University of Delaware
(11) Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

Performance Tuning of the Fast Fourier Transform on a
Multi-core Architecture

Liping Xue Long Chen Ziang Hu Guang R. Gao,

CAPSL Technical Memo 81
Feburary 8th, 2008

Copyright (© 2008 CAPSL at the University of Delaware

Email: {xue,lochen,hu,ggao}@capsl.udel.edu

University of Delaware e 140 Evans Hall @ Newark, Delaware 19716 ¢ USA
http://www.capsl.udel.edu e ftp://ftp.capsl.udel.edu e capsladm@capsl.udel.edu

Abstract

We are now entering the multi-core era, many multi-core €laieg designed and manufactured
by various vendors, such as Intel, AMD and Sun etc. IBM Cysi6g(C64) is a multi-core archi-
tecture that provides massive on-chip parallelism, massivchip bandwidth, and multiple level
memory hierarchy. This type of multi-core architecturesems big challenges to application devel-
opers and system software designers on how to exploit teadhevel parallelism(TLP) provided
by the multi-core chips.

While a lot of researchers believe that multi-core architexwill become the mainstream in the
future, there are only a few studies about the applicatio@ldpment on those advanced architec-
tures have been reported .

The emerging multi-core architectures not only unveil apyaties of massive on-chip paral-
lelism through hardware support, but also present gredieciyes to application developers and
system software designers. In this paper, we report ourriqme of optimizing the Fast Fourier
Transform (FFT) on the IBM Cyclops-64 (C64) architecturenoael multi-core architecture con-
sisting of 160 threads, an explicit memory hierarchy, andrchip interconnection network.

C64 does not have data cache and thus a simple porting of @-cédiious algorithm may
not be able to take advantage of its architecture featunesddition, current implementations of the
cache-oblivious method are entirely based on cache-mehiergrchy that does not lend itself to the
construction of an accurate performance model for C64 lig&grms, which involve explicit data
movement in the explicit memory hierarchy. Therefore, tdkena cache-oblivious FFT working
efficiently on such architecture is probably non-trivial.

The work presented in this paper takes a different path. Vge gitresent an iterative search
approach to find the optimal sequence of kernel function®topuite the FFT. This approach also
constructs an accurate/deterministic performance maud/tically. Then, the model is used to
calculate the performance of different FFT computatioruseges iteratively. Such performance
numbers will be productively used by our search based optitioin procedure.

We then propose a new technique for optimizing the scratthpamory (SPM) space utiliza-
tion. This technique fully exploits the opportunity progi by the explicitly-addressable on-chip
memory hierarchy. It can judiciously explore life-rangditpg methods and achieve a significant
performance gain, which is evidenced by our experiment® eéXperimental results have demon-
strated up t®5.5% performance improvement over a previous efficient FFT immgletation on
C64.

1 Introduction

Microprocessor chip architecture has been turning to the multi-core erg, malti-core architectures
have been proposed by various vendors, such as Intel, AMD, 8uri l@s type of architecture presents
great challenges to application developers and system software dssignieow to exploit the thread
level parallelism (TLP), and other architectural features provided &setimovel chips. However, in the
literature, there are only a few studies about the application developmenosm advanced architec-
tures.

In this paper, we report our study on tuning of the Fast Fourier ToamsfFFT) on the IBM Cyclops-
64 (C64) multi-core architecture. The C64 chip, the experiment platfoed irs our study, features
massive on-chip parallelism, and massive on-chip bandwidth. One intgréssdituire of this architecture

is that it does not have data cache. It brings a great challenge to tinasofdevelopment on C64,
together with the existence of the explicit memory hierarchy.

Long et al. [1] reported their study on implementing and optimizing the FFT on &y first
definedwork unitas “an arbitrarily defined piece of the work that is the smallest unit of coecay
that the parallel program can exploit”. Then, based on experimentaltsethey found the optimal
work units for computing the FFT on the C64 architecture. Finally, kerrmsdtians were developed
and optimized for these optimal work units, and a sequence of kerndldoaavas statically specified
for all problem sizes. However, as we show in this paper, for somdgosizes, these “optimal” work
units and the sequence used in [1] are not optimal, in terms of the perfoemanc

Since C64 does not have data cache, a simple porting of the cache-abllgorithm, i.e., FFTW
[2], may not be able to take advantage of its architecture features. itoagddurrent implementations
of the cache-oblivious method are entirely based on cache-memorydhigritiat does not lend itself
to the construction of an accurate performance model, which is critical iretfiermance optimization
involving data movement through a C64-like explicit memory hierarchy. Toereto make a cache-
oblivious FFT implementation working efficiently on this architecture is probably-trivial.

In this paper, we first present an iterative search approach to firgptimeal sequence of FFT kernel
functions for different problem sizes. Furthermore, our approagtytically constructs an accurate
and deterministic performance model, which is used to compute the perforsnaheesequence of
kernel functions iteratively. Such performance numbers will be prineklg used by our search based
optimization procedure. We then propose a new technique to take advaritémgeexplicit memory
hierarchy. This technique exploits the opportunity provided by the C6dc@paddressable on-chip
memory hierarchy. By using this technique, we could further refine thelsegproach and achieve
a significant performance gain. We verify all our proposed methodsimvialation experiments. The
experimental results have demonstrated up to 25.5% performance imprdavaraefi].

The rest of this paper is organized as follows. In Section 2, we giveefibtroduction of FFT. In
Section 3, we present the C64 architecture and its major features. InrSéctie present our search
scheme to find the optimal sequence of kernel functions. Then we peetsshnique to utilize the fast
memory segment to further optimize the FFT. In Section 5, we present sorfiedirienents on recent
literature that is closely related to the problem addressed in this paper, &esdtion 6, we conclude
the paper with some open-ended issues to be addressed.

2 Fast Fourier Transform

The FFT algorithm is an efficient algorithm to compute the discrete Fouriesfoian (DFT) and its
inverse. FFT has been widely used in many areas, including digital sigmadgsing, image processing
and other domains.

While there are many variants of FFT algorithms, the most common one is the €adtey algo-
rithm [3]. This algorithm recursively breaks down a DFT of si¥anto two smaller DFTs of sizéV1
andN2, respectively, wher&/ = N1x N2. The most well-known use of Cooley-Tukey algorithmis the

radix-2 Cooley-Tukey algorithm, i.ey1 = N2 = N/2. Let us consider th&/ = 2! point DFT,z(n),
the radix-2 algorithm divides th&/-point data sequences into twd/2-point data sequenceg]l(n)
and f2(n), corresponding to the even-indexed and odd-indexed point$rof respectively. Then the
N-point DFT X (k) can be computed as,

N
X(k) = Fi(k)+wkFa(k), 0<k<—1
N N

X(k+) = Fi(k) ~ohFk), 0<k<F -1

wherew?; aretwiddle factors F'1(k) and F2(k) are theN/2-point DFT of f1(n) and f2(n), respec-
tively. F'1(k) andF'2(k) can be computed recursively to obtain the final solution of the original@nob
The complexity of this algorithm i®(Nlog,N). The above computation is usually referred to as the
Cooley-Tukey butterfly operatipwhich is shown in Figure 1. Although the basic idea of the Cooley-

+1 '
T T+ wyy

k
y x—why

Figure 1: Radix-2 Cooley-Tukey Butterfly Operation

Tukey algorithm is recursive, many practical implementations use an iteatjeeithm to avoid the
recursion overhead. For the iterative algorithm, the input data need &oldered before the butterfly
computation, which ibit-reversal permutationOur implementation in this paper is an iterative one as
well.

3 Cyclops-64 Architecture

Node

Processor 1 2 80 Chip

ethernet

~ Host || .
interface FPGA

Control
Crossbar Network network

r 1
GM || GM GM || GM GM || GM | =l
DDR2 SDRAM Off-chip
controller memory

Figure 2: C64 Chip Architecture

The C64 chip, shown in Figure 2, is designed to be the computation engirfeetéiop supercom-
puter system. Such system consists of thousands of C64 chips thahaectad through a 3-D mesh

network. The C64 chip favors massive parallelism by integraging4-bit processors] 60 embedded
SRAM banks and an interconnection network in one silicon chip. HEdebit processor includeg
thread units (TUs) and floating point unit (FPU). Each thread unit is a single-issue, in-ordSCRI
processor running at 500MHz clock rate. The interconnection netis@i on-chip pipelined crossbar
network with huge number of port8q x 96), which can provide 4GB/s bandwidth per port.

The C64 memory hierarchy consists of three level memories, the scratt®Pachemory, on-chip
global interleaved memory (GM), and off-chip DRAM. C64 does not hdata cache. Instead the
SRAM memory are partitioned into two parts: scratchpad memory (SPM) andEabh thread unit
has its own SPM, which is the fast local memory of the corresponding tlur@adrhe GM is shared by
all thread units on the chip with uniform access latency.

4 Optimizations and Discussions

In this section, we first review the previous FFT implementation on C64 [llenThe present our
experiences of tuning FFT on C64 architecture. All experiments areucted on the FAST simulator
[4], which is a functionally-accurate simulator that is employed for softvdereslopment and testing
before the real chip becomes available. It models the memory hierarch§do&iChitecture, including
the latencies and bandwidth for each memory segment. The input data &le-goecision complex
numbers and can fit into the on-chip GM. The twiddle factors are precochpuie stored in GM as
well.

4.1 PreviousImplementation

In a previous work on optimizing the FFT on C64 [1], the authors defineddtien of work unit, and
they found the8-point work unit was the optimal work unit for computing the FFT on C64, i.e, th
atomic execution unit of each thread &apoints, which implies &-stage butterfly computation. For
each work unit, they implemented and optimizekleanel functionthat carries out the above butterfly
computation. Table 1 summarizes the kernel functions implemented in [1] andi#seiriptions. One

Kernel Index | Kernel Name | Description
1 r2vl 2-point work unit, 1 stage computation, working on 1 groutada
2 r2v2 2-point work unit, 1 stage computation, working on 2 grougtad
3 r2va 2-point work unit, 1 stage computation, working on 4 grouatad
4 r2v8 2-point work unit, 1 stage computation, working on 8 grouatad
5 rdvl 4-point work unit, 2 stages computation, working on 1 groatad
6 rdv2 4-point work unit, 2 stages computation, working on 2 groatad
7 rgvi 8-point work unit, 3 stages computation, working on 1 groatad
9 r16vil-first 16-point work unit, 4 stages computation, working on 1 grdafa

Table 1: Kernel Functions and Their Descriptions

may notice that, in Table 1, for a givénpoint work unit, there may be more than one kernel function.

iv

For example, for th@-point work unit, it was implemented with four different kernel functiorsmely,
r2vl, r2v2, r2v4, andr2v8, respectively. The basic ongvl, is the implementation of the Cooley-
Tukey butterfly operationr2v2, r2v4 andr2v8 are considered as vector versiong@¥1, which work
on 2, 4 and8 groups of2-point data, respectively. Similarly, for thiepoint work unit, there are two
different kernel functions, namely4dvl andrdv2, respectively. r16v1-firstis a specially optimized
kernel function to compute the firgtbutterfly stages of the FFT, working d6 points at one time.

Having the above kernel functions, a scheme for computing the FFT wasged. Givem-point
data (gon stages), for the first 4 stagedpv1-firstis applied. For the remainindgon — 4) stagesyr8v1
is repeated applied. If there is one or two last stage(s)r&¥8 or r4v2 will be used, respectively, to
reduce the number of branch instructions, All work units are assignedgailthreads in a round-robin
way to achieve load balance. Overall, the sequence of kernel funcisauswas statically fixed.

4.2 The Effect of Number of Threads

[1] showed that linear speedup can be obtained®fériD FFT when the number of running threads

is increasing. Can we always get more speedup if we use more threads@nwvthe 1D FFT code
mentioned in [1] with different input size and different number of thread&e result in Figure 3
shows the scalability for n-point FFT on C64. The results indicate that, Bgihen n-point data,

the best performance can be obtained by running with an optimal numbereatigp. When the n-

point FFT is running with less thgmthreads, the more threads are used, the better performance can be
achieved. The performance starts to degrade when running with morg theeads due to the increase

of synchronization overhead. We also find out that, this optimal numbereddisp is proportional to

the size of input data. The larger size of the input data, the more threadeeded. This result also

160 r

ce

— = =
S D &
S S oS

®
S

Perform:
j=2}
o

'
o

[~
S

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Number of Threads

——dim 4 —®—din 5 dim 6 dim 7 —*—dim 8
—®—dim 9 —+—dim_10 dim_11 dim_12 —%—dim_13
—T—dim 14 ~——dim 15 —>—dim 16 —*—Ideal

Figure 3: Scalability of 1D FFT on C64

brings a new challenge for tuning applications on multi-core architectures\p@red to a single core
architecture, the tuning procedure needs to determine the optimal numbesaxish

\'%

4.3 Search-based Scheme

The computing scheme proposed in [1] uses a fixed sequence for @lgmrsize. It is very simple.
But, is it really optimal for the C64 architecture? In order to answer thistmueswe design and
implement an iterative search-based scheme.

In the rest of this paper, we use the same definitiowark unit Additionally, we defineplan as
a sequence of kernel functions used to perform a givgoint FFT computation. For example, for a
4-point FFT,rdvlandr2vl + r2vlare two possible plans. A barrier is needed after each kernel function
call to synchronize concurrent threads.

This idea of this search scheme can be described as followd: (Letlenote the minimum number
of cycles to finish the stages computation. For a givermpoint FFT withm stages computatiom{ =
lgon), our goal is to find a plan to complete thesestages computation with the minimum number of
cyclesF(m), which can be calculated according to the following equation,

F(m) = min{F(m — S(k))+T(k)}, k€ Z (1)

whereZ is the set of all kernel functions in Table (k) denotes the total number of cycles of running
the kernel functiork, plus a barrier on the given n-point dat k) denotes the number of computation
stages of the kernel functioh Dynamic programming is used to calculdf¢m). Suppose is the
optimal plan for am stages computation, and the last kernel function usedisk. Since kernel
function k& can finishS(k) stages computation, the minimum number of cycles to finish the previous
(m—S(k)) stages computation i8(m — S(k)). If pis the optimal plan forn stages computation, then
the subplan’ of p should be the optimal plan to compute previdus— S(k)) stages.

The search-based approach is presented as a two step algorithm,

Step 1: givem-point data, run each kernel functiénn Table 1 plus a barrier with an empirically
optimal number of threads to gé{ k). ComputeS(k) for each kernel function.

Step 2: run the search algorithm to search the plan. A data strugast®lanis used to store the
optimal plan. BestPIdi denotes the optimal plan for the firsstages computationzurr stores the
current local minimum number of cycles to accompligtages computation. The initial value @frr
is set to the maximum integer. The pseudocode of this search algorithm ia ghalgorithm 1.

Table 2 shows the results generated by using the above algorithm. Theofursin is the input
size. An input with dimension has2? point data. The second column shows the optimal number of
threads used for computing the FFT of this specific input size, which isrdieted empirically. In our
search algorithm, we first fix the number of threads for the specific inpeit and then search different
plans running with optimagb threads. The third column shows the plan described in [1], which is called
the base plan The last column iglan I, which is obtained by using this search algorithm, where the
differences between the base plan and this plan are in bold. Comparinbaldnhe base plan shown
in Table 2, one observation is that Plan | favo2s4 overr2v8. Intuitively, we consider that2v4 is
better tharr2v8. But why r2v4 is better tharr2v8? In order to answer this question, we introduce a
value,avc_pb which means average cycles per butterfly, to evaluate the efficiencyraflkanctions.

Vi

Algorithm 1 Search(m, Z)
1: F(0)=0
2: for i=1tomdo
3: for each kernek in Z do

4: curr = MaxInt
5: if (i —S(k) > 0) then
6: if (F(i—S(k))+ T (k) < curr) then
7: curr = F(i — S(k)) + T (k)
8: updateBest Plan|i
9: end if
10: end if
11: end for
12: end for
Dim | #of Threads | Base Plan Plan |
4 8 ri6vl-first ri6vl-first
5 8 r16v1-first+r2v8 r4vl+r8vl
6 16 ri6vil-first+rdv2 r8vi+r8vl
7 16 ri6vi-first+r8vl ri6vil-first+r8vl
8 32 ri6vil-first+r8vi+r2v8 r16vil-first# 4v2+r4v2
9 64 r16vil-first+r8vi+rdv2 r16vl-first+r8vi+rdv2
10 128 r16v1-first+r8vi+r8vl r16v1-first+r8vli+r8vl
11 128 ri6vil-first+r8v1+r8v1+r2v8 ri6vil-first+r8v1+r8vi#+2v4
12 138 ri6vil-first+r8v1+r8vi+rdv2 ri6vil-first+r8v1+r8vi+rdv2
13 138 ri6vil-first+r8v1+r8vi+r8vl r16vil-first+r8v1+r8vi+r8vl
14 138 r16vil-first+r8v1+r8v1+r8v1+r2v8 r16vl-first+r8v1+r8v1+r8vir2v4
15 138 r16vl-first+r8v1+r8v1+r8v1+rdv2 r16vl-first+r8v1+r8v1+r8vi+r4dv?2
16 138 r16v1-first+r8vl+r8v1+r8v1+r8vl r16vl-first+r8v1+r8v1+r8v1+r8vl

Table 2: Plan Comparison

The smaller thewwe_pb, the higher the efficiency of the kernel function. Figure 4 shawspb of
different kernel functions. The kernel function “r16-first” has thevestavc_pb value, which implies
highest efficiency. Besides that, “r8v1” has the second lowestpb value. Therefore, for the input
n-point data FFT, ifgon — 4 can be divided exactly by 3, the scheme proposed in [1] can achieve the
best performance. However|ifon — 4 cannot be divided exactly by 3, the scheme proposed in [1] used
a kernel function for 2-point work unit or 4-point work unit for the idsor 2 stages respectively. In
order to reduce the number of branch instructions, that scheme chimossel kernel function2v8 and
rdv2. Although the number of branch instructions can be reduced by using tiveskernel functions
mentioned above, that scheme cannot achieve the best performasoen®input sizes.

Figure 5 shows the performance comparison between the base plan aridbRith running with
the number of threads specified in Table 2. From the figure, we obsawththperformance of Plan
| is always not worse than that of the base plan. For small input sizes,| Bks distinct speedup up
to 25.5% over the base plan. The significant performance difference betwesa tvo plans are due
to the different kernel functions chosen by these two plans. For exaalieughrl6vl-firstis very

Vii

90
80 [|
2
B O |
=
B 60l
5 -
o SO [l
[S)
& 08--I oy Bl
[
& 30f--1 |- [bt e
g
8 20F--1 |- |- |-- - .- EEE | EEpE R
0 < N < ® - N — b7 — —
> > S S > > > o > >
N N N N < < (o] L= © N
N N N S) N} ® P T
© . "]
o
Figure 4: Kernel Evaluation
30% T T T
&
a 25% |- R ,——— LY
()
(2]
B 200 oo o
o)
G LB b
o
S 10% -]
(]
(0]
o
Soel MU H ,,
O% 1 1 1 1 [_1 1 1 H L 1
< WO O M~ 0 OO O 4 N M <SS 10 ©
El EI El EI El EI HI HI HI HI r|I HI HI
55 5 5955 £ EEEEEE
T T T T T T ©T

Figure 5: Search the Best Plans

efficient and is chosen as the optimal plan (in Plan 1) for the input2izié does not necessarily mean
that it should be a natural choice for other input sizes. In fact, we atalie efficiency of different
kernel functions used in the experiment and find that the order of effigief those kernel functions

is r16vi-first> r8vl > rd4vl > r2v8. Therefore, it is possible that we can obtain a better performance
by searching different combinations of kernel functions, for exangiel+r8vl versusrl6vl+r2v8

for the input size2®. This performance difference also shows that the fixed plan propogéis not
optimal (for some problem sizes) and illustrates the importance of the sgawobagh. On the other
hand, for the large input sizes, there is no much difference between tthegplans. For example, for
input size ¢! and2'4), the Plan | has only arour2¥; speedup over the base plan.

viii

4.4 Exploration of Larger Work Units

Generally speaking, the performance of a parallel program is deterrbynesdo factors: the compu-
tation time and the synchronization overhead. In our case, the computation tile&isined by the
efficiency of kernel functions used in the plan. The synchronizatiarh®ad is determined by the
number of barriers in the plan. For example, fo2'a point FFT, as shown in Table 2, it neetls
stages computation, addarriers. In [1], a specialized kernel functiokbv1-firstwas used for the first

[0]1]2] 13]

2-P FFT

2-P FFT

2-P FFT

& i 116 Points|
2-PFFT GM

2-P FFT

116 Points
GM

2-P FFT

2-P FFT

Figure 6: Optimize Kernel for 16-point Working Unit

4 stages computation. The authors also claimed that a general kernibrfiuioe 16-point work unit
is not good for C64 because the number of registers needed exceedsxtimum available registers,
which incurs performance degradation.

After carefully considering the architectural features, however, énfpmance of the general kernel
function for 16-point work unit can be improved by using SPM, which is the fast memory #h\@iéh
very low latency, i.e.2 cycles for load and 1 cycle for store. Figure 6 illustrates this idea: (1)pgtioe
16-point into two groups oB-point data; for each group, read tRgoint data from SRAM, perform
the 3-stage computation on thepoint data and store the intermediate results back to the SPM; (2)
regroup thel6-point into eight groups of-point data; for each group, load tBepoint data from SPM,
perform1-stage computation and store the results back to SRAM. We call this optimizedagjkarnel
functionrl6vl By using this new kernel function, we get a new platg-first + rl6v1l + r8vl, for
211 point FFT, and one barrier can be eliminated. Experimental results sloawdir% performance
improvement compared with the Plan | in Table 2, when running with 128 threads

[0]1]2] 13141

4-P FFT

4-P FFT

4-P FFT

— PR 52 Points
4-PFFT GM

4-P FFT

32 Points
GM

4-P FFT

4-P FFT

Figure 7: Optimize Kernel for 32-point Working Unit
Inspired by the above result, we decide to explore an even l8&3point work unit. Similar op-

iX

timizations used forl6vl1are applied again for thi32-point work unit. Figure 7 illustrates this idea:

(1) group the32-point data into four groups &-point data; for each group, read t&goint data from
SRAM, perform the3-stage computation on ttgepoint data and store the intermediate results back to
the SPM; (2) regroup th&2-point into eight groups od-point data; for each group, load thepoint

data from SPM, perform2-stage computation and store the results back to SRAM. We call this kernel
functionr32vl

By storing the intermediate results into SPM, long live-ranges of variabkesait into smaller
live-ranges and thus interferences among the original long live-saaigereduced. This optimization
can reduce the register pressure. The overhead of memory load emthstouctions introduced by this
live-range splitting is small since those memory operations are performe@Mn &fast storage with
low access latency.

Since now we have two more kernel functions, irégvl and r32vlwe run the search algorithm
described in Section 4.3 again. Table 3 shows the searching resultsrsilwliimn is the input size.
The second column shows the optimal number of threads for this specificsizeu The third column
and the fourth column show the plans without and with the new kernel fursctr@spectively. The
differences between two plans are in bold. Furthermore, Figure 8 ghevepeedup of both Plan | and

Dim | #of Threads | Plan | Plan 11
4 8 ri6vi-first ri6vi-first
5 8 r4av1+r8vl rdav1+r8vl
6 16 r8v1+r8vil r8v1+r8vil
7 16 r16v1-first+r8vl r16v1-first+r8vl
8 32 ri6vil-first+rdv2+rdv2 ri6vil-first+rdv2+rdv2
9 64 r16v1-first+r8vl+rdv2 r16vl-first+r8vi+rdv2
10 128 r16vil-first+r8v1+r8vil ri6vil-first+r8vi+r8vl
11 128 ri6vil-first+r8v1+r8vl+r2v4 ri6vil-first# 16v1+r8vl
12 138 r16v1-first+r8vl+r8vl+r4v2 r16v1-first# 32v1+r8vl
13 138 ri6vil-first+r8v1+r8v1+r8vil ri6vil-first# 32vl+r16vl
14 138 r16vil-first+r8v1+r8v1+r8vi+r2v4 rl16vl-first# 16v1+r8v1+r8vl
15 138 r16vil-first+r8v1+r8v1+r8vi+rdv2 r16vl-first# 32v1+r8v1+r8vl
16 138 r16vil-first+r8v1+r8v1+r8v1+r8vl rl6vl-first# 32v1+r32vi+r2v4

Table 3: Plan Comparison with Kernel Function of 16-point and 32-poimtidAJnit

Plan Il over the base plan. The results show that, for the small input $emssthare?), there is no
much difference between Plan | and Plan Il. For the large sizes, Plas lalbetter performance than
that of Plan I. Since the overhead of barrier is proportional to the nuwoifttbreads and the empirical
optimal number of running threads for the small input sizes is much smaller thafotHarge input
sizes. Therefore, for the small input sizes, barrier overhead isuwalatmall and thus reducing a
barrier cannot achieve much performance gain. While for the larget sipe, barrier overhead is
higher because more threads are used and thus reducing a barré@hgare much performance gain.
As shown in Figure 8, for the input size equal or larger tA&n Plan 1l has a distinct speedup over the
base plan, especially for the input siZé and2', which has around 12% and 8% speedup respectively.
We achieved 21.5 GFLOPS for the input siZé.

30% T T T T

P2 e 1 |

B Plan|
M Planll
PO EREERRERE | R

1506w [

Speedup over Base Plan

10%

5%

0%

dim 4 dim 5 dim 6 dim 7 dim 8 dim 9 dim 10dim 11dim 12dim 13dim 14dim 15dim 16

Figure 8: Search The Best Plans with Kernel Function for 16-poinB82aploint work unit

5 Reated Works

FFT has been extensively studied and implemented in various machines. rétmayches have been
done to address the distributed memory FFT implementations on the hyperchibecure [5,6]. Other
parallel FFT implementation on arrays [7] and mesh architecture [8] hawdaémn investigated. There
are also some researches have been conducted in the shared memanplefTentation [9]. The im-
portance to consider the memory hierarchy to implement FFT effectivelydeasdiscussed in [10]. [11]
also shows how to implement FFT efficiently by using local memory on CRAY#& dataflow-based
multithreaded FFT [12] are implemented in EARTH [13], a fine-grained datadlchitecture. Besides
that, there are several researches have been done to automaticallytienktgl on different architec-
tures. FFTW [2] planner generates various plans on the specific arfcinéeand measures the actual
run time of many different plans to select the fastest one. FFTW usesnilypaogramming to search
the best plan from many different plans. SPIRAL [14] uses a specigliage SPL to represent the FFT
problem as formulas. SPIRAL includes both algorithm level and implementatieh dgtimizations.
At algorithm level, SPIRAL applies rules on the formulas to generate the optiniicenulas. At im-
plementation level, SPIRAL translates the optimized formulas into C code, whicitief compiled
using a standard C compiler and then measures the actual runtime. FFTV8[3rhplements a multi-
threading DFT implementation to support the parallel FFT computation. Recd@]yresents a FFT
implementation for shared memory, especially for the SMP and multi-core.

6 Conclusion

In this paper, we have presented an iterative search scheme to seaelstplan for the FFT computa-
tion on the C64 multi-core architecture. The experiment results demonstrateeh@an derived from
the search-based approach outperforms the fixed approach im[agidition, a technique to optimize
the large kernel functions by using SPM to achieve better performarscledesm discussed. This study
is a good example of how to use SPM to optimize applications on C64.

Our study shows that application development for multi-core architectuee€6K is not easy: both

Xi

the architecture features and application/algorithm properties have tadiesgninto account. This also
poses more challenges for multi-core system software, especially footgiler and code generator.

There are several researches can be done in the future. For exdowléo utilize the SPM to
optimize other applications. Automated FFT code generator for multi-coréexrttires with explicit
memory hierarchy is also a very interesting topic. Besides that, we can alsdisédarger FFT problem
which can not fit in on-chip memories.

Acknowledgments

We would like to acknowledge the support from IBM, in particular, MontynBeau, who is the architect
of the IBM Cyclops-64 architecture, ETI, the Department of Defense Dapartment of Energy, the
National Science Foundation, and other government sponsors. Bpaais to Michael Merrill for his
initial FFT implementation. We would also like to acknowledge other members of tiRSCAyroup at
University of Delaware, in particular Weirong Zhu, Guangmin Tan andk®hvang.

References

[1] Chen, L., Hu, Z., Lin, J., Gao, G.R.: Optimizing the fast fourier transf@n a multi-core archi-
tecture. In: Workshop on Performance Optimization for High-Level lLexggs and Libraries in
the 21st IEEE International Parallel and Distributed Processing SympddRDPS 2007), Long
Beach, CA, USA (2007)

[2] Frigo, M., Johnson, S.G.: FFTW: An adaptive software architeduréne FFT. In: Proc. IEEE
Intl. Conf. on Acoustics, Speech, and Signal Processing. Volume attl&eWA (1998) 1381-
1384

[3] J.W.Colley, J.W.Tukey: An algorithm for the machine calculation of comptexiér series. In:
Math.Comput. Volume 4. (1965) 297-301

[4] del Cuvillo, J., Zhu, W., Hu, Z., Gao, G.R.: FAST: A functionally acderaimulation toolset
for the Cyclops64 cellular architecture. In: Workshop on Modeling,ddemarking, and Simu-
lation (MoBS2005), in conjuction with the 32nd Annual International Sympuson Computer
Architecture (ISCA2005), Madison, Wisconsin (2005)

[5] S.L.Johnsson, Krawitz, R.: Cooley-tukey FFT on the connection meachin Parallel Computing.
Volume 18. (1992) 1201-1221

[6] D.M.S.L.Johnsson, Krawitz, R., R.Frye: Aradix 2 FFT on the connectiachine. In: Proceeding
of Supercomputing 89. (1989) 809-819

[7] Johnsson, S., D.Cohen: Computational arrays for the discretefdransform. (1981)

Xii

[8] Singh, V., V.Kumar, G.Agha, C.Tomlinson: Scalability of parallel sortingnoesh multicomput-
ers. In: International Parallel Processing Symposium. (1991) 92-101

[9] Swarztrauber, P.: Multiprocessor FFTs. In: Parallel Computinturive 5. (1987) 197-210

[10] Bailey, D.: FFTs in external or hierarchical memory. In: Procegsliof the Supercomputing 89.
(1989) 234242

[11] D.A.Carlson: Using local memory to boost the performance of fft@lyms on the cray-2 super-
computer. In: J.Supercomput. Volume 4. (1990) 345-356

[12] P.Thulasiraman, Theobald, K., A.A.Khokhar, Gao, G.: Multithreadigdrahms for the fast
fourier transform. In: ACM Symposium on Parallel Algorithms and Architeetu (2000) 176—
185

[13] K.B.Thepbald: EARTH: An efficient architecture for running thdealn: PhD thesis. (1999)

[14] Puaschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Sing#f, RBiong, J., Franchetti,
F., G&ic, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.: SPIRALdE€generation for
DSP transforms. Proceedings of the IEEE, special issue on “Pro@emaration, Optimization,
and Adaptation’93(2) (2005) 232-275

[15] Frigo, M., Johnson, S.G.: The design and implementation of FFTW®Rrwceedings of the IEEE
93. Volume 2. (2005) 216-231

[16] Franz Franchetti, Yevgen Voronenko, M.P.: FFT program gaiwr for shared memory: SMP
and Multicore. In: Proc. Supercomputing (SC). (2006)

Xiii

