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Abstract

Computer architects are now studying a new generation of multi-core chip architectures

that may integrate hundreds of processing cores and memory banks on a single chip - em-

ploying a shared memory organization. A system may consist of many such chips (nodes)

and an increasing demand to support high bandwidth and shared-address space between

nodes. Furthermore, the inter-chip and intra-chip interconnections are also fast progress-

ing - with optical inter-chip and photonics intra-chip technology - promising unprecedented

bandwidth as well as multi-channel reordering capabilities. This paper focuses on the fol-

lowing fundamental question: can we have a memory model that is truly asynchronous that

is: (1) memory operations can be issued freely from the processors without blocking by any

memory based data dependence, and (2) the memory transmissions can travel through the

interconnection network freely without worrying that they may arrive at the destination out

of order. Furthermore, such a memory model must be realizable: that is, we can define an

operational model 1 (hence construct an abstract machine) that can fully explore the above

features during program execution.

1The terms “operational model” and “operational semantics” can be exchangeable in this paper.
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1 Introduction

Emerging future microprocessor chip technology unveils a new generation of many-core chip

architectures that may contain 100 to 1,000 processing cores using a shared memory orga-

nization with a large number of on chip memory banks. A system may consist many such

chips (nodes), an increasing demand for higher bandwidth and support for a shared-address

space between nodes. Furthermore, the inter-chip and intra-chip interconnections are also fast

progressing - with optical inter-chip and photonics intra-chip technology - promising unprece-

dented bandwidth as well as multi-channel reordering capabilities[4, 10]. In fact, under so-called

“wavelength division multiplexing” (WDM) over a single physical channel one can have multiple

communication/data channels by using different wavelengths for each!

However, some existing popular memory models place considerable constraints in reordering

memory operations; both on their issuing order from the processors as well as their traveling

order through the interconnection network. For instance, in the definition of the popular

release-consistency (RC) model [8], as in most other SC-derived memory models2 which are

defined in [7], an implicit assumption is that uniprocessor data dependences should be respected.

This assumption is rarely questioned, and has also been used in the definition of the location

consistency (LC) model [7]. As a results, a compiler and architecture optimization must not

violate the dependence ordering on a per process(or) basis. When working in a multiprocessor

environment, the restrictions imposed by the above constraints (e.g. data dependencies) should

be relaxed to allow more reordering opportunities - hence generating new opportunities for

parallelism. We will illustrate this point in Section 2.1.

This will allow the most efficient use of new technologies (such as optical inter-chip and

photonics intra-chip interconnects) technologies. Such technologies provide multiple channels

along each path between each pair of processors and memory banks. There are ample oppor-

tunities for subsequent memory transmissions taking different channels on the same path (thus

might arrive out of order) – to fully utilize the available bandwidth. In other words, enforcing

such uniprocessor dependence ordering constraints (when it is not necessary) may causes several

optimization opportunities to be lost and they are detrimental to the application performance.

This paper focuses on the following fundamental questions: Can we have a memory model

that is truly asynchronous, that is: (1) Memory operations can be issued freely from the

processors without blocking by any memory based data dependence, and (2) The memory

transmissions can travel through the interconnection network freely without worrying that

they may arrive at the destination out of order. Furthermore, such a memory model must be

realizable: that is we can define an operational model (hence construct an abstract machine)

that can fully explore the above features during program execution.

In this paper, we propose the Order Free Consistency (OFC) model to address the problem

discussed above. The rest of the paper is organized as follows. Section 2 provides the problem

formulation and the properties of a sound memory model. Section 3 introduces the OFC model.

2Memory Models which have the underlying assumption of memory coherence
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Section 4 states the properties of the OFC model. Section 5 shows the benefits of the OFC

model. Section 6 discusses the related work. The conclusions and future work are presented in

Section 7.

2 Problem Formulation

This section presents the main challenges that this paper addresses. Moreover, the criterion for

a good solution methodology is outlined here.

2.1 The four properties that defines our memory model

This section discusses the four desirable properties that defines our memory model. We believe

that these properties are also the criteria for defining a reasonable and efficient memory model.

Property 1: Causal Ordering In a correct program execution, the instructions should be

performed in an order which is consistent to the causal order – i.e. if a load is “caused” (returns

a value that is written) by a store, the store must be performed before the load is performed.

In a parallel program, a load may have more than one read values, as long as, the values are

written by stores that such a load depends on (also called the “candidate stores” of this load).

However, in an execution of a parallel program, only one “candidate store” causes a load. The

causal ordering property only requires that this causal order is respected.

Nevertheless, most memory models applies extra restrictions that are not necessary under

the causal order. For example, one of the necessary properties used widely in defining memory

consistency models (in particular, SC and SC-derived models such as Release Consistency) is

that data dependence (on a uni-processor level) must be respected [8]. This means that if

there is data dependence between two instructions from the same processor, they cannot be

reordered when they are performed. Although this does not violate the causal ordering, it may

preclude some program executions that also satisfy casual ordering - as it will be explained by

the following examples.

In Figure 1, a program is shown with two concurrent threads - namely T1 and T2. Both

threads operate on a shared variable x which is initialized to zero before the program starts.

Under SC and SC-derived models, the result {r1=2, r2=1} is illegal since it violates flow-

dependence 3.

In contrast to the SC and SC-derived memory consistency models, we believe that the

ordering constraints due to flow-dependence in this example are not always necessary and can

be further relaxed. To illustrate our view, let us consider the following program execution.

The instructions are performed in the order 1, 4, 3, 2. (The order of all the instructions

that are performed is called the “execution order” in the rest of this section). This execution

3Flow-dependence is also called true-dependence.
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Initially x = 0

T1 T2

1: x = 1 3: x = 2

2: r1 = x 4: r2 = x

The result {r1 = 2, r2 = 1} violates flow-dependence under SC 
and SC-derived models. However it satisfies causal ordering.

Under SC and SC-derived models, the result {r1 = 2, r2 = 1} is impossible. Such a result im-

plies that instruction 3 came before instruction 2 (because r1 = 2, causal ordering); instruction

1 came before instruction 4 (because r2 = 1, causal ordering); instruction 1 came before in-

struction 2 (due to uniprocessor flow-dependence); instruction 3 came before instruction 4 (due

to uniprocessor flow-dependence), and so both instruction 1 and 2 came before both instruction

3 and 4. Thus it leads to either the result {r1 = r2 = 1} or the result {r1 = r2 = 2}, but not

the result {r1 = 2, r2 = 1}. However the result {r1 = 2, r2 = 1} can be produced without

violating causal ordering. Since instruction 1 and 3 are store candidates for instruction 2 and

4, the instructions can be performed in the order 1, 4, 3, 2, which satisfies causal ordering and

produces the result {r1 = 2, r2 = 1}.

Figure 1: A Reasonable Violation of Flow-dependence

does not violate causal ordering. Moreover, it produces the result {r1=2, r2=1}. The reason

is that both instructions 1 and 3 are store candidates for instruction 2. Thus, either of them

can cause instruction 2. Similarly, either of them can cause instruction 4. Thus, the order 1,

4, 3, 2, in which 1 causes 4 and 3 causes 2, satisfies casual ordering even thought it violates

flow-dependence.

Initially x = 0

T1 T2

1: r1 = x 3: r2 = x

2: x = 1 4: x = 2

The result {r1 = 2, r2 = 1} violates anti-dependence under SC 
and SC-derived models. However it satisfies causal ordering.

Under SC and SC-derived models, the result {r1 = 2, r2 = 1} is impossible. Such a result

implies that instruction 4 came before instruction 1 (because r1 = 2, causal ordering); instruc-

tion 2 came before instruction 3 (because r2 = 1, causal ordering); instruction 1 came before

instruction 2 (due to uniprocessor anti-dependence); instruction 3 came before instruction 4

(due to uniprocessor anti-dependence), and so instruction 1 came before itself. Such a cycle

is prohibited by sequential consistency. However the result {r1 = 2, r2 = 1} can be produced

without violating causal ordering. Since instruction 2, 4 are a store candidate for instruction 3,

1 respectively, the instructions can be performed in the order 2, 3, 4, 1, which satisfies causal

ordering and produces the result {r1 = 2, r2 = 1}.

Figure 2: A Reasonable Violation of Anti-dependence
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Figure 2 presents another example 4 which shares same initial conditions with the example in

Figure 1 (Two threads working on a shared variable which is initialized to zero). Under SC and

SC-derived models, the result {r1=2, r2=1} is also illegal as it violates anti-dependence. As with

the example in Figure 1, we believe that the ordering constraints presented by this example are

not always necessary and can be further relaxed. Consider the execution order 2,3,4,1 which

produces the result {r1=2, r2=1}. Although it violates anti-dependence, it satisfies casual

ordering. The reason is that instructions 2 and 4 are store candidates for instructions 3 and 1,

respectively.

Initially x = 0

T1 T2

1: x = 1 3: r1 = x

2: x = 2 4: fence

5: r2 = x

The result {r1 = 2, r2 = 1} violates output-dependence under SC 

and SC-derived models. However it satisfies causal ordering.

Under SC and SC-derived models, the result {r1 = 2, r2 = 1} is impossible. Such a result implies

that instruction 2 came before instruction 3 (because r1 = 2, causal ordering); instruction 1 came

before instruction 5 (because r2 = 1, causal ordering); instruction 1 came before instruction 2

(due to uniprocessor output-dependence); instruction 3 came before instruction 5 (due to the

semantic of fence), and so instruction 1 came before instruction 2; instruction 2 came before

instruction 3 and 5s. Thus it leads to the result {r1 = r2 = 2}, not the result {r1 = 2, r2 =

1}. However the result {r1 = 2, r2 = 1} can be produced without violating causal ordering.

Since instruction 1 and 2 are store candidates for instruction 3 and 5, the instructions can be

performed in the order 2, 3, 1, 4, 5, which satisfies causal ordering and produces the result {r1

= 2, r2 = 1}.

Figure 3: A Reasonable Violation of Output-dependence

Finally, in Figure 3, we present a program with a similar setup to our other two examples

in Figure 1 and 2. However, in this case, this program exhibits ordering constraints due to

output-dependence are not always necessary and can be further relaxed. As before, the result

{r1=2, r2=1} is illegal under SC and SC-derived models since it violates the output-dependence.

However, it can be produced by the execution order 2,3,1,4,5 which violates output-dependence

but satisfies causal ordering.

Property 2: Equivalence Property For parallel programs which are data-race-free [1] or

properly labeled [8], the model should be equivalent to the Sequential Consistency model. In

Section 4.2, we will discuss the details.

Property 3: Monotonicity The model should be monotonic with respect to parallelism – if

the memory model permits a certain mapping of values to dynamic instances of read instructions

4The example is one of the Java Causality Test Cases[15]
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in the execution of a parallel program, it must permit the same mapping in an isomorphic legal

execution of a more parallel version of the same program.[5, 7]

In [13], some examples are used to explain the properties and features of the Java memory

model. Among those examples we found that two of them violate the monotonicity property.

To better explain this property, we duplicate these two examples and put them in Figure 4.

(The original version of the two examples are shown in Figure 11 and 12 in [13].)

Initially, x == y == 0

Thread 1 Thread 2 Thread 3

1: r1 = x 4: r2 = x 6: r3 = y

2: if (r1 == 0) 5: y = r2 7: x = r3

3:        x = 1

Must not allow r1 == r2 == r3 == 1

(a)

Initially, x == y == 0

Thread 1 Thread 2

1: r1 = x 6: r3 = y

2: if (r1 == 0) 7: x = r3

3:        x = 1

4: r2 = x

5: y = r2 

Compiler transformations can result

in r1 == r2 == r3 ==1

(b)

(a) The example which is duplicated from Figure 11 in [13]. (b) The example which is duplicated

from Figure 12 in [13]. The example in (a) can be considered as a more parallel version of the

example in (b). The reason is that the former example is obtained by partitioning a sequential

thread (Thread1 in (b)) from the latter example into two parallel threads (Thread1 and Thread2

in (a)). However the result {r1=r2=r3=1} is allowed in (b) but prohibited in (a). Thus they

violate monotonicity.

Figure 4: A Pair of Examples Which Violates Monotonicity

In figure 4 (a), a program is shown with three concurrent threads - namely Thread1, Thread2

and Thread3. The threads operate on shared variables x and y which are initialized to zero

before the program starts. Under Java memory model, the result {r1=r2=r3=1} is illegal since

it displays an unacceptable “bait-and-switch” circular reasoning [13].

In figure 4 (b), another program is shown with similar setup. The difference is that two

concurrent threads are used. Under Java memory model, the result {r1=r2=r3=1} is allowed

since it can result from well understood and reasonable compiler transformations. The details

are explained in [13]

The reasons why these examples violates monotonicity are explained below. Both of these

examples consist of the same stream of instructions which are labeled from 1 to 7. In the

former example, instruction 1 to 5 are distributed – i.e. instruction 1 to 3 are in Thread1,
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and instruction 4 and 5 are in Thread2. However, in the latter example instruction 1 to 5

are centralized in Thread1. Thus, it can be deduced that the former example is obtained

by partitioning a sequential thread (Thread1 in Figure 4 (b)) from the latter example into

two parallel threads (Thread1 and Thread2 in Figure 4 (a)). As it is defined in [7], the former

example is a more parallel version of the latter example. So, the monotonicity property requires

that any result which is allowed in the latter example should also be allowed in the former

example. However, these two examples violate the requirement since the result {r1=r2=r3=1}

is allowed in the latter example but prohibited in the former one.

We found that the Relaxed Atomic + Ordering (RAO) model [16] uses a very similar

example and it allows the same result ({r1=r2=r3=1} as the example shown in Figure 4 (b)
5. However, it does not show a similar example as that in Figure 4 (a). Nevertheless, it seems

that a reasonable memory model should not allow the result {r1=r2=r3=1} for the example

shown in Figure 4 (a). Thus, we believe that the RAO model also violates the monotonicity

property.

Property 4: Non-intrusive Reads Reads should be non-intrusive in the model – the

addition or removal of a read instruction in a parallel program cannot change the legality of

values returned by dynamic instances of other read instructions in a given execution of the

parallel program. [7]

This property is called “classical” in [5]. Moreover, that paper shows an example of memory

models which violate this “classical” property in Section 3.5.

2.2 The role of an operational model in defining a realizable memory model

This paper wishes to emphasize the role of an operational model in defining a realizable memory

model with the set of desirable properties. An example illustrating the role of it is presented

in Figure 2.

In this example, the reader may recall that the result {r1=2,r2=1} should be legal due to

the causal ordering property: i.e. the instructions can be performed in the order of 2,3,4,1

which will produce this result. To the best of our knowledge, no other memory models except

the Java memory model[13] and the Relaxed Atomic + Ordering (RAO) model[16] allow this

result. However, neither of the two memory models has a specification of an abstract machine

model as a part of its definition. In other words, under such models only the legal pairings

of input and output sequences are used to define memory consistency. They do not provide a

specification on how a real parallel machine can execute the example program to produce this

result. In Section 3, we will introduce an operational model that plays a critical role in defining

our memory consistency model. We will also illustrate how the above example is executed under

our model and how it produces the desired result. An operational model specification and its

5Although the name of variables are mismatched
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memory consistency model serve as a contract between hardware/architecture and software,

and can become a useful hint for both compiler and architecture design practitioners.

2.3 Problem formulation

Based on the above discussion, the problem presented here can be formulated as:

Open Problem: How to define an operational model that implements a reasonable and

efficient memory model with all desirable properties as listed in Section 2.1 ?

There may be more than one way to define an operational model that can provide a solution

to the above problem. However, beginning in Section 3 we will introduce our proposed solution

to this problem. We will also show that some benefits are to be gained from our memory model

in Section 5.

3 The Order Free Consistency (OFC) Model

This section presents our memory model, named the Order Free Consistency (OFC) Model,

which represents our solution to the open problem illustrated in Session 2.3. In Section 3.1, we

outline the program model used for the OFC model. Then, in Section 3.2 we present the basis

of our corresponding operational model that is used to define our memory model. Finally, in

Section 3.3, we present the extension of our operational model for handling with synchronization

operations.

3.1 The OFC program model

In this section, we outline the program model assumed in this paper. We follow a similar style

as used by Gao and Sarkar in their work on the Location Consistency model [6].

• Memory Write: If processor Pi needs to write value v in location L, it performs a

write(Pi, v, L) operation, which we also represent by the notation L = v in processor Pi’s

instruction sequence.

• Memory Read: If processor Pi needs to read a value from location L, it performs a

read(Pi, L) operation, which we also represented by the notation read L in processor Pi’s

instruction sequence.

• Signal-wait synchronization: If processor P2 needs to wait for processor P1, the syn-

chronization is accomplished by P1 performing a signal(P2) operation and by P2 perform-

ing a corresponding wait(P1) operation.

7



• Sync (composite) synchronization: if processor P1, ..., Pk all need to synchronize

among each other, the synchronization is accomplished by each processor performing a

sync({P1, ..., Pk}) operation. A sync operation performed on the entire set of processors

is equivalent to a barrier synchronization. In our memory model the sync({P1, ..., Pk})

operation is not an atomic operation. Instead, it is composed by performing a serial

of signal-wait instructions, signal(P1); ...; signal(Pk); wait(P1); ...; wait(Pk), in each

processor. Therefore, in Section 3.3, we don’t discuss the sync operation.

• Acquire-Release synchronization: If processor Pi needs exclusive access to a shared

location L, the synchronization is accomplished by performing an acquire(Pi, L) operation

at the start of the critical section and by a release(Pi, L) operation at the end. In general,

a processor may use acquire-release to request exclusive access to a set of shared variables,

(L1, ..., Lm), rather than a single memory location. It should be noted that it is prohibited

to use the signal-wait synchronizations inside the acquire-release pairs.

Processor

Instruction

Issuing
Window

Interconnection Network

Memory Bank

Memory

Processor

Instruction

Issuing
Window

Memory Location 

(Pomset)

Memory Bank Memory Bank

Figure 5: The OFC abstract machine architecture model

3.2 The OFC abstract machine architecture model

Our OFC operational model can be described by using a diagram for its underlying abstract

machine architecture model as shown in Figure 5. The abstract machine has a number of

processors and a shared memory connected by an interconnection network. Without loss of

generality, in the figure, the memory is placed on the other side of the network. Furthermore,

the memory itself may be consisted of many memory banks.

Now, let us describe how a (parallel) program is executed on this machine. Each processor

proceeds to execute its portion of the parallel program. Memory operations (e.g. load/store)

that are ready to be send to memory will be placed in the corresponding instruction issuing

window. In addition, each ready instruction carries a tag that denotes the order the instruction

8



is fetched from the memory (i.e. the fetch order). Conceptually, all ready instructions from the

same processor are totally ordered by their corresponding tags. However their issuing from the

processor to the network, or their arrival to the memory, and their final completion can all be

out of order - which will be further explained below.

It is important to note that there are several reasons - as listed below- that may cause the

out-of-order effects mentioned above.

• Instructions issuing: This may become out-of-order from their fetch order.

• Instructions transmission: This may become out-of-order due network congestion.

• Instructions arrival: This may become out-of-order due to the existence of multi chan-

nels between the same source-destination port pairs.

• Instruction completion: This may become out-of-order due to (last minute) reordering

opportunities by our abstract machine model.

It is time to explain how memory operations are executed at the memory side. The instruc-

tions that have arrived at the output port(s) of the interconnection network will be placed in

their corresponding memory locations. Each memory location is a partially ordered multiset

called a pomset [7]. Each node in a pomset corresponds to a potential memory operation,

while arcs between two nodes represent the direct ordering implied by their corresponding tags.

It is important to note that in a pomset there may be some nodes that may denote memory

operations that are to arrive in the future (we call them “holes” - a word derived from earlier

data-driven architectures [18]). In this paper, we say that node A “precedes” node B if A and

B access the same memory location and A’s tag is less than B’s tag. This means node A is less

than node B in the partial order defined by their pomset.

A memory operation in the pomset can be performed if one of the following conditions is

satisfied.

• Intuitively, a load operation can be performed if it is certain that there exists a store in

the same pomset which writes the value that the load is eligible to read. More precisely,

a load L is eligible to read a value which is written by a store S if and only if neither of

the following conditions are satisfied.

1. L precedes S in the pomset.

2. S precedes L in the pomset and there exists a store (or a hole) S’ which precedes L

and succeeds S in the pomset.

• A store operation can always be performed since the pomset keeps all the arrived stores

so that the stores never overwrite each other.

9



To help readers digest the operational model, we illustrate it by using an example which

was already introduced in Figure 2. First, consider that at the processor side the following

scenario happens.

• In processor P1, instruction 1 is fetched, placed in the instruction issuing window and

sent to the interconnection network. Then, instruction 2 is fetched, placed and sent.

• At the same time, in processor P2, the same happens to instruction 3 and 4.

x = 0 x = 0

x = 1

hole1

x = 0

x = 1

hole1

x = 2

hole2

x = 0

x = 1

hole1

x = 2

load(x) |
value = 1

x = 0

x = 1

load(x) |
value = 2

x = 2

load(x) |
value = 1

(a) (b) (c)

(d) (e)

(a) Initial pomset. (b) The pomset after the arrival of instruction 2 (x = 1). (c) The pomset

after the arrival of instruction 4 (x = 2). (d) The pomset after the arrival of instruction 3

(load x). The load returns value 1. (e) the pomset after the arrival of instruction 1 (load x).

The load returns value 2.

Figure 6: The pomsets of location x at each step for the program in Figure 2

Then, consider at the memory side the following scenario happens step by step. The corre-

sponding pomsets of memory location x in each step are shown in Figure 6

• Initially: The pomset of memory location x is initialized to contain a single node x = 0.

• Step 1: Instruction 2 (a store) arrives at the memory location. The other instructions

have not arrived yet.

Result: Instruction 2 is performed. And a hole (hole1 ) which precedes instruction 2 is

generated.

Explanation: According to the tag of instruction 2 it is known that there exists an

instruction which is fetched earlier than instruction 2. However, it has not arrived yet.

Therefore, we put a corresponding hole in the pomset.
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• Step 2: Instruction 4 (a store) has arrived at the memory location.

Result: Instruction 4 is performed and a hole (hole2 ) which precedes instruction 4 is

generated.

Explanation: The similar reason as step 1.

• Step 3: Instruction 3 (a load) has arrived at the memory location.

Result: Instruction 3 replaces the hole2. Then it performs and reads the value which is

written by instruction 2.

Explanation: According to the tag of instruction 3 it is known that hole2 is the cor-

responding hole to instruction 3. So instruction 3 replaces hole2. And in the current

pomset, instruction 3 is eligible to read either the initial value or the value which is writ-

ten by instruction 2. We assume that instruction 3 reads the value which is written by

instruction 2.

• Step 4: Instruction 1 (a load) has arrived at the memory location.

Result: Instruction 1 replaces the hole1. Then it performs and reads the value which is

written by instruction 4.

Explanation: The similar reason as step 3. We assume that instruction 1 reads the

value which is written by instruction 4.

3.3 Handling synchronization operations

Now, we explain how we handle synchronization operations introduced earlier in our program

model. We need to handle the new complexity introduced for programs that use synchronization

operations.

First, the representation of global ordering of operations (from different processors) need

to go beyond the tags used so far - that is: due to the ordering introduced by inter-processor

synchronization, we need to introduce an additional dimension. Conceptually, for those who are

familiar with terminology from distributed systems, we need to have something quite similar

to vector clocks [12, 14].

Second, we need to handle the general out-of-order conditions as outlined earlier. Here

further complexity arises - that a global time of a “hole” may not be known at a particular

time. However, we can deduce the range of the time - hence the time is represented by such a

range of possible time values.

Now, we describe one possible implementation of the global clock that will be used to handle

the synchronization operations.

A vector clock is a vector of integers where the size of the vector is equal to the number

of processors. We say clock Ci is smaller (or larger) than clock Cj if each element of Ci is

numerically not larger (or not smaller) than the corresponding element of Cj , and at least one
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element of Ci is numerically smaller (or larger) than the corresponding element of Cj . Ci is

unrelated to Cj if it is neither smaller nor larger. In our memory model the minimum clock

is denoted as C0 = (0, ..., 0) which is assigned to the initial node at each pomset and the

maximum clock is denoted as C∞ = {∞, ..., ∞}.

A clock range is a two-tuples (CL, CU ) where CU is greater than CL. We say clock range

(CiL, CiU ) is smaller (or larger) than clock range (CjL, CjU ) if CiU is smaller than CjL (or CiL

is larger than CjU). (CiL, CiU ) is unrelated to (CjL, CjU) if it is neither smaller nor larger.

Then we define three functions on the clocks.

• Increase function: The increase function INC(C = (c1, ..., cn), Pi) generates a new clock

INC(C, Pi) = (c1, ..., ci−1, ci + 1, ci+1, ..., cn). The only exception is that INC(C∞, Pi)

= C∞.

• Meet function: The meet function MEET(Ci = (ci1, ..., cin), Cj = (cj1, ..., cjn)) generates

a new clock MEET(Ci, Cj) = (min{ci1, cj1}, ..., min{cin, cjn}).

• Join function: The join function JOIN(Ci = (ci1, ..., cin), Cj = (cj1, ..., cjn)) generates a

new clock JOIN(Ci, Cj) = (max{ci1, cj1}, ..., max{cin, cjn}).

Now it is time to describe the method for calculating the clock range of each node in the

pomset. For handling the signal-wait operations, we add two types of nodes to the pomset, i.e.

signal and wait nodes. Similarly for handling acquire-release operations, we add acquire and

release nodes.

We calculate the clock range of nodes in the following way.

• Loads, Stores and Signals: For such types of node N which is sent from processor Pi,

let Nprev be the node which is fetched just before N in Pi (if N is the first operation in

Pi, Nprev is the initial node). And the clock range of Nprev is (CprevL, CprevU ). Then the

clock range of N is (INC(CprevL, Pi), INC(CprevU , Pi)).

• Wait: For a wait node N which is sent from processor Pi, we define Nprev in the same

way and let Nsig be the corresponding signal node. We calculate the clock range of N in

the following way. Suppose the clock range of Nprev is (CprevL, CprevU ). And the clock

range of Nsig is (CsigL, CsigU ). Then the clock range of N is (JOIN(INC(CprevL, Pi),

CsigL), JOIN(INC(CprevU , Pi), CsigU )).

• Acquires and Releases: For such types of node N, we calculate the clock range of N

in the same way as Load, Store and Signal nodes. Then, we repeat the following steps if

there exist an acquire node and a release node where their clock ranges are unrelated:

Step 1: Modify the clock range of the acquire node as if the acquire node is a wait node

and the release node is the corresponding signal node.

Step 2: Modify the clock range of other nodes whose clock ranges are affected by the

modification of the acquire node.
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• Holes: A hole node N may be either a wait node or a non-wait node. Moreover, if it is a

wait node, it may correspond to signal nodes in some processors. All of these possibilities

are depends on the information which is carried by the instructions, i.e. the fetch order,

the number of signals instructions which are fetched before, etc.

We calculate the clock range of a hole in the following way. Firstly we consider all possible

types of node N and get a serial of time ranges: (C1L, C1U ), ..., (CkL, CkU). Then the

clock range of N is (MEET(C1L, ..., CkL), JOIN(C1U , ..., CkU )).

Finally for readers’ further understanding of the operational model, we illustrate it by using

an example which was shown in Figure 7.

Initially x = 0

T1 T2

1: x = 1 4: x = 2

2: sync({T1,T2}) 5: sync({T1,T2})

3: r1 = x 6: r2 = x

Initially x = 0

T1 T2

1: x = 1 5: x = 2

2: signal(T2) 6: signal(T1)

3: wait(T2) 7: wait(T1)

4: r1 = x 8: r2 = x

(a)

(b)

(a) A program with sync operations. (b) The corresponding program with signal / wait op-

erations. Sync({T1,T2}) is replaced by signal(T1); signal(T2); wait(T1); wait(T2). We omit

signal(T1); wait(T1) in T1 and signal(T2); wait(T2) in T2 since they are redundant.

Figure 7: An example with synchronization operations

In Figure 7 (a) we show a program with two concurrent threads - namely T1 and T2. Both

threads operate on a shared variable x which is initialized to zero before the program starts.

In the program instruction 2 and 4 are sync (composite) operations which semantically require

T1 and T2 to synchronize between each other. Note that sync is a composite operation. As we

explained in Section 3.1 the sync operation is composed by performing a serial of signal-wait,

instructions, signal(T1); signal(T2); wait(T1); wait(T2), in each thread. The corresponding

program is shown in Figure 7 (b). 6

For the program in Figure 7 (b) suppose instruction 1 has been performed and instruction

4 and 8 have arrived at the memory side. However instruction 5 has not arrived yet. An

interesting question arises: Is it possible to perform instruction 4 and 8 before the arrival

of instruction 5? Since instruction 1 is store candidate of both instruction 4 and 8, such a

6We omit signal(T1); wait(T1) in T1 and signal(T2); wait(T2) in T2 since they are redundant.
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possibility does not violate causal ordering. Thus the OFC operational model should answer

“yes” to the question. Now we explain how the possibility is achieved as the following scenario.

x = 0

x = 1 x = 2

signal(T2) signal(T1)

wait(T2) wait(T1)

load(x)|value=1 load(x)|value=1

)0,1(1C

)0,0(0C

)2,4(4C )4,2(8C

)0,2(2C

)1,0(
5

C

)2,0(6C

)2,3(3C )3,2(7C

x = 0

x = 1 hole

signal(T2) signal(T1)

wait(T2) wait(T1)

load(x)|value=1 load(x)|value=1

)0,1(1C

)0,0(0C

)2,4(4C )4,2(8C

)0,2(2C

)1,0(
5

C

)2,0(6C

)2,3(3C )3,2(7C

x = 0

x = 1 hole

signal(T2) signal(T1)

wait(T2) wait(T1)

load(x)|value=1

)0,1(1C

)0,0(0C

)4,2(8C

)0,2(2C

)1,0(
5

C

)2,0(6C

)2,3(3C )3,2(7C

x = 0

x = 1 hole

signal(T2) signal(T1)

wait(T2)

)0,1(1C

)0,0(0C

)0,2(2C

)1,0(
5

C

)2,0(6C

)2,3(3C

x = 0

x = 1 hole

signal(T2) signal(T1)

wait(T2)

)0,1(1C

)0,0(0C

)0,2(2C

)1,0(
5

C

)2,0(6C

)2,3(3C

x = 0

x = 1

signal(T2)

wait(T2)

)0,1(1C

)0,0(0C

)0,2(2C

),()1,3(3C

x = 0

x = 1

signal(T2)

)0,1(1C

)0,0(0C

)0,2(2C

x = 0

x = 1
)0,1(1C

)0,0(0C

x = 0

)0,0(0C

wait(T1)
)3,2(7C

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(a) Initial pomset. (b) The pomset after the arrival of instruction 1 (x = 1). (c) The pomset

after the arrival of instruction 2 (signal(T2)). (d) The pomset after the arrival of instruction 3

(wait(T2)). (e) the pomset after the arrival of instruction 6 (signal(T1)). (f) the pomset after

the arrival of instruction 7 (wait(T1)). (g) the pomset after the arrival of instruction 8 (load

x). The load returns value 1. (h) the pomset after the arrival of instruction 4 (load x). The

load returns value 1. (i) the pomset after the arrival of instruction 5 (x = 2). The clock range

is denoted as a single vector clock if the lower bound and the upper bound are equivalent.

Figure 8: The pomsets of location x at each step for the program in Figure 7

Assume that at memory side instructions arrive in the order 1, 2, 3, 6, 7, 8, 4, 5. Although

at processor side instructions may be issued in another order, it is beyond the following expla-

nation. Then we explain the states of the memory location x on the arrivals of instructions step

by step. The corresponding pomsets of memory location x in each step are shown in Figure 8.

In follows the clock range is denoted as a single vector clock if the lower bound and the upper

bound are equivalent.

• Step (a): The pomset of memory location x is initialized to contain a single node x = 0.

The corresponding vector clock is (0, 0).

• Step (b): Instruction 1 (x = 1) arrives at the memory location. The corresponding

vector clock is (1, 0) since it is a store node.

• Step (c): Instruction 2 (signal(T2)) arrives at the memory location. The corresponding

vector clock is (1, 0) since it is a signal node.
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• Step (d): Instruction 3 (wait(T2)) arrives at the memory location. The corresponding

signal node is unknown at this time. However we know that the clock range of the signal

node is (0, 1) to (∞, ∞). Thus the clock range of the wait node is (3, 1) to (∞). the

signal node has not arrived yetit is a store node.

• Step (e): Instruction 6 (signal(T1)) arrives at the memory location. First of all according

to the information carried by instruction 6, i.e. the fetch order, the number of signals

instructions which are fetched before, etc, a hole which represents the instruction fetched

before instruction 6 is created. And the hole must be either a load or a store. Thus the

vector clock of the hole is (0, 1). So the vector clock of the signal(T1) node is (0, 2).

Moreover the vector clock of the wait(T2) node is recalculated as (3, 2).

• Step (f): Instruction 7 (wait(T1)) arrives at the memory location. The corresponding

vector clock is (2, 3) since the vector clock of signal(T2) node is (2, 0).

• Step (g): Instruction 8 (load x) arrives at the memory location. The corresponding

vector clock is (2, 4). So instruction 8 is eligible to read the value written by instruction

1.

• Step (h): Instruction 4 (load x) arrives at the memory location. The corresponding

vector clock is (4, 2). So instruction 4 is eligible to read the value written by instruction

1.

• Step (i): Instruction 5 (x = 2) arrives at the memory location. It replaced the hole

without changing the corresponding vector clock.

4 Properties of The OFC Model

In this section we show that the OFC Model has all the properties that a sound memory model

should have as listed in Section 2.1.

4.1 Causal ordering property

In this subsection we show that the OFC model has the causal ordering property.

In fact, under our abstract machine model a load operation from a processor does not need

to obey any program order constraints - neither when it is issued from the processor nor when

it travels in the interconnection network. When it arrives at the memory buffer,once it can

be performed (i.e. there exists another candidate store operation which has been performed)

it can bypass any other candidate store operations. In other words, the only constraint to a

load operation for its completion is that the candidate store operation which causes the load

operation is performed earlier. So the OFC model has the causal ordering property.
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4.2 Equivalence property

In this subsection we show that the OFC model has the equivalence property. More precisely,

we will define a way to convert a Sequential Consistency program to an OFC program with the

guarantee that if the former program has no data race, it is equivalent to the latter one.

Before proving the property, it should be noted that the program models of the Sequential

Consistency model and the OFC model are different. So for a parallel program PROGSC

under the Sequential Consistency model, we should firstly define a way to convert PROGSC

into another parallel program PROGOFC under the OFC model. Then we can prove that for

any given PROGSC which has no data races, it generates the same result (or result sets) as

the corresponding PROGOFC does.

For the first step, we define the rules on the conversion from PROGSC to PROGOFC as

follows,

• Conversions of load, store, signal and wait instructions: Such instructions are

directly used in PROGOFC without any change.

• Conversions of barrier instructions: Such instructions are replaced by

sync({P1,...,Pn}) instructions in PROGOFC .

• Conversions of critical Sections: The start of a critical section is replaced by an

acquire(all memory locations) instruction. The end of a critical section is replaced by a

release(all memory locations) instruction.

Now it is time to prove the equivalence property of the OFC model. For easier understanding

of the proof, we describe the equivalence property in another way, i.e. for a given parallel

program PROGSC which has no data race under the Sequential Consistency model, any result

that is generated by PROGSC can also be generated by the corresponding parallel program

PROGOFC under the OFC model, and vice versa. Here a result means the correspondences

between all load instructions and all store instructions so that each load instruction reads the

value which is written by the corresponding store instruction. The proof is as follows with the

condition that PROGSC has no data race.

• Any Sequential Consistency result can be generated by PROGOFC: In a Sequen-

tial Consistency result, if a load reads the value that is written by a store, the store is the

store candidate of the load. So for PROGOFC the load is also eligible to read the value

that is written by the store. Thus the correspondences between loads and stores in the

sequential consistency result is also legal for PROGOFC . In other words, any Sequential

Consistency result which is generated by PROGSC can also be generated by PROGOFC .

• Any OFC result can be generated by PROGSC : Through the rules on the conversion

from PROGSC to PROGOFC it is known that all the synchronization operations in

PROGOFC operate on the whole memory (all memory locations). So the partial orders
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in the pomsets of all memory locations are defined by the same constraints – i.e. same

program orders and same inter-thread orders. In other words, all the load and store

instructions in PROGOFC are ordered by a partial order, which is also known as the

happened-before order [12]. So in an execution of PROGOFC , which implies that the

happened-before order is determined, each load operation only has one candidate store

operation, and moreover, the correspondences between loads and stores are legal in both

PROGOFC and PROGSC . Otherwise the corresponding execution of PROGSC causes

either data race or that some load cannot read any value.

From above we conclude that we defined a way to convert a Sequential Consistency program

to an OFC program with keeping the equivalence for the programs that have no data race. In

other words, the OFC model has the equivalence property.

4.3 Monotonicity

In this subsection we show that the OFC model has the monotonicity property.

The monotonicity property says that if a result can be generated by a program, it can also

be generated by a legal more parallel version of the same program. Here the more parallel

version can be achieved by removing some arcs in some pomsets of memory locations. In fact,

under our abstract machine model a candidate store operation to a load operation in a program

is still the candidate to that load operation in a legal more parallel version. So that any result

of the original program is also legal for the more parallel one. Thus the OFC model has the

monotonicity property.

4.4 Non-intrusive reads

In this subsection we show that the OFC model has the non-intrusive reads property.

In fact, under our abstract machine model a load operation with respect to a memory

location never changes the partial order in the pomset of the memory location. Moreover, a

load operation never changes the state of a write – i.e. become eligible/ineligible for another

loads. So a read never changes the state of the memory. Thus the OFC model has the non-

intrusive reads property.

5 Benefits of the OFC Model

This section illustrates the benefits of the OFC model compared to popular memory models

such as Release Consistency. We believe that the benefits presented in Section 5.2 and 5.3 are

unique to our model. Nevertheless, the benefits presented in Sections 5.1 and 5.4 can also be

(partially) achieved under a few other memory models (e.g. Location Consistency and the Java

Memory Model). Note that our listed benefits below may not be complete. However, they
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should help architects, compiler writers, and application developers to understand the features

of the OFC model and explore them fully.

5.1 Causal ordering increases parallelism

The causal ordering property avoids unnecessary reorder restrictions, and thus brings more

parallelism. More precisely the benefits are gained from the following two aspects.

• Relax data dependence restrictions: The causal ordering only requires that a store

which causes a load is performed earlier than the load. As we showed in Section 2.1,

the flow-, anti- and output-dependences are not always necessary to restrict instruction

orders. And it is clear that the OFC operational model does not restrict any order in

instruction issuing and transmission.

• Relax synchronization restrictions: Causal ordering does not require the instructions

to be waiting for synchronizations. Thus instructions can be freely issued and transmitted

without the restriction of synchronization operations.

5.2 Non-speculation based lock-free mutual exclusion

In the OFC model we implement the semantic of exclusive accesses without using lock, which

gains benefits in the following aspects.

• As it is pointed out in [9], common problems associated with conventional locking tech-

niques, such as priority inversion, convoying and deadlock, are avoided.

• Exclusive accesses can be performed concurrently if it guarantees that the result looks as

if the accesses are performed exclusively. Thus more parallelisms are gained.

• As it is shown in Section 3.3, we achieve exclusion without speculation (as proposed in

many implementations of Transactional Memory) hence avoiding the speculation over-

head.

5.3 Ability to explore the bandwidth provided by multi-channel networks

As pointed out by experts in the field, fiber will displace copper sooner than you think. Using

optical fiber technology at short distances as the main technology for inter-chip connection has

already been recognized as an inevitable trend. Most recently, important research activities

are underway to investigate the transition from copper to fiber on a single chip. Although the

production level solution of the latter is still several years away, it is a very promising path to

meet the demand on on-chip bandwidth up to a terabyte per second or beyond - projected for

future generation of many-core/multi-core chip architectures.
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An important feature of optical technology based interconnection networks is the capability

to provide multi channels on each communication path - due to wavelength division multiplex-

ing. This will provide ample opportunities to explore the OFC model since instructions issued

from a processor toward a memory module can take any channel based on the traffic situation.

5.4 Opening up new opportunities for compiler / runtime optimizations

It is clear that OFC model has opened up new opportunities for compiler optimizations. A

number of such opportunities are briefly listed below - although a detailed study is beyond the

scope of this paper.

Portability of some uniprocessor compiler optimizations

One important challenge is how to ensure simple portability of many existing uniprocessor

compiler optimization when moving to a multiprocessor (and multi-core) environment. Many

such existing instruction reordering optimizations and their derivations cannot be simply en-

abled under the sequential consistency model or some of its derivations. The readers are referred

to some excellent examples documented in [13].

For example, under the OFC model, if compiler reschedules instruction without violating

uniprocessor data dependence the result code should be obviously correct during the execution

under a multiprocessor (or multi-core) environment.

New opportunities for compiler-steered adaptive runtime reordering

As we described earlier, OFC model has eliminated the uniprocessor reordering constraints

due to uniprocessor data dependence. In other word, instructions from a processor can be issued

free of such constraints and the architecture model ensures correct results at the memory side.

It is possible during a phase of execution of some application the memory side may become

a bottleneck. We can imagine that compiler may perform static analysis and classify and

label certain instructions so their issuing from a processor should subject to the runtime load

situation. If memory side becomes congested - such annotated instruction can be delayed until

the situation improve.

6 Related Work

In this section, we discuss the related work. We list representative memory models which are

relevant to the OFC model. Then, we discuss them by the comparison with the OFC model.

Such memory models include: Gharachorloo et al. the Release Consistency (RC) [8], Keleher

et al. the Lazy Release Consistency (LRC) [11], Bershad et al. the Entry Consistency (EC) [2],

Gao et al. the Local Consistency (LC) [6], Shen et al. the Commit-Reconcile & Fences (CRF)

model [17], Manson et al. the Java memory model [13] and Saraswat et al. the Relaxed Atomic

+ Ordering (RAO) model [16].
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• The SC-derived models: [7] defines SC-derived models as the memory models which

assume memory coherence. Memory coherence can be stated as follows [8]: all writes to

the same location are serialized in some order and are performed in that order with respect

to any processor. As the definition, RC, LRC and EC are included. The fundamental

difference between the SC-derived models and the OFC model is that the former assumes

memory coherence but the latter not.

• The LC model: The distinguishing property of LC model is that it does not rely on

coherence, thus dispensing the need for cache snooping and directories in a multiprocessor

implementation. [16] Like LC, the OFC model do not relay on the coherence assumption.

However LC model assumes that “all uniprocessor control and data dependences are

satisfied.” [6, 7] So the LC model introduces more reordering restrictions than the OFC

model.

• The CRF model: The CRF model exposes a notion of semantic cache (sache), and

decomposes load and store instructions into two finer-grain operations [17], which can

freely control the moment for writing back a value from sache to the memory or purging

a stale value in the sache. However as it is said in the conclusion of [17], “instruction

reordering is constrained only by data dependences and memory fences.” Thus the CRF

model introduces more reordering restrictions than the OFC model.

• The Java memory model: The Java memory model well defines a notion of causal-

ity which “is strong enough to respect the safety and security properties of Java and

weak enough to allow standard compiler and hardware optimizations.” [13] However as

we discussed in Section 2.1 the Java memory model violates the monotonicity property.

Moreover as it is pointed out in [16]: “In contrast, the methodological stance of [13] is

that a trace must be given beforehand; the memory model is then specified in terms of

which traces are correct.” Thus it is hard to know how a real parallel machine can execute

a program under the specification of the Java memory model.

• the RAO model: The RAO model can be considered as an improvement of the Java

memory model since “RAO is generative, given a source program it generates all possible

sequences of executions.” [16] However as we discussed in Section 2.1 the RAO model also

violates the monotonicity property. Moreover we feel that “generative” cannot explain

how a real parallel machine works under the specification of the RAO model.

7 Conclusion and Future Work

In this paper we have proposed a novel memory model which is truly asynchronous in the

following ways:

• Memory operations can be issued freely from the processors without being blocked by any

memory-based data dependence.
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• The memory transmissions can travel through the interconnection network freely without

worrying that they may arrive at the destination out of order.

Moreover, this paper presents four desired properties of memory models (i.e. causal ordering,

monotonicity, equivalence and non-intrusive reads). All of these were explained and applied to

our memory model, by a series of examples and explanations. In this way, we show that our

model displays all four desired properties.

Furthermore, we defined an operation model (hence construct an abstract machine) that

can fully explore the above features during program execution. We argued that our memory

model satisfies the new generation of multi-core chip architectures and takes the advantage of

the optical inter-chip and photonics intra-chip technologies on the interconnection networks.

Besides this, it also allows the exploitation of many reordering opportunities that were hidden

before thanks to unnecessary constrains due to data dependences.

As the abstract machine model has been defined, an implementation of our memory model

cannot be far behind. This implementation is far out of the scope of this paper, but it is the

logical next step. We are planning to use a simulator to test the memory model. Current

plans points to using a simulator for the Cyclops-64 cellular architecture, which is introduced

in [19, 3]. This architecture is characterized by having 160 thread units, around 4.7 Megabytes

of on chip SRAM and a high bandwidth crossbar interconnect. After that the optical inter-chip

and photonics intra-chip interconnections will be used in the simulation.

Thanks to this implementation, we can test selected benchmarks and how this memory

models, measures against the canonical SC-derived memory models.
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