dynamically non-contiguous access pattern. In most graph algorithms, there is essentially no
computation to hide memory costs. Furthermore, the memory access pattern cannot be deter-
mined statically. For example, in graph travese algorithms, the vertices are visited level by level,
the memory access pattern in the next level is dynamically determined in the current level. That is,
the memory access pattern is data dependent so that prefetching on currrent conventional architec-
ture unlikely to help. Because the neighbors of two vertices are randomly generated, a significant
number of non-contigous memory access are involved.

• Fine grain parallelism. Due to the data dependence, i.e. in level-wise graph traverse, we can not
directly exploit parallelism among levels because of the data dependence. There exists explicit
parallelism when exploring the neighbors of a vertex. On large scale parallel computers, this kind
of parallelism is very fine grained. We may exploit the parallelism within accessing the neighbors
of all vertex in the same level, but a high efficient lock synchronization mechanism is needed to
handle conflicts.

1

#threads
2 12 22 32 42 52 62

tim
e

(s
ec

on
ds

)
0

5

10

15

20

Figure 1: The running time of a fine-grain parallel betweenness centrality algorithm on a manycore
system. The algorithm refers to Bader’s work andSCALE = 10.

Obviously, these characteristics of graph algorithms discourage us to achieve high scalability on conven-
tional parallel computers because most of cache-based parallel computers are inspired by high degree
of locality, regular memory access pattern and coarse grain parallelism. With the rapid advance of
multi-core/many-core chip technology [1, 2, 18, 21], some new architecture features are emerging: the
traditional data cache is being replaced with fast memories (sometime called scratch-pad memories) lo-
cal to the cores in an explicity (user visible) memory hierarchy, and a large number of processing cores
(sometime upto hundreds) are becoming available on a single chip. No cachemeans that an explict
memory hierachy is exposed to programmers and algorithm’s designers. On the new architecture with
explicit memory hierarchy, we may have to develop a new algorithmic technique to address the issues of
poor locality and irregular memory access pattern. Many threads units aretypically available on many-
core architectures. In order to utilize the threads efficiently, it is necessary to exploit more parallelism
in algorithms. Therefore, unlike the coarse paralell algorithm design on conventional parallel comput-
ers, this requires indentification of an addtional level of concurrency like fine grain parallelism through
restructuring parallel algorithms. The new features of manycore architectures raise a new challenge to
high performance algorithms. We may not simply adopt the algorithmic optimization techniques on
the emerging manycore architectures. In order to give an intuition of this new shift, figure 1 plots the
performance results of a simple fine grain parallel betweenness centralityalgorithm, which is imple-
mented using OpenMP [3, 14] on a manycore system. When the number of cores is more than 8, the
performance degrades, even begins tospeeddown when the number of cores is more than 16. The poor
scalability forces us to take a fresh look at the parallel algorithms on manycore architectures. However,
the trend of scaling performance by scaling parallelism also provides a great opportunity to develop
new high performance algorithms, especially the graph algorithms. In this paper, we propose a scalable
parallel algorithm for computing betweenness centrality of vertices in a scalefree graph, and its per-
formance and scalability is investigated. We address the challenges and the design choices involved in
mapping the betweenness centrality algorithm to manycore architecture, where the key point is to take
full advantage of the ample hardware thread unit resource to assist the parallel computation to man-
age data movement through memory hierarchy as well as fine-grain data synchronization. Our specific
contributions are as follows:

• A detailed analysis of parallelism in the betweenness centraility algorithm. We propose a multi-

2

grain parallel algorithm, which puts emphasis on the domain decomposition and mapping to many
threads in the two phases: forward breadth fist search (BFS) and backward accumulation (back-
trace).

• We restructure the parallel algorithm to address the locality challenges by overlapping the la-
tency of prefetching off-chip data into on-chip memory (via an explicit memoryheirarchy of the
underline many-core architcture) with computation in a pipelined fashion.

• We “gather” the dynamically non-contigous off-chip memory accesses and convert them into
contigous on-chip memory accesses - i.e. “create” on-chip spatial locality just in time.

• The fine-grain synchronization overhead due to locking is reduced by taking advantage of a spe-
cific fine-grain lock mechanism on a many-core architecture and a novel lock free algorithm
through exploiting addtional parallelism.

• In order to provide insight on the performance impact of architectural and algorithmic design
choice, a comprehensive experimental evaluation of the proposed paralell algorithm is included
in this paper. The more interesting points are our experimental indications to runtime and archi-
tecture design.

The rest of this paper is organized as follows. In section 2 we summarize theprevious work on par-
allelizing similar graph algorithm on parallel architecture, especially manycorearchitecutre. Then, we
give a simple description of the original algorithm for computing betweenness centrality in section 3,
then discusses the granularity of parallelizing betweenness centrality algorithm. Based on the analysis
of parallelsim, in section 4, we proposed a multigrain parallel algorithm which addresses the locality
problem on explicit memory and reduces the overhead of lock synchronization. Section 5 describes
the experiments we have performed to measure the performace of the proposed parallel algorithm on a
manycore architecture–IBM Cyclops64. Finally, the conclusions are presented in section 6.

2 Related Work
Due to the importance of graph algorithms, there are many researches on parallelization and optimiza-
tion. A great deal of parallel algorithms based on PRAM model have beenproposed, especially for
graph theory [13, 20, 24]. However, to parallelize and optimize graphalgorithm on current real parallel
computers is also an nontrivial problem. Bader et.al. [7] discusses fast parallel algorithms for evaluating
several centrality indices frequently used in complex network analysis. They proposed the first parallel
implementations of betweenness centrality algorithm on high-end shared memory symmetric multipro-
cessor and multithreaded architectures. Their work simply exploited the explicit two level parallelism
and did not address the problems of memory behavior and synchronization. The main kernel of be-
tweenness cetrality algorithm is breadth first search (BFS), which actually is a typical representation of
graph analysis algorithms. Therefore, we present a brief summary of related graph search algorithms.
Park et.al. [27] developed algorithmic optimizations to improve the cache performance of four funda-
mental graph algorithms. For dense graph, they focused on the data layout of the matrix of a graph
and a cache-oblivious technique is used to optimize the performance on memory system based on cache
hierarchy. In order to improve the poor locality of sparse graph search, a space efficient data structure–
adjacent array–is used. In our work, we useadjacent array to represent the scale free graph. In [6],

3

Bader et.al. designed a multithreaded algorithms for BFS on multithreaded architecture such as Cray
MTA-2 [4]. The algorithm leverage the efficient architectural featuressuch as atomic operations and low
overhead of lock synchronization to achieve speedups. However, MTA-2 uses a flat memory structure
so that the algorithm can not be simply adaptive to manycore architecture with explicit memory hier-
archy. Yoo et.al. [32] presented a scalable distributed BFS scheme on IBM BlueGene/L. On the large
scale distributed memory parallel computer, the efficiency of message passing is stressed for improving
the scalability of parallel algorithms. In their work, they noted the optimization of local memory usage
when the 2D matrix is partitioned, but the technique is designed for the desnsegraph’s data structure–
adjacent matrix. The most recent work on parallel BFS on mulit-core architecutre is described in [30].
The authors presented the challenges and algorithm of parallelizing BFS ona state-of-the-art multi-core
processor, the IBM Cell broadband engine [21]. The algorithm uses DMA attached to each SPU to
hide memory latency in the explicit memory hierachy. An additional preprocessing is required in their
algorithm, where all vertices are partitioned into several disjoint sets. Thatis, a vertex is exclusively
mapped to a SPU. This idea is similar to the 2D adjacent matrix partition in [32], like the algorithm in
distributed memory architecture, it involves a number of collective communication operations.

3 The Granularity of Parallelism
We follow the convention of introduction to betweenness centrality presented by Bader’s work [5]. Con-
sider a graphG = (V, E), whereV andE is the set of vertices and edges, respectively. In the graph
model, vertices repsent actors in social network, or proteis in protein interaction network, edges repre-
sents the relationships/inertaction between actors/proteins in the social/protein network. The nubmer of
vertices and edegs are denoted byn andm, respectively. Each edgee ∈ E may be associated with an
positive integer weightw(e) (w(e) = 1 for unweighted graphs). Define a path froms ∈ V to t ∈ V as
an sequence of edges< vi, vi+1 >, 0 ≤ i ≤ l, wherel is the length of a path,v0 = s andvl = t. The
length of a path is the sum of the weights of its edges. We used(s, t) to denote the distance between
verticess andt. Let us denote the total number of shortest paths between verticess andt by σst, and
the number passing through vertexv by σst(v). Then, betweenness centrality of a vertexv is defined as
follows:

BC(v) =
∑

s 6=v 6=t∈V

σst(v)

σst

(1)

The main contribution of Brandes [9] algorithm is the elimination of explicit redundant summation of all
pair-wise dependencies. Actually, this fast algorithm uses a dynamic programming technique to reduce
the search space. A typical graph traversal algorithm like breadth-first search (BFS) and Dijkstra’s
algorithm can be used for unweighted and weighted graph, respectively. From a given source vertex, it
discovers all shortest path to compute the pair-wise dependencies. Define the set ofpredecessors of a
vertexv on shortest path froms as

Ps(v) = {u ∈ V : {u, v} ∈ E, dG(s, v) = dG(s, u) + w(u, v)} (2)

wheredG(s, v) is the distance froms to v. For a unweighted graph,w(u, v) = 1. The time of a direct
augment of BFS or Dijkstra’s search is still dominated by counting all pair-wise dependencies. In order
to eliminate the need of explicit summation of all pair-wise dependencies, it defines thedependency of
a vertexs ∈ V on a single vertexv ∈ V as

δs(v) =
∑

t∈V

δst(v) (3)

Obviously, δs(v) is one partial sum ofBC(v) and the betweenness centrality of a vertexv can be
expressed asBC(v) =

∑
s 6=v∈V δs(v). A crucial observation of Brandes algorithm is that the partial

4

sum obey a recursive relation:
δs(v) =

∑

w:v∈Ps(w)

σsv

σsw

(1 + δs(w)) (4)

Like a dynamic programming algorithm, this fast algorithm proceeds as two phases: forward BFS and
backward accumulation (backtrace). The algorithm is stated as follows. First,n BFS/Dijkstra’s searches
from eachs ∈ V are done in the forward phase. The predecessors setsPs(v) are maintained and the
numbers of shortest path through the internal vertexw are recorded during these computations. Next,
for everys ∈ V , using the information from the shortest paths tree, where the number ofshortest paths
through a vertexw is stored inσ(w), and predecessor sets along the paths, compute the dependencies
δs(v) for all otherv ∈ V . In the end, the sum of all dependency values of a vertexv is computed
according to recursive relation.
The procedure of computing betweenness centrality starts with each source vertex, search the graph
using BFS, then backtrace the tree to accumulate betweenness centrality values. If the search starting
with a vertex is consider as a task, the algorithm needsn = |V | sub-tasks to get the betweenness
centrality of each vertex. The concurrency can be exploited at three level of granularity for the sequential
algorithm: (i) coarse-grain among the sub-tasks (parallelism in line 3). (ii) medium-grain at queue/stack
level (parallelism in line 10 and 21). (ii) fine-grain at the neighbors level(parallelism in line 13 and 23).
The three levels of parallel granularity are depicted in Figure 2.
• Coarse-grain: For the BFS phase, the coarse-grain implementation is embarrassingly parallel.

The sum of betweenness centrality is partitioned intoN ≫ P , whereP is the number of threads.
Each BFS from a vertex independently proceeds in parallel. Each threadhas a partial sum of be-
tweenness centrality value. In the end, there is a reduction operation among all threads. Although
the coarse-grain parallel algorithm can achieve dynamic load balancing handled by a library or
runtime, it needs a whole copy of graph data structure on every processor/thread. For a large scale
graph, it easily exceeds the available physical memory, and, even worse, the local memory on
each core in manycore architecture is very small, therefore the problem ofpoor locality becomes
more sharp.

• Medium-grain: The medium-grain parallelism is exploited when the algorithm visits the neigh-
bors of a vertex in the queue/stack in the same BFS level. In each BFS level, some vertices are
selected and organized in the queue (which is a stack when backtracing BFS tree). Each thread
dequeues/pops a vertex and tries to visit its neighbors. If a neighbor is visited for the first time, the
neighbor vertex is enqueued. The efficiency of medium-grain parallelism depends on the length
of the queue in a BFS level and the conflicts of neighbors. The number of enqueued vertices
in each BFS level is dynamic which results in load balance problem. Because the neighbors of
dequeued vertices are marked if they are visited for the first time, the access to the same neighbor
needs to be ordered by a synchronization mechanism which defects the exploited parallelism.

• Fine-grain: The fine-grain parallelism in the innermost level loops is exploited by allowingmul-
tiple threads to coorperate during visiting the neighbors of a dequeued/poped vertex. The degrees
of a vertex determine the available parallelsim. This work studies a scale freesparse graph where
the degree of a vertex is low, therefore it is difficult to achieve load balance for large scale threads.
For the fine-grain parallelism, a lock is not needed unless there exist parallel edgesbetween two
vertices. In this case, we have to keep the order in which the same vertex isvisted, using some
sychronization mechanism, such as a lock.

5

Both the medium- and fine-grain parallel algorithm can not achieve load balance because of the sparisity
of scale free graph. Because the coarse-grain parallel agorithm can not exploit more intristic parallelsim
of BFS and the locality is limited by the available size of physical memory, the scalability is poor. It
is expected that we can achieve better performance using hybrid grain parallelsim. However, a simple
multigrain parallel algorithm can not achieve locality on explicit memory hierachy. Besides, we have to
seriously take lock synchronization into consideration because we need toexploit fine-grain parallelism.

...

...

...

...

v1 vnv0

...

...

vi Level i

Level i+1

(a) coarse−grain

(b) medium−grain

vi+mvi+1

vi Level i

Level i+1

(c) fine−grain

P0 P1 Pn...

P0 P1 Pn

P0 P1 Pn

...

...

Figure 2: (a) A coarse-grain decomposition according to different source vertex. (b) medium-grain
parallelism exploited for a queue/stack at each level of BFS. (c) fine-grain parallelism visits all neighbors
of each vertex

4 Scalable Multigrain Parallel Algorithm
In this section, we propose the detailed parallel algorithm which exploits the mulitgrain parallelism for
computing betweenness centrality. First, we present the parallel algorithm’s framwork including the
mapping between threads and fine-grain tasks. Because we need to address the issue of explicit memory
hierachy, then, the preliminary parallel algorithm is restructed to be adaptive to memory hierachy. In the
end, the novel lock free algorithm and the technique of using specific lock synchronization mechanism
is described.

4.1 Task-Thread Mapping
In order to exploit multigrain parallelism, all threads are partitioned into several groups. The thread
groups themselves exploit coarse-grain parallelism and the threads within each of these groups are used
to exploit medium- and fine-grain parallelism. For the coarse-grain parallelism, each BFS from a source
vertex is a task. The threads in the same group select the same task, start BFS from the source vertex and
backtrace to compute a partial betweenness centrality value along the BFS tree in parallel. We denote
Si as the source vertex set on threadi.
The BFS algorithm traverses the graph level by level. Data dependenciesexist between two consecutive
levels, that is, the vertices in leveli + 1 are the unvisited neighbors of vertices in leveli. In order to fol-
low the data dependencies, we use level a synchronization algorithm asother parallel BFS algorithms.
However, our proposed algorithm visits the neighbors of all vertices in each level in parallel, not just
the neighbors of one vertices. When the algorithm finishes selecting the unvisited neighbors of vertices

6

in level i, it partitions all vertices in leveli + 1 among the threads in a group and repeats the same pro-
cedure. Let us denote the set of vertices in leveli asVi = {vi1, vi2, ..., vin}. The neighbors set of each
verticesvij is denoted asWj = {wj1, wj2, ..., wjmj

} for 1 ≤ j ≤ n. Intuitively the multigrain parallel
algorithm compacts all neighbor sets into one larger setNWi =

⋃
1≤j≤n Wj , which is a union set of

the neighbor sets of vertices in leveli, then distibutes the new neighbor setNWi among the threads in a
group. Because the graph has parallel edges and two different vertices in the same level may share the
the same neigbors, serveral threads may visit the same neigborsw simultaneously. The access to calcu-
late the distantce (d[w]) from the source vertex and paths information (σ[w], P [w]) through neighbors
w must be protected with some synchronization mechanism such as locks or atomicoperatoins.
The parallelization of computing partial betweenness centrality values is similar tothat of BFS. Assume
that there aren vertices in leveli Wi = {wi1, wi2, ..., win} and the predecessors set of each vertex is
Vj = {vj1, vj2, ..., vjmj

} for 1 ≤ j ≤ n. In the same way, all predecessors sets are compacted into
one larger setPVi =

⋃
1≤j≤n Pj , then partitioned among the threads in a group. Again, some mutex

mechanism is requred to protect the conflicts when calculating the same partialvalue (δ(v)) on some
different threads. In the end, a parallel reduciton operation happens on all thread groups so that the final
betweenness centrality value is accumulated from the partial values of each threads. In Algorithm 1,
we give the pseudocode description of this high level parallel algorithm. For a reasonable simple opti-
mizaiton, the basic data structurequeue representing BFS tree is shared by thestack in this algorithm.
The preliminary version of parallel algorithm does not address the challenge of explicit memory hier-
archy on manycore architecture and lock synchronization overhead for multi-thread systems. Although
lock synchronization has been a serious problem for the scalability of parallel algortihms on conven-
tional architectures, the optimization of explicit memory hierarchy is a new challenge on manycore
architecture. In the next sub-sections, we propose an efficient strategy to optimize the parallel algorithm
for explicit memory hierachy, then reduce the lock synchronizaiton overhead based on the optimized
algorithm.

7

Algorithm 1 A high level description for parallel betweenness centrality algorithm on athread of group
i
Input: G(V, E)

Output: Array BC[1...n], where BC[v] gives the

centrality metric for vertex v

1for all v ∈ V pardo

2 BCi[v] = 0

3for all s ∈ Si do

4 P [w]← empty list,w ∈ V

5 σ[t]← 0, t ∈ V ;σ[s]← 1;

6 d[t]← −1, t ∈ V ; d[s]← 0

7 Q←empty queue

8 level = 0

9 enqueues← Qlevel

10 while Qlevel not emptydo

11 NWlevel ← neighbors({vlevel,1, vlevel,2, ..., vlevel,n}, Qlevel)

12 for w ∈ NWlevel pardo

13 lock;

14 if d[w] < 0 then

15 enqueuew → Qlevel+1

16 d[w]← d[v] + 1

17 if d[w] = d[v] + 1 then

18 σ[w]← σ[w] + σ[v]

19 appendv → P [w]

20 unlock;

21 level = level+1;

22 sync;

23 δ[v]← 0, v ∈ V ;

24 level = leve-1;

25 while level ≥ 0 do

26 PVlevel ← predecessors({wlevel,1, wlevel,2, ..., wlevel,n}, Qlevel)

27 for v ∈ PVlevel pardo

28 lock;

29 δ[v]← δ[v] + σ[v]
σ[w] (1 + δ[w])

30 unlock;

31 if w 6= s then

32 lock;

33 BCi[w]← BCi[w] + δ[w]

34 unlock;

35 level = level - 1;

36 sync;

37 ParReduction(BC,BCi)

8

4.2 Optimization of Explicit Memory Hierarchy
On manycore architectures with explicit memory hierarchy, the on-chip memoryis much smaller than
off-chip memory, but the on-chip bandwidth is much larger than off-chip bandwidth. The relatively high
latency of off-chip memory access creates a bottleneck in achiving performance for memory intensive
applications, especially for that with irregular memory access. A generic techinque is to use DMA or
multi-thread to tolerate memory access latency. If there are sufficent computation between memory
access, the latency is not a problem. However, as shown in previsous sections, we do not have enough
computation when traversing the neighbors of a vertex in the graph. Therefore, when all threads access
memory concurrently, the off-chip memory latency and bandwidth becomes abottleneck.

......
v1 v2 vn......
0 9010

......
0 10 90

v2

index array

adjacent arrayv1 v8

Figure 3: The adjacent array data structure

An efficient data structure representing a scale-free sparse graph isadjacent array. Figure 3 is an
example of the adjacent array. The adjacent array structure is composed of two arrays:index array
andneighbors array. The ith element ofindex array locates the offset of the neighbors of vertexi in
neighbors array, where all neighbors of vertexi are continously stored. Therefore, prefetch or blocking
techniques can be exploited on cache memory architecture when the program is visiting the neighbors of
a vertex. However, the neighbors of two different vertices may be not consecutively store inneighbors
array. Similarly, the memory access to other arrays (d,σ,δ, P) for keeping path information also are
non-continous. For simplicity, we only present the issue ofneighbors array in the following algorithmic
descriptions. The main memory access operations in BFS and backtracephases are to extract the neigh-
bors/predecessors of a vertex inqueue. Because the algorithm extracts the neighbors of all different
vertices in a level, it is possible that there are many non-continuous memory access.

vi vj

v1

vk

vj vkvi

...

...

...

...
load compute

compute load

...

adjacent array

Queue

index array

levellevel−1

......
off−chip memory

on−chip memory

step i

step i+1BUFNW

BUFNW

Figure 4: An example of memory images in double buffering framework. It depicts the double buffers
of adjacent array between two time steps. In each step, theload andcomputation occurs concurrently.
Because of the limitation of buffer size in on-chip memory, the green block inadjacent array have to be
split and transferred to on-chip memory in serveral time steps. Only the double buffersBUFNW are
depicted. Another double buffersBUFQ which are alternatively read/writen bycomputation andstore
threads is not presented in this figure.

9

Futhermore, the low latency and high bandwidth of on-chip memory in memory hierachy leads to
following observations:

• To transform sparse off-chip memory access to continous on-chip memoryaccess

• To decompose task into sub-tasks so that different level memory accesses are overlapped.

• To exploit additional parallelism within on-chip memory.

The compaction of the neighbors of different vertices in thequeue provides the opportunity to exploit
additional parallelism. Due to the limited on-chip memory, we have to load a small size of data from
off-chip memory each time the neighbors of a vertex are visited, thus the taskfor transforming sparse
off-chip memory access to continous on-chip memory access is naturally decompsed several sub-tasks.
In order to achieve overlapped memory access, double bufferring is an alternative technique (See Fig-
ure 4). In the framework of double bufferring, the threads in a group are further divided intocomputation
threads andhelper threads. Thehelper threads are exclusively used to load/store data between off-chip
and on-chip memory. Thecomputation threads only access on-chip memory and proceed only when
the required data is available in on-chip memory, which means that the main work of the computation
threads involves only on-chip memory accesses. For simplicity, we only give the high level algorithmic
descprition of the parallel BFS in one level(See Algorithm 2). The pseudocodes describe the algorithm
iteration in one BFS level. Some neighbors, which have been visited when exploring other vertices be-
fore, are loaded into on-chip memory again because of the requirementof computing path information.
In case that the buffers are full when partial neighbors of a vertex are loaded, we need to keep an offset
in the adjacent array of the vertex. As an optimization for usage ofhelper threads, thehelper threads
are divided intoload threads andstore threads.

Algorithm 2 A double-buffering framework for parallel BFS in betweennees centrality algorithm. The
backtrace to computing partial values can be implemented in the same way.
while Qlevel not emptydo

if load thread

selectsvlevel,i ∈ Qlevel which has remained neighbors needed

to be loaded into on-chip memory

BUFNWlevel ← compact(adjacent array,vlevel,i, bufsize)

else if store thread

flush(BUFQlevel+1, Qlevel+1)

else if computation threads

enqueue(BUFQlevel+1, BUFNWlevel)

/*including computing path information*/

4.3 Optimization of Lock Synchronization
Bacically, the on-chip images of compactedadjacent array is evenly partitioned and mampped to the
threads in a group. A good load balancing is achieved using round-robin strategy. However, as men-
tioned in previous sections, lock synchronizations are required for protecting the conflicts when serveral
threads are visiting the same neighbor vertex. In this section, we proposealgorithms to reduce the
overhead of lock synchronization.

10

4.3.1 Lock Free for Backtrace

In theadjacent array data structure, each edge is composed ofstart andend vertex. From the view of
computing behavor, the parallel BFS algorithm only needs to exclusivelyaccess theend vertex. How-
ever, the inverse procedure of accumulating betweenness centrality values requres an exclusive access
to bothstart andend vertex of an edge (See line29 and33in Figure 1). Here we propose a lock free
algorithm, which benefits from double-buffering for calculating betweenness centrality in the backtrace
phase.
Thehelper threads are mainly used to transfer data between two level memory. In the backtrace phase,
our observation is that the ratio of computation to memory access is high, which means multiplehelper
threads are not necessary, and the calculations are the accumulations of several partial values, which can
be computed independently. Because the workload ofhelper threads is low, we can exploit some addi-
tional parallelism, then assign somelight weight computation sub-tasks tohelper threads. According to
equation 3, we can divide the computation ofδ(v) into severalσv

σw
(1 + δ(w)) sub-tasks and

∑
w:v∈P (w)

sub-tasks which only need addtion operations. Therefore, thecomputation threads only compute the
partial values of someδ[v] in parallel. These partial values are stored in one on-chip buffer and there-
duction of sum is delayed to be done by onehelper thread, i.e.store thread, in the next iteration. Figure 5
illustrates an example of the lock-free calculation of theδ array. In current iteration, the computation
of partial values and the sum of partial values computed in previous iteration proceed in parallel, thus,
in addition to hide the off-chip memory access, some computation tasks are also overlapped. Because
only oneload and onestore thread are used, there is no data race for accumulating the final values on
off-chip memory.

p0 p1 p2 p2 p1 p0

p0 p1 p2 p2 p1 p0

v2 v4v3 ... v11 v12 v17 v23... ...v1

v2 v4 v2 v1 v4v3 v2 v11 v23 v11 v12 v17BUFPV

sum+store

load

BUFPV

BUFDELTA

v2 v11 v23 v11 v12 v17

...

...
load

d(v2)d(v4)d(v2)d(v1)d(v3)d(v4)

d(v2)d(v4)d(v2)d(v1)d(v3)d(v4)

sum+store

d(v2) d(v23)d(v11)d(v12)d(v17)d(v11)

DELTA

step i

step i+1

on−chip memory

BUFDELTA

off−chip memory

Figure 5: An example of computingδ array (DELTA in this figure) without lock synchronization. In
this algorithm, only oneload and onestore thread are used.

11

Algorithm 3 The parallel algorithm for computing betweenness centrality values in backtrace phase.
The double buffering keeps the order of read/writer ofBUFδ(v) amongcomputation andhelper threads
while Qlevel not emptydo

if load thread

if somewlevel,j all of which predecessors have been loaded

BCi[w]← BCi[w] + δ[w]

selectswlevel,i ∈ Qlevel which has remained predecessors

needed to be loaded into on-chip memory

BUFPVlevel ← compact(predecessors,wlevel,i, bufsize)

else if store thread

for v ∈ BUFPVlevel do

δ(v)←sum(BUFδ(v), δ(v))

else if computation thread

BUFδ[0...bufsize]← 0

for v ∈ BUFPVlevel pardo

BUFδ(v)←accumulate(BUFδ(v), BUFδ(w))

In order to eliminate the lock synchronization of visiting theend vertexw to accumulate between-
ness centrality valuesBC(w), we note that the accumulation operation is only performed after all pre-
decessorsv of the vertexw are visited to compute the valueδ, therefore, we assign the accumulation of
betweenness centrality valuesBC(w) to theload thread. For a given vertexw in the shortest path, the
load thread updates its betweenness centrality valuesBC(w) after the traverse of its all predecessors
is completed. Thus, the parallel algorithm of backtrace to compute betweenness centrality values in a
level is presented in Algorithm 3.

4.3.2 Fine-grain Lock for BFS
When the threads are traversing the neighbors of some vertices in the same level, conflicts occurs only
if they are visiting the same vertex. That means a lock synchronization shouldbe associated with a
single vertex, not the whole adjacent array. It is intuitive that a fine grain lock can handle this problem.
In conventional architecture, we have to use an additional lock array to implement the fine grain lock
mechanism. The size of lock array is the same with the number of vertices. Thus, for a large scale graph,
the lock array locates in the off-chip memory and the performance degrades because of relatively high
latency of off-chip memory on a manycore architecture. In order to savethe additional lock array, we
use the fine grain machanism–Synchronization State Buffer (SSB) [33] proposed for IBM Cyclops64
manycore architecture. Unlike the full/empty bits on MTA-2, SSB is a small buffer attached to the
memory controller of each memory bank. It records and manages states of actively synchronized data
units to support word level synchronization. SSB associates locking functions with memory locations
dynamically. When a memory location needs to be accessed exclusively, the lock operation is issued
with the address of the location, instead of a location in a lock array. Algorithm 4 details the fine grain
lock synchronization algorithm using SSB on IBM Cyclops64.
5 Experimental Results
This section describes the experimental results and a comprehensive evaluation of the proposed parallel
algorithm. We implemented the algorithm using a multi-thread libray on IBM Cyclops64(C64), which

12

Algorithm 4 Fine grain lock synchronization algorithm using SSB.swlock l andsunlock are the func-
tions issuing a lock/unlock operation at a memory location, respectively.
for w ∈ NWlevel pardo

rt = swlock l(&(d[w]), &dd);
if rt == 0

if d[w] < 0 then
enqueuew → Qlevel+1

d[w]← d[v] + 1

σ[w]← σ[w] + σ[v]

appendv → P [w]

else if d[w] = d[v] + 1 then
σ[w]← σ[w] + σ[v]

appendv → P [w]

sunlock(&(d[w]));
else if d[w] = d[v] + 1 then

while ((rt = swlock l(&(d[w]), &dd)) != 0);
σ[w]← σ[w] + σ[v]

appendv → P [w]

sunlock(&(d[w]));

is a 160-core chip architecture. C64 represents a class of manycore architectures featuring no cache and
many threads.

5.1 Experimental Platform
C64 has evolved from a preliminary design of BlueGene/Cyclops architecture [10]. The C64 chip con-
tains 160 thread units (TU) (running at 500MHz) and 160 embedded SRAMmemory banks (32KB
each) in a single silicon die, and with a peak performance of 80GFLOPS. There are 80 floating point
units, each of which is shared by two TUs. A 32KB instruction cache, is shared among 10 TUs. C64 has
efficient support for thread level execution, such as ISA-level sleep/wakeup instructions. C64 features
an explicitly addressable three-level memory hierarchy without data cache. A portion of each SRAM
bank can be configured as thescratchpad memory (SP), which can be accessed by a corresponding TU
with very low and deterministic latency. The remaining sections of all on-chip SRAM banks, together,
form theglobal memory (GM) that is uniformly addressable by all TUs. There are 4 memory controllers
connected tooff-chip DRAM banks (up to 2GB). All memory words are 8 bytes wide and the memory is
byte-addressable. The memory accesses to contiguous address spaceare interleaved. For example, the
access to GM is interleaved to SRAM banks by a 64-byte boundary, whichensures the full utilization
of the bandwidth and the SSBs attached to all memory banks. Memory accesses to GM and DRAM go
through an on-chip crossbar network, which sustains a 384 GB/s on-chip bandwidth. The crossbar also
guarantees a sequential consistency memory model for the C64 chip architecture. Fence-like instruc-
tions are not needed to ensure the order between memory operations [18]. C64 provides no hardware
support for context switching, and currently uses a non-preemptive thread execution model.
IBM Cyclops64 supercomputer is an on-going project and there is no real machine to date. The simu-
lation tool, named Functionally Accurate Simulation Toolset (FAST) [15], is designed for the purpose
of architecture design verification and software development. Based on the FAST simulator, a thread
virtual machine (TNT) [16] and OpenMP runtime [14] are implemented to support a multi-thread pro-

13

gramming environment. The parallel algorithms are implemented using TNT library.

scale=8
scale=9
scale=10

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

12864321684

T
E

P
S

#threads

performance scaling for exact algorithm

(a)

#threads
4 24 44 64 84 104 124

tim
e

0

0.5

1

1.5

2

2.5

3

3.5
SCALE=8

SCALE=9

SCALE=10

(b)

Figure 6: Strong scaling results of parallel betweenness centrality algorithm. The number of vertices
n = 2scale, E(n) = 7n.

computation
helper
overlapped

 0

 0.5

 1

 1.5

 2

 2.5

64321684

T
im

e
(s

ec
on

ds
)

#threads

Running Time Distribution

Figure 7: Time distribution and achieving off-chip memory latency tolerance.

5.2 Performance Evaluation
On traditional supercomptuers, most parallel applications have put emphasis onweak scaling, where
speed is achieved when the number of processors is increased while the problem size per processor
remains constant, effectively increasing the overall problem size. Theweak scaling measures the ex-
ploitable parallelism to solve a larger problem. We can achieve betterweak scaling by increasing the
computational power of a single processor. However, on the emerging many-core architectures, although
the number of cores grows rapidly, the speed of individual processingelement is reduced. Therefore, we
should measure the achieved speed when the number of processors increased while the overall problem
size is kept constant, which effectively decreases the problem size per processor. That meansstrong
scaling is greatly emphasized for the fine-grain parallel algorithm on many-core architectures. Due to
the limitation of simulator, we only can give the experimental results for small problem sizes, where the
weak scaling is not addressed.
In our performance evaluation, we use the metricsTEPS (traversed edges per second), which is defined
in theSSCA2 specification [5]. The implementation of our algorithm follows theexact algorithm in the
SSCA2 specification. Assume that the number of vertices isn and the number of edges isE(n)1. Let

1In some cases,E(n) only include the edges which satisfies some constraint. For an example,SSCA2 selects the edges
which weight is evenly divsible by 8

14

T (n) be the execution time,TEPS is defined asTEPS(n) = n∗E(n)
T (n) .

Figure 6 reports thestrong scaling results. TheTEPS performance in Figure 6(a) has a favorable sacabil-
ity with the increasing number of threads. Figure 6(b) plots the corresponding running time. Compared
with the performance of simple fine-grain parallel algorithms (See in Figure 1), The overall running time
is reduced greatly and scales well with the number of threads. Although the problem size is small, the
parallel algorithm achieves linear speedups for all test cases when the number of processors is less than
32. For the test case with problem sizescale = 8, the performance stops increasing when the number of
threads reaches128. However, the parallel algorithm can ahieve better performance when theproblem
size increases, i.e.scale = 9, 10. Note that the parallel algorithm exploits fine grain parallelism when
the neighbors of a vertex are visited and obviously, the degree of a vertex determines the parallelism
we can exploit. Our multi-grain algorithm adapts medium-grain parallelism to reduce the number of
idle threads, but the maximum degree of the casescale = 8 is 64. Therefore the available parallelism
for this small problem size leads to the limited performance on128 threads. Forscale = 9, 10, the
maximum degrees are94 and348, the parallel algorithm improves the performance further.

5.2.1 Performance of Memory Hierachy Optimization

In the programming model of many-core architectures with explicit memory hierachy, where on-chip
memory is small, we use the on-chip double buffers to hide the off-chip memorylatency and thehelper
threads are used to transfer data between two level memory. Figure 7 shows that the effect of mem-
ory latency tolerance using double-buffering. In order to figure out the overlapped time, we profiled
the execution time ofcomputation andhelper threads. Although thecomputation threads only access
on-chip memory, the overall execution time ofcomputation threads is more than that ofhelper threads
because lock synchronization is required among thecomputation threads in the BFS phase. The parallel
algorithm has to load theadjacent array into on-chip buffers block by block. According to the feature of
BFS algorithm, the computation behavior of each vertex may be different. For an example, if a vertex is
not one of the predecessors of the loaded neighbor, we do not need toinsert this vertex to the predeces-
sor set of the neighbor, where serveral addtional memory accessesoccur. Therefore, the execution time
of each block may be different that means workload may not be balanced among threads. Thus, we can
not achieve a perfect overlap betweencomputation andhelper threads. With the increasing number of
threads, the workload on each thread decreases so that the difference of the workloads is little, then the
portion of overlapped time becomes larger. This indicates that a fine-grain parallel algorithm is better
for achieving memory latecy tolerance.
Like memssage buffers in message passing on distributed memory computers, abuffer size is an impor-
tant factor of the scalability of parallel algorithms [22], where the buffersize based on the number of
processors/threads prohibit a parallel algorithm scaling on large-scale parallel systems. In our proposed
algirthm, the buffer size is independent of the number of threads. Therefore, the scalability of our par-
allel algorithm is confined by hardware parameters like on-chip memory sizeand bandwidth, instead of
the buffers required by the algorithms. Acctually, an important observation is that a larger buffer has
little effect on improving the performance. Note that degree of each vertexin scale-free graph is low so
that we can not hide more off-chip memory access by increasing the buffer size. Figure 8 shows that
increasing buffer size does not achieve better performance.

15

16
32
64
128
256
512
1024

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

321684

T
im

e
(s

ec
on

ds
)

#threads

scale=8

Figure 8: The comparison of running time using different sizes of buffers.

#buffers
1 2 3 4 5 6 7 8

tim
e

(s
ec

on
ds

)

0

0.5

1

1.5

2

2.5
scale=9

scale=10

Figure 9: Comparsion of off-chip memory latency tolerance achieved by tuning the number of on-chip
buffers.

Our multi-grain parallel algorithm also exploit coarse-grain parallelism, where the threads are par-
titioned into serveral groups, each of which has independent double buffers. The coarse-grain paral-
lelism can avoid the lock synchronization caused by fine-grain parallelism inthe BFS phase, but current
manycore architectures with small on-chip memory size do not allow us to exploit more coase-grain
parallelism. In other words, the coarse-grain parallel algorithm means multiple buffers, which has
been proven to get better performance for applications on some multi-corearchitectures such as IBM
CELL [11]. On IBM Cyclops64 manycore architecutre, as shown in Figure 9, the multiple-buffering
techinque achieves better performace, too. However, we have to make a tradeoff between multiple
buffers and memory size. With a more coarse-grained level of parallelism, more buffers are needed (one
for each coarse-grain task). Therefore, on current manycore architectures with small memory size, a
scalable parallel algorithm prefers to be fine-grained, where one buffer is shared amongst many more
threads.
Through the detailed performance analysis, we observe that the performance of memory latency toler-
ace is determined by the size and number of on-chip buffers. However,due to the irregular behavior
(i.e. the degree distribution), it is difficult to build a static performance model to determine an optimal
performance by tunning the two buffer parameters. But it is optimistically expected that performance

16

can be achieved by dynamically scheduling the threads at runtime, however, this topic is out of scope of
this paper. For these experiments we have selected the optimal results through tunning the two buffer
parameters by hand.

5.2.2 Performance of Synchronization Optimization

One of the most important approaches to improve scalability of parallel algorithms is to reduce sychro-
nization overhead. In the parallel betweenness centrality algorithm, synchronization overhead comes
from (a). the barrier synchronization between two consecutive levels. (b). the lock synchronization
when visiting the neighbor/predecessor vertices.

#threads
4 24 44 64 84 104 124

pe
rc

en
t

0

0.2

0.4

0.6

0.8

1

Figure 10: Overhead of barrier synchronization for scale = 10. Themeasured barriers include the
barriers in both BFS and backtrace phase.

ssb
lock array

 0

 1

 2

 3

 4

 5

64321684

T
im

e
(s

ec
on

ds
)

#threads

Executin Time Comparison using Two Kinds of Locks

Figure 11: The execution time of the BFS phase using two kinds of lock synchronization mechanisms

A synchronization for a group of threads is used to keep consistency of the queue/stack after a level
of neighbors/predecessors has been visited. The overhead of this level synchronization also relates to
the degree distribution of the scale free graph, because the distribution ofthe number of edges per vertex
is not uniform. Obviously, there is a maximal level synchronization if the degree of each vertex is only
one. This work just implements the level synchronizaion using a barrier, not optimizing this kind of

17

synchronization through algorithm and software. We measured the overhead of level synchronization
in Figure 10. This figure plots the percent of barrier synchronization in the overall execution time. With
an increasing number of threads, the overhead of barrier synchronization becomes a main performance
bottleneck of the parallel algorithm. Note that our proposed parallel exploits multi-grain parallelism
and the threads are partioned into serveal groups. Therefore, a barrier synchronization occurs among
the threads within a group. In the experiments for figure 10, we keep the number of threads within a
group constant, while the number of groups increases with the total numberof threads. To a certain
extent, this strategy can reduce the side effects of barrier algorithm itself, where the overhead of a
barrier increases with number of threads involved with the barrier. Because each task assigned to each
thread group is different, the number of barriers may be different, too. Like the case in multi-buffering,
it also provides an opportunity to dynamically schedule at runtime. Meanwhile,it makes sense that a
manycore architecture can support multiple hardware barrier for exploiting multi-grain parallelism.

lock frre
lock array

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

64321684

T
im

e
(s

ec
on

ds
)

#threads

Executin Time Comparison with/without Locks

Figure 12: The execution time of the backtrace phase with/without lock synchronization

In the BFS phase, the fine-grain lock synchronization algorithm assignsan independent lock to
each vertex. Thus, it avoids the additional data race in coarse-grain lock synchronizaiton, where all
threads have to acquire a global lock even if they are visiting different vertices. In the fine-grain lock
synchronization algorithm, a confilict of acquiring a lock occurs only if two threads are visiting the
same vertex. An additional lock array, whose size is the same with the number of vertices, is used to
implement the fine grain lock. However, due to require/release a lock, it results in additional memory
accesses to the lock array. The access to lock array is also irregular because each lock is associated
with each vertex. The fine-grain lock mechanism based on SSB, which associates locking functions
with memory locations dynamically. Note that our optimizations for memory hierarchy, only parts of
adjacent array are loaded into on-chip memory. Therefore, when a thread requires a lock, it accesses
the associated memory location in the on-chip memory because the vertices areloaded into on-chip
memory byhelper threads, instead of accessing the memory locations in the off-chip memory. Figure 11
compares the performance of two kinds of fine-grain lock synchronization approaches. The fine-grain
lock mechanism based on SSB reduce the execution time by two times. Comparing with the BFS
phase, the backtrace phase consumes little running time, but our proposed lock free algorithm improves
the performance further. Figure 12 shows the performance improvementof our proposed lock free

18

algorithm.

5.2.3 Comparison with Other Architectures

In this paragraph, we compare the results obtained on C64 with that on other architectures. When
we were doing this work, the platforms we can reach are Intel 4-way dual-cores Xeon SMPs and 40-
processors Cray MTA-2. The program on SMPs is fine-grain parallelized using OpenMP by Bader et.al.
The codes on Cray MTA-2 came from the personal commnication with John Feo in Cray Inc. Because
the limitation of C64 simulator, we only can get the full results of experiments, where the scale is less
than 10. Table 1 reports theTEPS metrics on the three platforms. It is not necessary to compare the
performance on SMPs with more than 8 threads because the number of cores available is 8. Although the
L2 cache size is 2MB on Xeon and it can contain the whole graph data structure for this small problem
size, the peformace degrades with the increasing number threads because the lock synchronization is
not optimized. The low performance on MTA-2 is caused by low utilization of thread streams for the
small problem size. When the scale is more than 16, The metricTEPS increases greatly and scale well
with the incrasing threads. In fact, We got theTEPS for scale = 16 and 4 threads on C64, it is two
times less than that on MTA-2. This comparison indicates that the algorithms on MTA-2 has betterweak
scaling, but our algorithm has betterstrong scalability. This evaluation is to compare one C64 chip with
mulitple MTA-2 processors, each of which has 128 streams. When the problem size is large enough
(i.e. scale ≥ 16), the streams is effectively utilized on a MTA-2 processor. However, the experiments
on C64 only used a few thread units specified by user parameters. It is reasonable that the performance
is lower on C64, while it indicates that our proposed parallel algorithms on C64 is comparable with that
on the MAT-2 system.

Table 1: The comparison of TEPS on three platforms.
#threads C64 SMPs MTA-2

4 2917082 5369740 752256

8 5513257 2141457 619357

16 9799661 915617 488894

32 17349325 362390 482681

6 Conclusions

We have demonstrated an algorithmic reconstruction to achieve good performance on a manycore archi-
tecture. In order to utilize the large scale cores in a processor, we exploited the multigrain parallelsim in
betweenness cetrality algorithm. This is a shift from traditional parallel computing, where parallelism
is typically expressed in a single granlarity such as coarse grain parallelsim. Analogous to the term
of dependence, in the levels of parallel betweenness cetrality algorithm, the coarse grain parallelsim is
control parallelsim and the fine grain parallelism is data parallelism. This observation is important for
a runtime to gain good performance through automatically exploiting multigrain parallelism. In fact,

19

Filip et.al. [8] presented a runtime system for dynamically scheduling multigrain parallelism on Cell
processor and achieved a reasonable performance for RAxML algorithms [29].
Another important fact is that manycore architecture has an explict memory hierachy. A generic tech-
nique to improve the performance of memory access at algorithmic level is to orchastrate and schedule
data through multi-threading. This requires a very careful algorithmic design that explicitly organizes
the hierachy of data and movement between these levels. Obviously, it leads to more complex software
developments.
The critical factor of fine grain parallelism is the performance of synhcronization. Although we can
develop some lock free algorithms for some specific problems, it is more desirable that a manycore
architecture can provide an effcient synchronization mechanism.
For the irregular computation like graph algorithms, we have to perform some nontrivial techniques to
map a serial program to parallel computers. That is more important to shift to manycore era, where
the performance is improved through scaling more parallelism. Although the algorithm and program
development is suffering from the evolution to manycore architecture, it provide a great opportunity to
achieve better performance for a class of irregular computation, which performance can not be improved
in conventional architecture.

20

References

[1] http://grape-dr.adm.s.u-tokyo.ac.jp/system-en.html.

[2] http://www.cray.com/products/xmt/.

[3] http://www.openmp.org.

[4] The mta-2 multithreaded architecture. www.cray.com.

[5] David A Bader. Hpcs scalable synthetic compact applications 2 graphanalysis.
www.highproductivity.org/SSCABmks.htm, 2006.

[6] David A. Bader and Kamesh Madduri. Designing multithreaded algorithms for breadth-first search
and st-connectivity on the cray mta-2. InThe 35th International Conference on Parallel Processing
(ICPP 2006), 2006.

[7] David A. Bader and Kamesh Madduri. Parallel algorithms for evaluating centrality indices in
real-world networks. InThe 35th International Conference on Parallel Processing (ICPP 2006),
2006.

[8] Filip Blagojevic, Dimitrios S. Nikolopoulos, Alexandros Stamatakis, and Christos D. Antonopou-
los. Dynamic multigrain parallelization on the cell broadband engine. Inthe 2007 ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2007.

[9] Ulrik Brandes. A faster algorithm for betweenness centrality.Journal of Mathematical Socialogy,
25(2):163–177, 2001.

[10] C. Cascaval, J.G. Castanos, L. Ceze, M. Denneau, and et. al. Evaluation of a multithreaded ar-
chitecture for cellular computing. InProc. of 8th Intl. Symp. on High Performance Computer
Architecture, Boston, MA, 2002.

[11] Tong Chen, Zehra Sura, Kathryn O’Brien, and Kevin O’Brien. Optimizing the use of static buffers
for dma on a cell chip. InThe 19th International Workshop on Languages and Compilers for
Parallel Computing, page 2006.

[12] Thayne Coffman, Seth Greenblatt, and Sherry Marcus. Graph-based technologies for intelligence
analysis.Communications of the ACM, 47(3):45–47, 2004.

[13] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A parallelization of dijkstras shortest path
algorithm.Lecture Notes in Computer Science, 1450:722–731, 1998.

[14] Juan del Cuvillo, Weirong Zhu, and Guang R. Gao. Landing openmpon cyclops-64: An efficient
mapping of openmp to a many-core system-on-a-chip. InThe 3rd ACM International Conference
on Computing Frontiers, Ischia, Italy, 2005.

21

[15] Juan del Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. Gao. Fast:A functionally accurate sim-
ulation toolset for the cyclops-64 cellular architecture. InWorkshop on Modeling, Benchmarking
and Simulation (MoBS), held in conjunction with the Annual International Symposium on Com-
puter Architecture (ISCA’05), 2005.

[16] Juan del Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. Gao. Tinythreads: a thread virtual ma-
chine for the cyclops-64 cellular architecture. InFifth Workshop on Massively Parallel Processing
(WMPP), held in conjunction with the 19th rnational Parallel and Distributed Processing System,
2005.

[17] Antonio del Sol, Hirotomo Fujihashi, and Paul O’Meara. Topology ofsmall-world networks of
protein–protein complex structures.Bioinformatics, 21(8):1311–1315, 2005.

[18] Monty Denneau and Henry S. Warren, Jr. 64-bit Cyclops: Principles of operation. April 2005.

[19] Linton C. Freeman. A set of measures of centrality based on betweenness.Sociomtry, 40(1):35–41,
1977.

[20] Ananth Y. Grama and Vipin Kumar. A survey of parallel search algorithms for discrete optimiza-
tion problems, 1993.

[21] M. Gschwind, P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and T. Yamazaki. Synergistic
processing in cell’s multicore architecture.IEEE Micro, pages 10–24, March 2006.

[22] Brian T. N. Gunney, Andrew M. Wissink, and David A. Hysom. Parallel clustering algorithms for
structured amr.Journal of Parallel and Distributed Computing, 66(11):1419–1430, 2006.

[23] Hawoong Jeong, Sean P. Mason, Albert-Laszlo Barabasi, and Zoltan N. Oltvai. Lethality and
centrality in protein networks.Nature, 411:41, 2001.

[24] P. N. Klein and S. Subramanian. A randomized parallel algorithm for single-source shortest paths.
Journal of Algorithms, 25(2):205–220, 1997.

[25] Valdis E. Krebs. Mapping networks of terrorist cells.Connections, 24(3):43–52, 2002.

[26] Fredrik Liljeros, Christofer R. Edling, Luis A. Nunes Amaral, H. Eugene Stanley, and Yvonne
Aberg. The web of human sexual contacts.Nature, 411:907, 2001.

[27] Joon-Sang Park, Michael Penner, and iktor K. Prasanna. Optimizing graph algorithms for im-
proved cache performance.IEEE Trans. Parallel Distrib. Syst., 15(9):769–782, 2004.

[28] John W. Pinney, Glenn A. McConkey, and David R. Westhead. Decomposition of biological
networks using betweenness centrality decomposition of biological networks using betweenness
centrality. Inthe 9th conference on research in computational molecular biology, 2005.

[29] A. Stamatakis, T. Ludwing, and H. Meier. Raxml-iii: a fast program for maximum likelihood-
based inference of large phylogenetic trees.Bioinformatics, 21(4):456–463, 2005.

22

[30] Oreste Villa1, Daniele Paolo Scarpazza1, Fabrizio Petrini1, and Juan Fernandez Peinador. Chal-
lenges in mapping graph exploration algorithms on advanced multi-core processors. In21th IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 2007.

[31] J. S. Vitter. External memory algorithms and data structures: Dealing withmassive data.ACM
Comptuing Surveys, 33(2):209–271, 2001.

[32] Andy Yoo, Edmond Chow, Keith Henderson, William McLendon, Bruce Hendrickson, and
A Aatalyurek. A scalable distributed parallel breadth-first search algorithm on bluegene/l. In
ACM/IEEE Supercomputing’05, 2005.

[33] Weirong Zhu, Vugranam C. Sreedhar, Ziang Hu, and Guang R. Gao. Synchronization state buffer:
Supporting efficient fine-grain synchronization on many-core architectures. InThe 34th Interna-
tional Symposium on Computer Architecture, 2007.

23

