
University of Delaware
Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

Concurrency Analysis for Shared Memory Programs with

Textually Unaligned Barriers

Yuan Zhang

Evelyn Duesterwald†
Guang R. Gao

CAPSL Technical Memo 079

July, 2007

Copyright c© 2007 CAPSL at the University of Delaware

†IBM T.J.Watson Research Center, Hawthorne, NY 10532. Email: duester@us.ibm.com

University of Delaware • 140 Evans Hall • Newark, Delaware 19716 • USA

http://www.capsl.udel.edu • ftp://ftp.capsl.udel.edu • capsladm@capsl.udel.edu





Abstract

Concurrency analysis is a static analysis technique that determines whether two state-

ments or operations in a shared memory program may be executed by different threads

concurrently. Concurrency relationships can be derived from the partial ordering among

statements imposed by synchronization constructs. Thus, analyzing barrier synchroniza-

tion is at the core of concurrency analyses for many parallel programming models. Previous

concurrency analyses for programs with barriers commonly assumed that barriers are named

or textually aligned. This assumption may not hold for popular parallel programming mod-

els, such as OpenMP, where barriers are unnamed and can be placed anywhere in a parallel

region, i.e., they may be textually unaligned. We present in this paper the first interprocedu-

ral concurrency analysis that can handle OpenMP, and, in general, programs with unnamed

and textually unaligned barriers. We have implemented our analysis for OpenMP programs

written in C and have evaluated the analysis on programs from the NPB and SpecOMP2001

benchmark suites.
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1 Introduction

Concurrency analysis is a static analysis technique that determines whether two statements or

operations in a shared memory program may be executed by different threads concurrently.

Concurrency analysis has various important applications, such as statically detecting data

races [6, 9], improving the accuracy of various data flow analysis [16], and improving pro-

gram understanding. In general, precise interprocedural concurrency analysis in the presence

of synchronization constraints is undecidable [15], and a precise intraprocedural concurrency

analysis is NP-hard [18]. Therefore, a practical solution is to make a conservative estimate of

all possible concurrency relationships, such that two statements that are not determined to be

concurrent cannot execute in parallel in any execution of the program. If two statements are

determined to be concurrent, they may execute concurrently.

In this paper we present a new interprocedural concurrency analysis that can handle parallel

programming models with unnamed and textually unaligned barriers. We present our analysis

in the context of the OpenMP programming model but our approach is also applicable to other

SPMD (Single Program Multiple Data) parallel programming models.

OpenMP is a standardized set of language extensions (i.e., pragmas) and APIs for writing

shared memory parallel applications in C/C++ and FORTRAN. Parallelism in an OpenMP

program is expressed using the parallel construct. Program execution starts with a single

thread called the master thread. When control reaches a parallel construct, a set of threads,

called a thread team, are generated, and each thread in the team, including the master thread,

executes a copy of the parallel region. At the end of the parallel region the thread team

synchronizes and all threads except for the master thread terminate. The execution of the

parallel region can be distributed among the thread team by work-sharing constructs (e.g.,

for, sections and single).

Synchronization is enforced mainly by global barriers and mutual exclusion (i.e., critical

constructs and lock/unlock library calls). When a thread reaches a barrier it cannot proceed

until all other threads have arrived at a barrier. In OpenMP, barriers are unnamed and they

may be textually unaligned. Thus, threads may synchronize by executing a set of textually

distinct barrier statements. Textually unaligned barriers make it difficult to reason about the

synchronization structure in the program. Some parallel languages, therefore, require barriers

to be textually aligned [19]. Textually unaligned barriers also hinder concurrency analysis

because understanding which barrier statements form a common synchronization point is a

prerequisite to analyzing the ordering constraints imposed by them. Our analysis is the first

interprocedural concurrency analysis that can handle barriers in OpenMP and, in general,

programs with unnamed and textually unaligned barriers. Figure 1 shows an OpenMP example

program with a parallel region.

Barriers structure the execution of a parallel region into a series of synchronized execution

phases, such that threads synchronize on barriers only at the beginning and at the end of each

phase. Computing these execution phases for each parallel region provides the basic skeleton for

ordering relationships among statements. Statements from different execution phases cannot
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P1:       sum += my_ID;

{

P2:       num = omp_get_num_threads();
C4:       if(num > 2){
S9:             ......
                  #pragma omp barrier  // b5
S10:           ......
            } else {
S11:            ......
                  #pragma omp barrier  // b6

      ......
      #pragma omp parallel private(my_ID, num, y)
      {
            my_ID = omp_get_thread_num();
C1:       if(my_ID > 2){
S1:             i = 0;
                  #pragma omp barrier  // b1
S2:             y = i + 1;
            } else {
S3:             i = 1;
                  #pragma omp barrier  // b2
S4:             y = i − 1;
            }

C2:       if( my_ID == 0){
S5:             ......
                  #pragma omp barrier  // b3
S6:             ......
            }

            }
S8:             ......
                  #pragma omp barrier  // b4

C3:       if( my_ID != 0){      int my_ID, num, i, y, sum = 0; S7:             ......

S12:            ......
            }

                  printf("i = %d\n", i);

      } // end of parallel

} // end of main

C5:      if(my_ID == 0)

main()

Figure 1: Example OpenMP program. The OpenMP library function calls

omp get thread number() and omp get num threads() return the thread identifier of the call-

ing thread and the total number of threads in the current team, respectively.

execute concurrently. Thus, only statements within the same phase need to be examined for

computing the concurrency relation.

To illustrate the concept of execution phases consider the sample program shown in Figure 1.

The first execution phase, denoted as (begin, {b1, b2}), starts at the beginning of the parallel

region and extends up to barriers b1 and b2. Note that barriers b1 and b2 establish a common

synchronization point, i.e., they match. The next barrier synchronization point is at barriers

{b3, b4}. Hence, the next execution phase is ({b1, b2}, {b3, b4}).

It is easy to see that statements from two different execution phases are ordered by barriers

and thus cannot be concurrent. On the other hand, two statements from the same execution

phase may be concurrent, such as S1 and S3 in Figure 1. However, barriers are not the

only constructs that need to be considered to determine execution phases. Additional ordering

constraints may be imposed by control constructs. Consider statements S9 and S11 in Figure 1,

which are on different branches of the condition C4. Since all threads agree on the value of

predicate C4 (i.e., the predicate is single-valued), statements S9 and S11 can never be executed

together in one execution, hence they cannot be concurrent. On the contrary, predicate C1 is

evaluated differently by different threads (i.e., the predicate is multi-valued), so that statements

on the two branches may execute concurrently. Thus, another key issue in understanding the

concurrency constraints is determining whether a control predicate is single- or multi-valued.

In this paper, we propose an interprocedural concurrency analysis technique that addresses

the above ordering constraints imposed by synchronization and control constructs. Our analysis

computes for each statement s the set of statements that may execute concurrently with s. The

analysis proceeds in four major steps:

Step 1: CFG construction: The first step consists of constructing a control flow graph
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(CFG) that correctly models the various OpenMP constructs.

Step 2: Barrier matching: As a prerequisite to computing execution phases we need to

understand which barrier statements synchronize together, i.e, which barrier statements match.

We solve this problem as an extension to barrier matching analysis [20]. Barrier matching

verifies that barriers in an SPMD program are free of synchronization errors. For verified

programs, a barrier matching function is computed that maps each barrier statement s to the

set of barrier statement that synchronize with s in at least one execution. Barrier matching was

previously described for MPI programs and we have extended it to handle OpenMP programs.

The computed barrier matching function is an input to the next step.

Step 3: Phase partition and aggregation: In this step, we first partition the program

into a set of static execution phases. A phase (bi, bj) consists of a set of basic blocks that lie

on a barrier-free path between barrier bi and bj in the CFG. We then aggregate phases (bp, bq)

and (bm, bn) if bp matches bm, and bq matches bn. A dynamic execution phase at runtime is an

instance of an aggregated static execution phase.

Step 4: Concurrency relation calculation: We first conservatively assume that state-

ments from the same execution phase may be concurrent but statements from different phases

are ordered and non-concurrent. We then apply a set of ordering rules that reflect the concur-

rency constraints from other OpenMP synchronization and work-sharing constructs to itera-

tively refine the concurrency relation.

We have implemented the analysis for OpenMP programs written in C and evaluated it on

programs from the NPB [5] and SpecOMP2001 [17] benchmark suites. Our evaluation shows

that our concurrency analysis is sufficiently accurate with the average size of a concurrency set

for a statement being less than 6% of total statements in all but one program.

The rest of the paper is organized as follows. We first present related work in Section 2. The

control flow graph is presented in Section 3. In Section 4 we first review the barrier matching

technique and then present extensions to handle multi-valued expressions in OpenMP and

structurally incorrect programs. Phase partition and aggregation is presented in Section 5, and

the concurrency relation calculation is presented in Section 6. We present experimental results

in Section 7, and finally conclude in Section 8.

2 Related Work

A number of researchers have looked at concurrency analysis for programs with barriers. Lin [9]

proposed a concurrency analysis technique (called non-concurrency analysis) for OpenMP pro-

grams based on phase partitioning. Lin’s analysis differs from our concurrency analysis in two

main aspects. First, Lin’s method is intraprocedural and cannot compute non-concurrency

relationship across procedure calls. Second, Lin’s method cannot account for synchronization

across textually unaligned barriers. The analysis does not recognize that textually unaligned

barriers may in fact synchronize together, resulting in spurious non-concurrency relationships.
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(c) sections construct

barrier

#pragma omp atomic
    expression stmt atomicbegin

atomicbegin

stmt flush

#pragma omp flush

body

orderbegin

orderend

#pragma omp ordered
    body

singlebegin

singleend

body

barrier*

#pragma omp single
    body

masterbegin

masterend

body

#pragma omp master
    body

#pragma omp critical
    body

body

criticalbegin

criticalend

parend

body

barrier*

barrier*

parbegin#pragma omp parallel

    body

forbegin

forend

body

barrier*

for(...){
    body
}

#pragma omp for sectionbegin

barrier*barrier*

body1 body2

sectionend

#pragma omp sections
#pragma omp section

#pragma omp section
body1

body2

#pragma omp barrier

(g) barrier construct (h) atomic construct (i) flush construct (k) ordered construct

(d) single construct (f) critical construct(e) master construct

(a) parallel construct (b) for construct

Figure 2: Control flow graph construction

For instance, Lin’s technique would wrongfully conclude that S1 and S3 in Figure 1 are non-

concurrent.

Jeremiassen and Eggers [7] present a concurrency analysis technique that, similar to our

analysis, first partitions the program into phases, then aggregates some phases together. Their

analysis avoids the problem of having to identify whether textually unaligned barriers synchro-

nize together by assuming that barriers are named through barrier variables. Barriers state-

ments that refer to the same barrier are assumed to be matched. Their techniques also does not

account for concurrency constraints imposed by control constructs with single-valued predicate.

For instance, in Figure 1 their analysis would conclude that S9 and S11 are concurrent.

Kamil and Yelick [8] proposed a concurrency analysis method for the Titanium language [19]

in which synchronization across textually unaligned barriers is not allowed.

There also has been a lot of work on concurrency analysis for other parallel programming

languages, such as Ada and Java [3, 2, 6, 11, 13] in which synchronization is mainly enforced by

event-driven constructs like post-wait/wait-notify. Agarwal et.al. [1] presents a may-happen-

in-parallel analysis for X10 programs.
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3 Step 1: Control Flow Graph Construction

The control flow graph for an OpenMP program is an extension of the control flow graph for

a sequential program. Figure 2 illustrates the graph construction for each OpenMP construct.

Begin and end nodes are inserted for each OpenMP directive with a construct body. To model

the sections construct, we insert a control flow edge from the begin node to the first statement

node of each section in the construct, and a control flow edge from the last statement node of

each section to the end node of the sections construct. Constructs without a body statement

(e.g., barrier and flush) are represented by a single block.

There is an implicit barrier at the end of the work-sharing constructs for, sections and

single, unless the nowait clause is specified. Implicit barriers are depicted as barrier* in

Figure 2. Similarly, there is an implicit barrier at the beginning of a parallel region, and an

implicit barrier at the end of a parallel region.

4 Step 2: Barrier Matching

The second step in our concurrency analysis consists of identifying the matching barrier state-

ments that synchronize together. Barrier matching analysis [20] was previously described for

MPI programs. In this section we first review the MPI barrier matching analysis and then show

how to extend it to handle OpenMP.

4.1 Review of Barrier Matching for MPI Programs

Barrier matching is an analysis and verification technique to detect stall conditions caused by

barriers. When the program is verified, the analysis computes a barrier matching function that

maps each barrier statement s to the set of barrier statements that synchronize with s in at

least one execution. The MPI barrier matching analysis proceeds in three main steps:

Multi-valued Expression Analysis: In SPMD-style programs all threads execute the

same program but they may take different program paths. The ability to determine which

program paths may be executed concurrently requires an analysis of the multi-valued expressions

in the program. An expression is called multi-valued if it evaluates differently in different

threads. If used as a control predicate, multi-valued expressions split threads into different

program paths that are executed concurrently by different threads. An example of a multi-

valued expression is my ID shown in Figure 3(a). Conversely, an expression that has the

same value in all threads is called single-valued. SPMD programming paradigms like MPI or

OpenMP usually contain multi-valued seed expressions, such as library calls that return the

unique thread identifier. All other multi-valued expressions in the program are directly or

indirectly dependent on these multi-valued seed expressions.

The interprocedural multi-valued analysis is solved as a forward slicing problem based on a

revised program dependence graph. The revised program dependence graph contains nodes to
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                  MPI_Barrier(COMM)  // b2
S4:             y = i − 1;
            }
            ......

            MPI_Comm_rank(COMM, &my_ID);

            ...... get my_ID

my_ID > 2

i = 0

b1 b2

i = 1

(y)φ(i)φ ,

y=i+1 y=i−1

i = 1i = 0

get my_ID my_ID > 2 (y)φ(i)φ ,

−edgeφ

y=i+1 y=i−1

data dependence edge

my_ID = ...

my_ID > 2

i = 0

b1 b2

i = 1

(y)φ(i)φ ,

y=i+1 y=i−1

par begin

par end

      {

C1:       if(my_ID > 2){
S1:             i = 0;
                  #pragma omp barrier  // b1
S2:             y = i + 1;
            } else {
S3:             i = 1;
                  #pragma omp barrier  // b2
S4:             y = i − 1;
            }

      #pragma omp parallel private(my_ID, num, y)
      ......

            ......
      } // end of parallel

            my_ID = omp_get_thread_num(); my_ID = ... my_ID > 2 (y)φ(i)φ ,

i = 0 i = 1

−edgeφ

y=i+1 y=i−1

data dependence edge

control dependence edge

(a) (b) (c)

(e)(d)

C1:       if(my_ID > 2){

(f)

S1:             i = 0;
                  MPI_Barrier(COMM);  // b1
S2:             y = i + 1;
            } else {
S3:             i = 1;

Figure 3: An MPI program (a), its CFG (b), and its revised program dependence graph (c).

An OpenMP program (d), its CFG (e), and its revised program dependence graph (f). The

multi-valued expression slices are shown as shaded nodes in (c) and (f).

represent statements that are connected through data dependence edges and so called φ-edges.

φ-edges are based on the notion of φ-nodes in Static Single Assignment (SSA) form [4]. In

SSA, a φ-node is inserted at a join node where multiple definitions of a variable merge. The

predicate that controls the join node is called a φ-gate. A φ-edge connects a φ-gate with the

corresponding φ-node. Multi-valued expressions result as those expressions that are reachable

from a multi-valued seed expression along either data-dependence or φ-edges in the revised

program dependence graph.

Figure 3(c) illustrates the revised program dependence graph and multi-valued expression

analysis for the MPI program shown in Figure 3(a). It is important to note that variables i and

y are single-valued for the executing threads inside the conditional statement but they become

multi-valued after the conditional paths merge at the φ-node.

Barrier Expressions: A barrier expression at a node n in the CFG represents the

sequences of barriers that may execute along any paths from the beginning of the program to

node n. Barrier expressions are regular expressions with barrier statements and function labels

as terminal symbols, and three operators: concatenation (·), alternation (|) and quantification

(∗), which represents barriers in a sequence, in a condition, and in a loop, respectively. For
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T2

.

.

.

c| c|

c|

|

0

0

c| c| 0 c| 0T = ((( b1 b2 ) . ( b3 )) . ( b4 )) . ( b5 | b6 )

b1 b2 b3

b4

b5 b6

T1

T3

T5 T6

T4

Figure 4: The barrier expression tree for the program in Figure 1. The symbol |c denotes

alternation with a multi-valued predicate.

example, the barrier expression for Figure 3(a) is (b1| b2). A barrier expressions is usually

represented by a barrier expression tree. Figure 4 shows the barrier expression tree for the

program shown in Figure 1.

Barrier matching: The final step combines the results of the previous two steps to

detect potential stall conditions caused by barriers. Recall that multi-valued predicates create

concurrent paths. Thus, a barrier subtree whose root is an alternation with a multi-valued

predicate describes two concurrent barrier sequences. Similarly, a quantification tree with

a multi-valued predicate describes concurrent barrier sequences in a loop in which threads

concurrently execute different numbers of iterations.

A barrier tree that does not contain either concurrent alternation or concurrent quantifica-

tion describes a program in which all threads execute the same sequence of barriers (although

the sequence may be different across different executions of the program). Such a tree is

obviously free of barrier synchronization errors. A concurrent quantification tree signals a syn-

chronization error because concurrent threads execute different numbers of loop iterations and

hence different numbers of barriers. Therefore, the barrier verification problem comes down to

checking that all concurrent alternation subtrees in the program’s barrier tree are well-matched,

i.e., the two alternation subtrees always produce barrier sequences of the same length. The bar-

rier matching analysis implements this check by a counting algorithm that traverses the two

subtrees of each concurrent alternation tree. Details of the counting algorithm can be found in

[20].

After verifying a concurrent alternation barrier tree, the analysis computes the barrier

matching function by ordering the leave nodes from each of its two subtrees in a depth-first

order, and then matching barriers in the same position of the two ordered sequences.

4.2 Multi-valued Expressions Analysis for OpenMP Programs

In order to use barrier matching for our concurrency analysis, we developed an extension of the

multi-valued expressions analysis for shared variables. In MPI programs all variables are local

to the executing thread. In OpenMP programs, on the other hand, variables are either shared
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or private. Private variables are stored in thread private memory and observable only by the

executing thread. Private variables in OpenMP can therefore be handled in the same way as

variables in MPI programs. Shared variable are stored in global memory, and observable by all

threads simultaneously. However, due to the relaxed memory consistency model in OpenMP,

a thread may have its own temporary view of memory which is not required to be consistent

with global memory at all times. “A value written to a (shared) variable can remain in the

thread’s temporary view until it is forced to memory at a later time. Likewise, a read from

a variable may retrieve the value from the thread’s temporary view unless it is forced to read

from memory” [10].

Consider again our sample program shown in Figure 3(d) and the two concurrent assign-

ments to the shared variable i. When a thread reads the value of i subsequent to one of

the assignments, it may retrieve the value assigned to i by itself from the thread’s temporary

view, or the value assigned by other threads from global memory. Thus, the shared variable

assignment to i makes i multi-valued.

We extend multi-valued expression analysis for shared variables by incorporating the fol-

lowing additional rule on how a shared variable may become multi-valued. An expression e

involving a shared variable v is multi-valued, if e is control dependent on a multi-valued pred-

icate p (i.e., e lies on a concurrent path) and there exists at least one definition of v that is

control-dependent on p.

In order to model shared variable in the revised program dependence graph we insert selected

control dependence edges. Specifically, let n be a φ-node for a shared variable v that is connected

to a φ-gate with a predicate p. We insert control dependence edges from predicate p to all control

dependent nodes that contain a reference of the shared variable v. Thus, if predicate p becomes

multi-value during the slicing computation, so will any expression involving the shared variable

v that is control dependent on p. Figure 3(f) illustrates this modification to the revised program

dependence graph for shared variable i.

Based on this extension of the revised program dependence graph, we can apply the in-

terprocedural forward slicing algorithm used in original MPI analysis to compute multi-valued

expressions for private and shared variables in OpenMP. Figure 3(f) shows the resulting multi-

valued expressions as the set of shaded nodes in the graph. The computed slice correctly

indicates that shared variable i is multi-valued at statements S2 and S4.

Note that the flush construct in OpenMP makes the calling thread’s temporary view of

memory consistent with global memory. Therefore, a shared variable is always single-valued

after a flush construct. However, a flush construct only takes effect on the calling thread.

Correspondingly, shared variables become single-valued only on the flushing thread’s program

path, at the point immediately following the flush.

As in the original MPI multi-valued expression analysis, we assume OpenMP and other

library calls are annotated as either single- or multi-valued. Arrays are treated as scalar variables

and pointers are conservatively handled by treating every pointer dereference and every variable

whose address is taken as multi-valued.
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4.3 Barrier Trees and Barrier Matching for OpenMP Programs

Once the multi-valued expressions have been computed, barrier tree construction and barrier

matching for OpenMP programs proceeds as described for MPI programs. Figure 4 shows

the barrier expression tree for the program shown in Figure 1. Barrier matching checks the

three concurrent alternation subtrees T5, T6 and T4. The analysis verifies subtree T5 as correct

and reports that barriers b1 and b2 match. However, the two subtrees T6 and T4 cannot be

statically verified and the analysis would report a potential error, warning that the subtrees are

structurally incorrect.

4.4 Handling Structurally Incorrect Programs

Barrier matching analysis produces a barrier matching function only for verified programs. As

a static analysis, barrier matching is conservative and may therefore reject a program, although

the program produces no synchronization errors at runtime. Programs that will always be

rejected are so called structurally incorrect programs. Informally, structural correctness means

that a program property holds for a program if it holds for every structural component of

the program, (i.e., every statement, expression, compound statement, etc.). In other words,

a structurally incorrect program contains a component that, if looked at in isolation, has a

synchronization error, although in the context of the entire program no runtime error may

result. Figure 1 is an example of a structurally incorrect program because it contains two

structural components, the conditionals C2 and C3 that, if looked at in isolation, are incorrect.

Thus, the overall program is deemed incorrect although no runtime synchronization error would

result because C3 is the logical complement of C2. As reported in the previous section, barrier

matching analysis reports a potential error for each of the two conditional components.

We discuss in this section modifications to compute partial barrier matching information for

programs whose synchronization structure is dynamically correct (i.e., the program terminates)

even if they cannot be statically verified. Our approach to handling structural incorrectness

is to isolate the program region that cannot be statically verified, and to partition the pro-

gram into structurally correct and structurally incorrect regions. Based on this partition we

can apply barrier matching and, in turn, our concurrency analysis for the structurally correct

components of the program. For the structurally incorrect regions we conservatively assume

that all statements may execute concurrently.

When barrier matching encounters a program with a structurally incorrect component p,

a synchronization error is detected when processing the root of the barrier expression subtree

that represents p. We refer to such structural component as an error component. For example,

the barrier tree in Figure 4, contains two error components T4 and T6.

Based on these error components we define two well-matched regions of a structurally in-

correct program. The first well-matched region consists of any sequence of statements along an

error-component-free path in the CFG that starts at the program entry and terminates at a

program point immediately preceding an error component. Similarly, the second well-matched
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region consists of any sequence of statements along an error-component-free path in the CFG

that starts at a program point immediately following an error component and terminates at the

program exit. We define the “structurally incorrect region” as the remainder of the program,

that is, any statement that is not included in one of the above well-matched regions. We con-

servatively treat all statements in the structurally incorrect region as concurrent and compute

barrier matching functions for the structurally correct regions.

Consider again our example in Figure 4 and recall that barrier matching reports two error

components, T4 and T6. The two well-matched regions of the program in Figure 1 are defined

as follows. The first region starts at program entry and terminates at program point P1 in

Figure 1 which immediately precedes the error component T6. The second region starts at

program point P2 which immediately follows the error component T4 and extend up to program

exit. All statements between P1 and P2 are assumed to be concurrent.

5 Step 3: Phase Partition and Aggregation

The third step of the OpenMP concurrency analysis uses the computed barrier matching func-

tion to divide the program into a set of static phases. A static phase (bi, bj) consists of a

sequence of basic blocks along all barrier-free paths in the CFG that start at the barrier state-

ment bi and end at the barrier statement bj . Note that bi and bj may refer to the same barrier

statement.

The phase partition method proceeds as proposed by Jeremiassen and Eggers [7]. First we

assume each barrier statement bi corresponds to a new global variable Vbi
. We then treat each

barrier statement as a use of its corresponding barrier variable, followed by definitions of all

barrier variables in the program. The problem of phase partition is then reduced to computing

live barrier variables in the program. Recall that a variable v is live at program point p if the

value of v at p is used before being re-defined along some path in the control flow graph starting

at p. Precise interprocedural live analysis has been described in [12]. Let Live(b) denote the

set of barrier variables live at the barrier b. The set of static phases in an OpenMP program is

then summarized as:

(bi, bj)|Vbj
∈ Live(bi), for all i and j

In order to determine which phases a basic block u belongs to, we need to reverse the

control flow edges in the CFG and calculate live barrier variables for each basic block again.

Let LiveR(u) denote the set of live barrier variables at basic block u in the reversed CFG. The

phases which block u belongs to are:

{(bi, bj)|bi ∈ LiveR(u) ∧ bj ∈ Live(u)}

According to the barrier matching information, we then aggregate phases (bm, bn) and

(bp, bq) if barriers bm matches bp and bn matches bq. A dynamic execution phase is an instance

of an aggregated phase at runtime.
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6 Step 4: Concurrency Relation Calculation

The final step of our concurrency analysis consists of calculating the concurrency relation among

basic blocks. Since basic blocks from different aggregated phases are separated by barriers, no

two blocks in different phases can be executed concurrently. We can therefore establish a first

safe approximation of the concurrency relation in the program by assuming that all blocks from

the same aggregated phase may be concurrent. However, this first approximation is overly

conservative and does not take concurrency constraints from certain OpenMP constructs into

account. We have developed the following set of concurrency rules that address these constraints

to refine the initial concurrency approximation.

1. (Concurrency Rule) Any two (possibly identical) basic blocks from the same aggregated

phase are concurrent. The set of concurrency relationships obtained from this rule is

denoted as CR.

2. (Non-concurrency Rules)

(a) Any two basic blocks from a master construct under the same parallel region are

not concurrent because they are executed serially by the master thread.

(b) Any two basic blocks from the critical constructs with the same name (or from

within the lock regions, enclosed by the omp set lock() and omp unset lock() library

calls, that are controlled by the same lock variable) are not concurrent because they

are executed mutually exclusively. Note that we treat two potentially aliased lock

variables as different.

(c) Two blocks in the same ordered construct are not concurrent because the ordered

construct body within a loop is executed in the order of loop iterations.

(d) Two blocks from the same single construct that is not enclosed by a sequential

loop are not concurrent. Note that OpenMP requires a single construct body to be

executed by one thread in the team, but it does not specify which thread. Therefore

two instances of a single construct inside a sequential loop might be executed by

two different threads concurrently.

The set of non-concurrency relationships obtained from the non-concurrency rules is de-

noted as NCR.

Finally, the concurrency relation among units results as CR − NCR.

Returning to our sample program in Figure 1. S1 and S3 are concurrent because they are

in the same aggregated phase (start, {b1, b2}). The same holds for S2 and S4. However, S9 and

S11 are not concurrent because barrier b5 does not match barrier b6 (due to the single-valued

predicate C4) thus S9 and S11 are in different phases.
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Benchmark FT IS LU MG SP quake

Source NPB2.3-C NPB3.2 NPB2.3-C NPB2.3-C NPB2.3-C SpecOMP2001

# Souce Lines 1162 629 3471 1264 2991 1591

# Blocks 682 278 2132 909 2503 1191

# Procedures 17 9 18 15 22 27

# Barriers 13 5 30 28 67 13

OpenMP constructs single for for single for for

master single for master

for critical critical

critical master

flush

# Aggr. phases 29 11 41 103 223 24

Max. concurrency 101 59 83 256 130 33

set size

Relative max. 14.8% 21.2% 3.9% 28.1% 5.2% 2.8%

concurrency. set size

Avg. concurrency 40 36 23 50 52 15

set size

Relative avg. 5.9% 12.9% 1.1% 5.5% 2.1% 1.3%

concurrency. set size

Table 1: Experimental results

7 Experimental Evaluations

We have implemented the concurrency analysis for OpenMP/C programs on top of the open-

source CDT (C Development Tool) in Eclipse. The Eclipse CDT constructs Abstract Syntax

Trees for C programs. We evaluated the effectiveness of our OpenMP concurrency analysis

on a set of OpenMP programs from the NPB (Nas Parallel Benchmarks) and SpecOMP2001

benchmark suites, as shown in Table 1.

FT (3-D FFT), LU (LU solver), MG (Multigrid), and SP (Pentadiagonal solver) are derived

from the serial Fortran versions of NPB2.3-serial by the Omni OpenMP compiler project [14].

IS (Integer sort) is an OpenMP C benchmark from NPB3.2. Quake from SpecOMP2001 bench-

mark suite simulates seismic wave propagation in large basins.

The top part of Table 1 lists several characteristics of the benchmark programs such as

the number of source lines, the number of barriers, either explicit or implicit, and the various

OpenMP constructs used in each benchmark.

The results of the concurrency analysis are shown in the lower part of the table. As an

intermediate result, the table lists the number of aggregated phases that have been computed.

To estimate the accuracy of our concurrency analysis we computed the average and maximum

set size among the concurrency sets for all nodes in the CFG. Our CFG is based on the CDT
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and includes statement level block nodes. Set sizes would be smaller if statements would be

composed into basic block nodes. The table shows the absolute set size and the relative size

which is the percentage of the total number of nodes in the CFG. Recall that the concurrency

set of a block b consists of a set of blocks that might execute concurrently with b in at least one

execution. A concurrency set is usually a superset of the real concurrency relation. Therefore

the smaller the concurrency set, the less conservative our concurrency analysis is. Table 1

indicates that our analysis is not overly conservative since the size of the average concurrency

set is less than 6% of the total blocks for all benchmarks except IS, for which the average

concurrency set is 12.9% of the total number of blocks in the program.

8 Conclusions

In this paper we present the first interprocedural concurrency analysis that can handle OpenMP

and, in general, shared memory programs with unnamed and textually unaligned barriers. Our

approach is built on the barrier matching technique that has previously been described to

verify barrier synchronization in MPI. We extended barrier matching to handle shared variables

and OpenMP. We have implemented our analysis for OpenMP C programs and evaluated the

effectiveness of our analysis using benchmarks from the NPB and SpecOMP2001 benchmark

suites. The experimental results confirm that our analysis is not overly conservative. We are

currently exploring the use of our concurrency analysis in combination with a dynamic data

race detection tool by limiting the instrumentation points that have to be considered during

dynamic checking. Other potential uses are in combination with performance tools to point the

user to areas with low levels of concurrency.
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