
University of Delaware
Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

Performance Tuning of the Fast Fourier Transform on a

Multi-core Architecture

Liping Xue Long Chen Ziang Hu Guang R. Gao,

CAPSL Technical Memo 81

Feburary 8th, 2008

Copyright c© 2008 CAPSL at the University of Delaware

Email: {xue,lochen,hu,ggao}@capsl.udel.edu

University of Delaware • 140 Evans Hall •Newark, Delaware 19716 • USA

http://www.capsl.udel.edu • ftp://ftp.capsl.udel.edu • capsladm@capsl.udel.edu

Abstract

We are now entering the multi-core era, many multi-core chips are designed and manufactured
by various vendors, such as Intel, AMD and Sun etc. IBM Cyclops-64(C64) is a multi-core archi-
tecture that provides massive on-chip parallelism, massive on-chip bandwidth, and multiple level
memory hierarchy. This type of multi-core architecture presents big challenges to application devel-
opers and system software designers on how to exploit the thread level parallelism(TLP) provided
by the multi-core chips.

While a lot of researchers believe that multi-core architecture will become the mainstream in the
future, there are only a few studies about the application development on those advanced architec-
tures have been reported .

The emerging multi-core architectures not only unveil opportunities of massive on-chip paral-
lelism through hardware support, but also present great challenges to application developers and
system software designers. In this paper, we report our experience of optimizing the Fast Fourier
Transform (FFT) on the IBM Cyclops-64 (C64) architecture, anovel multi-core architecture con-
sisting of 160 threads, an explicit memory hierarchy, and anon-chip interconnection network.

C64 does not have data cache and thus a simple porting of a cache-oblivious algorithm may
not be able to take advantage of its architecture features. In addition, current implementations of the
cache-oblivious method are entirely based on cache-memoryhierarchy that does not lend itself to the
construction of an accurate performance model for C64 like platforms, which involve explicit data
movement in the explicit memory hierarchy. Therefore, to make a cache-oblivious FFT working
efficiently on such architecture is probably non-trivial.

The work presented in this paper takes a different path. We first present an iterative search
approach to find the optimal sequence of kernel functions to compute the FFT. This approach also
constructs an accurate/deterministic performance model analytically. Then, the model is used to
calculate the performance of different FFT computation sequences iteratively. Such performance
numbers will be productively used by our search based optimization procedure.

We then propose a new technique for optimizing the scratchpad memory (SPM) space utiliza-
tion. This technique fully exploits the opportunity provided by the explicitly-addressable on-chip
memory hierarchy. It can judiciously explore life-range splitting methods and achieve a significant
performance gain, which is evidenced by our experiments. The experimental results have demon-
strated up to25.5% performance improvement over a previous efficient FFT implementation on
C64.

1 Introduction

Microprocessor chip architecture has been turning to the multi-core era, many multi-core architectures
have been proposed by various vendors, such as Intel, AMD, Sun, etc. This type of architecture presents
great challenges to application developers and system software designers on how to exploit the thread
level parallelism (TLP), and other architectural features provided by these novel chips. However, in the
literature, there are only a few studies about the application development on those advanced architec-
tures.

In this paper, we report our study on tuning of the Fast Fourier Transform (FFT) on the IBM Cyclops-
64 (C64) multi-core architecture. The C64 chip, the experiment platform used in our study, features
massive on-chip parallelism, and massive on-chip bandwidth. One interesting feature of this architecture

i

is that it does not have data cache. It brings a great challenge to the software development on C64,
together with the existence of the explicit memory hierarchy.

Long et al. [1] reported their study on implementing and optimizing the FFT on C64. They first
definedwork unit as “an arbitrarily defined piece of the work that is the smallest unit of concurrency
that the parallel program can exploit”. Then, based on experimental results, they found the optimal
work units for computing the FFT on the C64 architecture. Finally, kernel functions were developed
and optimized for these optimal work units, and a sequence of kernel functions was statically specified
for all problem sizes. However, as we show in this paper, for some problem sizes, these “optimal” work
units and the sequence used in [1] are not optimal, in terms of the performance.

Since C64 does not have data cache, a simple porting of the cache-oblivious algorithm, i.e., FFTW
[2], may not be able to take advantage of its architecture features. In addition, current implementations
of the cache-oblivious method are entirely based on cache-memory hierarchy that does not lend itself
to the construction of an accurate performance model, which is critical in the performance optimization
involving data movement through a C64-like explicit memory hierarchy. Therefore, to make a cache-
oblivious FFT implementation working efficiently on this architecture is probablynon-trivial.

In this paper, we first present an iterative search approach to find theoptimal sequence of FFT kernel
functions for different problem sizes. Furthermore, our approach analytically constructs an accurate
and deterministic performance model, which is used to compute the performances of a sequence of
kernel functions iteratively. Such performance numbers will be productively used by our search based
optimization procedure. We then propose a new technique to take advantageof the explicit memory
hierarchy. This technique exploits the opportunity provided by the C64 explicitly-addressable on-chip
memory hierarchy. By using this technique, we could further refine the search approach and achieve
a significant performance gain. We verify all our proposed methods via simulation experiments. The
experimental results have demonstrated up to 25.5% performance improvement over [1].

The rest of this paper is organized as follows. In Section 2, we give a brief introduction of FFT. In
Section 3, we present the C64 architecture and its major features. In Section 4, we present our search
scheme to find the optimal sequence of kernel functions. Then we present a technique to utilize the fast
memory segment to further optimize the FFT. In Section 5, we present some brief comments on recent
literature that is closely related to the problem addressed in this paper, and inSection 6, we conclude
the paper with some open-ended issues to be addressed.

2 Fast Fourier Transform

The FFT algorithm is an efficient algorithm to compute the discrete Fourier transform (DFT) and its
inverse. FFT has been widely used in many areas, including digital signal processing, image processing
and other domains.

While there are many variants of FFT algorithms, the most common one is the Cooley-Tukey algo-
rithm [3]. This algorithm recursively breaks down a DFT of sizeN into two smaller DFTs of sizeN1

andN2, respectively, whereN = N1×N2. The most well-known use of Cooley-Tukey algorithm is the

ii

radix-2 Cooley-Tukey algorithm, i.e.,N1 = N2 = N/2. Let us consider theN = 2t point DFT,x(n),
the radix-2 algorithm divides theN -point data sequences into twoN/2-point data sequences,f1(n)

andf2(n), corresponding to the even-indexed and odd-indexed points ofx(n), respectively. Then the
N -point DFTX(k) can be computed as,

X(k) = F1(k) + ωk

NF2(k), 0 ≤ k ≤
N

2
− 1

X(k +
N

2
) = F1(k) − ωk

NF2(k), 0 ≤ k ≤
N

2
− 1

whereωk

N
aretwiddle factors, F1(k) andF2(k) are theN/2-point DFT off1(n) andf2(n), respec-

tively. F1(k) andF2(k) can be computed recursively to obtain the final solution of the original problem.
The complexity of this algorithm isΘ(Nlog2N). The above computation is usually referred to as the
Cooley-Tukey butterfly operation, which is shown in Figure 1. Although the basic idea of the Cooley-

+1

−1
ω

k
N

x x + ω
k
Ny

y x − ω
k
Ny

Figure 1: Radix-2 Cooley-Tukey Butterfly Operation

Tukey algorithm is recursive, many practical implementations use an iterativealgorithm to avoid the
recursion overhead. For the iterative algorithm, the input data need to be reordered before the butterfly
computation, which isbit-reversal permutation. Our implementation in this paper is an iterative one as
well.

3 Cyclops-64 Architecture

Gigabit
ethernet

FPGA

Control
network

1 2Processor 80 Chip

Node

FP interface

SP SP

GM

TU

SP

TU

HDFP

GM

TU

GM

SP

A−switch

GM

Host

TU

GM

SP SP
3D−mesh

TU TU

GM

FP

Crossbar Network

DDR2 SDRAM
memory
Off−chip

controller

Figure 2: C64 Chip Architecture

The C64 chip, shown in Figure 2, is designed to be the computation engine of aPetaflop supercom-
puter system. Such system consists of thousands of C64 chips that are connected through a 3-D mesh

iii

network. The C64 chip favors massive parallelism by integrating80 64-bit processors,160 embedded
SRAM banks and an interconnection network in one silicon chip. Each64-bit processor includes2
thread units (TUs) and1 floating point unit (FPU). Each thread unit is a single-issue, in-order RISC
processor running at 500MHz clock rate. The interconnection networkis an on-chip pipelined crossbar
network with huge number of ports (96 × 96), which can provide 4GB/s bandwidth per port.

The C64 memory hierarchy consists of three level memories, the scratchpad(SP) memory, on-chip
global interleaved memory (GM), and off-chip DRAM. C64 does not havedata cache. Instead the
SRAM memory are partitioned into two parts: scratchpad memory (SPM) and GM.Each thread unit
has its own SPM, which is the fast local memory of the corresponding threadunit. The GM is shared by
all thread units on the chip with uniform access latency.

4 Optimizations and Discussions

In this section, we first review the previous FFT implementation on C64 [1]. Then we present our
experiences of tuning FFT on C64 architecture. All experiments are conducted on the FAST simulator
[4], which is a functionally-accurate simulator that is employed for softwaredevelopment and testing
before the real chip becomes available. It models the memory hierarchy of C64 architecture, including
the latencies and bandwidth for each memory segment. The input data are double-precision complex
numbers and can fit into the on-chip GM. The twiddle factors are precomputed and stored in GM as
well.

4.1 Previous Implementation

In a previous work on optimizing the FFT on C64 [1], the authors defined thenotion of work unit, and
they found the8-point work unit was the optimal work unit for computing the FFT on C64, i.e., the
atomic execution unit of each thread has8 points, which implies a3-stage butterfly computation. For
each work unit, they implemented and optimized akernel functionthat carries out the above butterfly
computation. Table 1 summarizes the kernel functions implemented in [1] and theirdescriptions. One

Kernel Index Kernel Name Description
1 r2v1 2-point work unit, 1 stage computation, working on 1 group data
2 r2v2 2-point work unit, 1 stage computation, working on 2 groups data
3 r2v4 2-point work unit, 1 stage computation, working on 4 groups data
4 r2v8 2-point work unit, 1 stage computation, working on 8 groups data
5 r4v1 4-point work unit, 2 stages computation, working on 1 group data
6 r4v2 4-point work unit, 2 stages computation, working on 2 group data
7 r8v1 8-point work unit, 3 stages computation, working on 1 group data
9 r16v1-first 16-point work unit, 4 stages computation, working on 1 groupdata

Table 1: Kernel Functions and Their Descriptions

may notice that, in Table 1, for a givenk-point work unit, there may be more than one kernel function.

iv

For example, for the2-point work unit, it was implemented with four different kernel functions, namely,
r2v1, r2v2, r2v4, andr2v8, respectively. The basic one,r2v1, is the implementation of the Cooley-
Tukey butterfly operation.r2v2, r2v4 andr2v8 are considered as vector versions ofr2v1, which work
on 2, 4 and8 groups of2-point data, respectively. Similarly, for the4-point work unit, there are two
different kernel functions, namely,r4v1 and r4v2, respectively. r16v1-first is a specially optimized
kernel function to compute the first4 butterfly stages of the FFT, working on16 points at one time.

Having the above kernel functions, a scheme for computing the FFT was proposed. Givenn-point
data (lg2n stages), for the first 4 stages,r16v1-firstis applied. For the remaining(lg2n−4) stages,r8v1

is repeated applied. If there is one or two last stage(s) left,r2v8 or r4v2 will be used, respectively, to
reduce the number of branch instructions, All work units are assigned among all threads in a round-robin
way to achieve load balance. Overall, the sequence of kernel functionsused was statically fixed.

4.2 The Effect of Number of Threads

[1] showed that linear speedup can be obtained for216 1D FFT when the number of running threads
is increasing. Can we always get more speedup if we use more threads? We run the 1D FFT code
mentioned in [1] with different input size and different number of threads. The result in Figure 3
shows the scalability for n-point FFT on C64. The results indicate that, for the given n-point data,
the best performance can be obtained by running with an optimal number of threadsp. When the n-
point FFT is running with less thanp threads, the more threads are used, the better performance can be
achieved. The performance starts to degrade when running with more thanp threads due to the increase
of synchronization overhead. We also find out that, this optimal number of threadsp is proportional to
the size of input data. The larger size of the input data, the more threads are needed. This result also

Figure 3: Scalability of 1D FFT on C64

brings a new challenge for tuning applications on multi-core architectures. Compared to a single core
architecture, the tuning procedure needs to determine the optimal number of threads.

v

4.3 Search-based Scheme

The computing scheme proposed in [1] uses a fixed sequence for any problem size. It is very simple.
But, is it really optimal for the C64 architecture? In order to answer this question, we design and
implement an iterative search-based scheme.

In the rest of this paper, we use the same definition ofwork unit. Additionally, we defineplan as
a sequence of kernel functions used to perform a givenn-point FFT computation. For example, for a
4-point FFT,r4v1andr2v1 + r2v1are two possible plans. A barrier is needed after each kernel function
call to synchronize concurrent threads.

This idea of this search scheme can be described as follows. LetF (i) denote the minimum number
of cycles to finish thei stages computation. For a givenn-point FFT withm stages computation (m =

lg2n), our goal is to find a plan to complete thesem stages computation with the minimum number of
cyclesF (m), which can be calculated according to the following equation,

F (m) = min{F (m − S(k)) + T (k)}, k ∈ Z (1)

whereZ is the set of all kernel functions in Table 1,T (k) denotes the total number of cycles of running
the kernel functionk, plus a barrier on the given n-point data,S(k) denotes the number of computation
stages of the kernel functionk. Dynamic programming is used to calculateF (m). Supposep is the
optimal plan for am stages computation, and the last kernel function used inp is k. Since kernel
function k can finishS(k) stages computation, the minimum number of cycles to finish the previous
(m−S(k)) stages computation isF (m−S(k)). If p is the optimal plan form stages computation, then
the subplanp′ of p should be the optimal plan to compute previous(m − S(k)) stages.

The search-based approach is presented as a two step algorithm,

Step 1: givenn-point data, run each kernel functionk in Table 1 plus a barrier with an empirically
optimal number of threads to getT (k). ComputeS(k) for each kernel function.

Step 2: run the search algorithm to search the plan. A data structureBestPlanis used to store the
optimal plan. BestPlan[i] denotes the optimal plan for the firsti stages computation.curr stores the
current local minimum number of cycles to accomplishi stages computation. The initial value ofcurr

is set to the maximum integer. The pseudocode of this search algorithm is shown in algorithm 1.

Table 2 shows the results generated by using the above algorithm. The firstcolumn is the input
size. An input with dimensioni has2i point data. The second column shows the optimal number of
threads used for computing the FFT of this specific input size, which is determined empirically. In our
search algorithm, we first fix the number of threads for the specific input size, and then search different
plans running with optimalp threads. The third column shows the plan described in [1], which is called
thebase plan. The last column isPlan I, which is obtained by using this search algorithm, where the
differences between the base plan and this plan are in bold. Comparing PlanI and the base plan shown
in Table 2, one observation is that Plan I favorsr2v4 over r2v8. Intuitively, we consider thatr2v4 is
better thanr2v8. But why r2v4 is better thanr2v8? In order to answer this question, we introduce a
value,avc pb which means average cycles per butterfly, to evaluate the efficiency of kernel functions.

vi

Algorithm 1 Search(m, Z)

1: F (0) = 0
2: for i = 1 to mdo
3: for each kernelk in Z do
4: curr = MaxInt
5: if (i − S(k) ≥ 0) then
6: if (F (i − S(k)) + T (k) < curr) then
7: curr = F (i − S(k)) + T (k)
8: updateBestP lan[i]
9: end if

10: end if
11: end for
12: end for

Dim # of Threads Base Plan Plan I
4 8 r16v1-first r16v1-first
5 8 r16v1-first+r2v8 r4v1+r8v1
6 16 r16v1-first+r4v2 r8v1+r8v1
7 16 r16v1-first+r8v1 r16v1-first+r8v1
8 32 r16v1-first+r8v1+r2v8 r16v1-first+r4v2+r4v2
9 64 r16v1-first+r8v1+r4v2 r16v1-first+r8v1+r4v2
10 128 r16v1-first+r8v1+r8v1 r16v1-first+r8v1+r8v1
11 128 r16v1-first+r8v1+r8v1+r2v8 r16v1-first+r8v1+r8v1+r2v4
12 138 r16v1-first+r8v1+r8v1+r4v2 r16v1-first+r8v1+r8v1+r4v2
13 138 r16v1-first+r8v1+r8v1+r8v1 r16v1-first+r8v1+r8v1+r8v1
14 138 r16v1-first+r8v1+r8v1+r8v1+r2v8 r16v1-first+r8v1+r8v1+r8v1+r2v4
15 138 r16v1-first+r8v1+r8v1+r8v1+r4v2 r16v1-first+r8v1+r8v1+r8v1+r4v2
16 138 r16v1-first+r8v1+r8v1+r8v1+r8v1 r16v1-first+r8v1+r8v1+r8v1+r8v1

Table 2: Plan Comparison

The smaller theavc pb, the higher the efficiency of the kernel function. Figure 4 showsavc pb of
different kernel functions. The kernel function “r16-first” has thelowestavc pb value, which implies
highest efficiency. Besides that, “r8v1” has the second lowestavc pb value. Therefore, for the input
n-point data FFT, iflg2n − 4 can be divided exactly by 3, the scheme proposed in [1] can achieve the
best performance. However, iflg2n−4 cannot be divided exactly by 3, the scheme proposed in [1] used
a kernel function for 2-point work unit or 4-point work unit for the last 1 or 2 stages respectively. In
order to reduce the number of branch instructions, that scheme choosedto use kernel functionr2v8and
r4v2. Although the number of branch instructions can be reduced by using these two kernel functions
mentioned above, that scheme cannot achieve the best performance forsome input sizes.

Figure 5 shows the performance comparison between the base plan and Plan I, both running with
the number of threads specified in Table 2. From the figure, we observe that the performance of Plan
I is always not worse than that of the base plan. For small input sizes, Plan I has distinct speedup up
to 25.5% over the base plan. The significant performance difference between these two plans are due
to the different kernel functions chosen by these two plans. For example, althoughr16v1-first is very

vii

 a
ve

ra
ge

 c
yc

le
 p

er
 b

ut
te

rf
ly

 10

 20

 30

 40

 50

 60

 70

 80

 90

r3
2v

1

r1
6v

1

r1
6_

fir
st

r8
v1

r4
v2

r4
v1

r2
v8

r2
v4

r2
v2

r2
v1

 0

Figure 4: Kernel Evaluation

S
pe

ed
up

 O
ve

r
B

as
e

P
la

n

 5%

 10%

 15%

 20%

 25%

 30%

di
m

_1
6

di
m

_1
5

di
m

_1
4

di
m

_1
3

di
m

_1
2

di
m

_1
1

di
m

_1
0

di
m

_9

di
m

_8

di
m

_7

di
m

_6

di
m

_5

di
m

_4

 0%

Figure 5: Search the Best Plans

efficient and is chosen as the optimal plan (in Plan 1) for the input size24, it does not necessarily mean
that it should be a natural choice for other input sizes. In fact, we evaluate the efficiency of different
kernel functions used in the experiment and find that the order of efficiency of those kernel functions
is r16v1-first> r8v1 > r4v1 > r2v8. Therefore, it is possible that we can obtain a better performance
by searching different combinations of kernel functions, for example,r4v1+r8v1 versusr16v1+r2v8
for the input size25. This performance difference also shows that the fixed plan proposedin [1] is not
optimal (for some problem sizes) and illustrates the importance of the search approach. On the other
hand, for the large input sizes, there is no much difference between these two plans. For example, for
input size (211 and214), the Plan I has only around2% speedup over the base plan.

viii

4.4 Exploration of Larger Work Units

Generally speaking, the performance of a parallel program is determinedby two factors: the compu-
tation time and the synchronization overhead. In our case, the computation time isdetermined by the
efficiency of kernel functions used in the plan. The synchronization overhead is determined by the
number of barriers in the plan. For example, for a211 point FFT, as shown in Table 2, it needs11

stages computation, and4 barriers. In [1], a specialized kernel functionr16v1-firstwas used for the first

SPM
 GM
16 Points

 GM
16 Points

| 0 | 1 | 2 | | 3 |

2−P FFT

2−P FFT

2−P FFT

2−P FFT

2−P FFT

2−P FFT

2−P FFT

8−P FFT

2−P FFT

8−P FFT

Figure 6: Optimize Kernel for 16-point Working Unit

4 stages computation. The authors also claimed that a general kernel function for 16-point work unit
is not good for C64 because the number of registers needed exceeds the maximum available registers,
which incurs performance degradation.

After carefully considering the architectural features, however, the performance of the general kernel
function for16-point work unit can be improved by using SPM, which is the fast memory in C64 with
very low latency, i.e.,2 cycles for load and 1 cycle for store. Figure 6 illustrates this idea: (1) group the
16-point into two groups of8-point data; for each group, read the8-point data from SRAM, perform
the 3-stage computation on the8-point data and store the intermediate results back to the SPM; (2)
regroup the16-point into eight groups of2-point data; for each group, load the2-point data from SPM,
perform1-stage computation and store the results back to SRAM. We call this optimized general kernel
function r16v1. By using this new kernel function, we get a new plan,r16-first + r16v1 + r8v1, for
211 point FFT, and one barrier can be eliminated. Experimental results show around7% performance
improvement compared with the Plan I in Table 2, when running with 128 threads.

SPM
 GM GM

| 0 | 1 | 2 | | 3 | 4 |

4−P FFT

4−P FFT

8−P FFT

32 Points

8−P FFT
4−P FFT

8−P FFT

4−P FFT

4−P FFT

4−P FFT

4−P FFT

32 Points

4−P FFT
8−P FFT

Figure 7: Optimize Kernel for 32-point Working Unit

Inspired by the above result, we decide to explore an even larger32-point work unit. Similar op-

ix

timizations used forr16v1are applied again for this32-point work unit. Figure 7 illustrates this idea:
(1) group the32-point data into four groups of8-point data; for each group, read the8-point data from
SRAM, perform the3-stage computation on the8-point data and store the intermediate results back to
the SPM; (2) regroup the32-point into eight groups of4-point data; for each group, load the4-point
data from SPM, perform2-stage computation and store the results back to SRAM. We call this kernel
functionr32v1.

By storing the intermediate results into SPM, long live-ranges of variables are split into smaller
live-ranges and thus interferences among the original long live-ranges are reduced. This optimization
can reduce the register pressure. The overhead of memory load and store instructions introduced by this
live-range splitting is small since those memory operations are performed on SPM, a fast storage with
low access latency.

Since now we have two more kernel functions, i.e.,r16v1 and r32v1, we run the search algorithm
described in Section 4.3 again. Table 3 shows the searching results. The first column is the input size.
The second column shows the optimal number of threads for this specific input size. The third column
and the fourth column show the plans without and with the new kernel functions, respectively. The
differences between two plans are in bold. Furthermore, Figure 8 showsthe speedup of both Plan I and

Dim # of Threads Plan I Plan II
4 8 r16v1-first r16v1-first
5 8 r4v1+r8v1 r4v1+r8v1
6 16 r8v1+r8v1 r8v1+r8v1
7 16 r16v1-first+r8v1 r16v1-first+r8v1
8 32 r16v1-first+r4v2+r4v2 r16v1-first+r4v2+r4v2
9 64 r16v1-first+r8v1+r4v2 r16v1-first+r8v1+r4v2
10 128 r16v1-first+r8v1+r8v1 r16v1-first+r8v1+r8v1
11 128 r16v1-first+r8v1+r8v1+r2v4 r16v1-first+r16v1+r8v1
12 138 r16v1-first+r8v1+r8v1+r4v2 r16v1-first+r32v1+r8v1
13 138 r16v1-first+r8v1+r8v1+r8v1 r16v1-first+r32v1+r16v1
14 138 r16v1-first+r8v1+r8v1+r8v1+r2v4 r16v1-first+r16v1+r8v1+r8v1
15 138 r16v1-first+r8v1+r8v1+r8v1+r4v2 r16v1-first+r32v1+r8v1+r8v1
16 138 r16v1-first+r8v1+r8v1+r8v1+r8v1 r16v1-first+r32v1+r32v1+r2v4

Table 3: Plan Comparison with Kernel Function of 16-point and 32-point Work Unit

Plan II over the base plan. The results show that, for the small input sizes (less than29), there is no
much difference between Plan I and Plan II. For the large sizes, Plan II has a better performance than
that of Plan I. Since the overhead of barrier is proportional to the numberof threads and the empirical
optimal number of running threads for the small input sizes is much smaller than that for large input
sizes. Therefore, for the small input sizes, barrier overhead is relatively small and thus reducing a
barrier cannot achieve much performance gain. While for the larger input size, barrier overhead is
higher because more threads are used and thus reducing a barrier canachieve much performance gain.
As shown in Figure 8, for the input size equal or larger than211, Plan II has a distinct speedup over the
base plan, especially for the input size211 and215, which has around 12% and 8% speedup respectively.
We achieved 21.5 GFLOPS for the input size215.

x

Plan II
Plan I

 0%

 15%

 20%

 25%

 30%

dim_16dim_15dim_14dim_13dim_12dim_11dim_10dim_9dim_8dim_7dim_6dim_5dim_4

S
pe

ed
up

 o
ve

r
B

as
e

P
la

n

 5%

 10%

Figure 8: Search The Best Plans with Kernel Function for 16-point and32-point work unit

5 Related Works

FFT has been extensively studied and implemented in various machines. Manyresearches have been
done to address the distributed memory FFT implementations on the hypercube architecture [5,6]. Other
parallel FFT implementation on arrays [7] and mesh architecture [8] have also been investigated. There
are also some researches have been conducted in the shared memory FFTimplementation [9]. The im-
portance to consider the memory hierarchy to implement FFT effectively has been discussed in [10]. [11]
also shows how to implement FFT efficiently by using local memory on CRAY-2. Two dataflow-based
multithreaded FFT [12] are implemented in EARTH [13], a fine-grained data flow architecture. Besides
that, there are several researches have been done to automatically tuningthe FFT on different architec-
tures. FFTW [2] planner generates various plans on the specific architecture and measures the actual
run time of many different plans to select the fastest one. FFTW uses dynamic programming to search
the best plan from many different plans. SPIRAL [14] uses a special language SPL to represent the FFT
problem as formulas. SPIRAL includes both algorithm level and implementation level optimizations.
At algorithm level, SPIRAL applies rules on the formulas to generate the optimized formulas. At im-
plementation level, SPIRAL translates the optimized formulas into C code, which is further compiled
using a standard C compiler and then measures the actual runtime. FFTW 3.1 [15] implements a multi-
threading DFT implementation to support the parallel FFT computation. Recently,[16] presents a FFT
implementation for shared memory, especially for the SMP and multi-core.

6 Conclusion

In this paper, we have presented an iterative search scheme to search the best plan for the FFT computa-
tion on the C64 multi-core architecture. The experiment results demonstrate that the plan derived from
the search-based approach outperforms the fixed approach in [1]. In addition, a technique to optimize
the large kernel functions by using SPM to achieve better performance has been discussed. This study
is a good example of how to use SPM to optimize applications on C64.

Our study shows that application development for multi-core architectures like C64 is not easy: both

xi

the architecture features and application/algorithm properties have to beentaken into account. This also
poses more challenges for multi-core system software, especially for the compiler and code generator.

There are several researches can be done in the future. For example, how to utilize the SPM to
optimize other applications. Automated FFT code generator for multi-core architectures with explicit
memory hierarchy is also a very interesting topic. Besides that, we can also study the larger FFT problem
which can not fit in on-chip memories.

Acknowledgments

We would like to acknowledge the support from IBM, in particular, Monty Denneau, who is the architect
of the IBM Cyclops-64 architecture, ETI, the Department of Defense, the Department of Energy, the
National Science Foundation, and other government sponsors. Special thanks to Michael Merrill for his
initial FFT implementation. We would also like to acknowledge other members of the CAPSL group at
University of Delaware, in particular Weirong Zhu, Guangmin Tan and Shuxin Yang.

References

[1] Chen, L., Hu, Z., Lin, J., Gao, G.R.: Optimizing the fast fourier transform on a multi-core archi-
tecture. In: Workshop on Performance Optimization for High-Level Languages and Libraries in
the 21st IEEE International Parallel and Distributed Processing Symposium (IPDPS 2007), Long
Beach, CA, USA (2007)

[2] Frigo, M., Johnson, S.G.: FFTW: An adaptive software architecturefor the FFT. In: Proc. IEEE
Intl. Conf. on Acoustics, Speech, and Signal Processing. Volume 3., Seattle, WA (1998) 1381–
1384

[3] J.W.Colley, J.W.Tukey: An algorithm for the machine calculation of complex fourier series. In:
Math.Comput. Volume 4. (1965) 297–301

[4] del Cuvillo, J., Zhu, W., Hu, Z., Gao, G.R.: FAST: A functionally accurate simulation toolset
for the Cyclops64 cellular architecture. In: Workshop on Modeling, Benchmarking, and Simu-
lation (MoBS2005), in conjuction with the 32nd Annual International Symposium on Computer
Architecture (ISCA2005), Madison, Wisconsin (2005)

[5] S.L.Johnsson, Krawitz, R.: Cooley-tukey FFT on the connection machine. In: Parallel Computing.
Volume 18. (1992) 1201–1221

[6] D.M.S.L.Johnsson, Krawitz, R., R.Frye: A radix 2 FFT on the connectionmachine. In: Proceeding
of Supercomputing 89. (1989) 809–819

[7] Johnsson, S., D.Cohen: Computational arrays for the discrete fourier transform. (1981)

xii

[8] Singh, V., V.Kumar, G.Agha, C.Tomlinson: Scalability of parallel sorting onmesh multicomput-
ers. In: International Parallel Processing Symposium. (1991) 92–101

[9] Swarztrauber, P.: Multiprocessor FFTs. In: Parallel Computing. Volume 5. (1987) 197–210

[10] Bailey, D.: FFTs in external or hierarchical memory. In: Proceedings of the Supercomputing 89.
(1989) 234–242

[11] D.A.Carlson: Using local memory to boost the performance of fft algorithms on the cray-2 super-
computer. In: J.Supercomput. Volume 4. (1990) 345–356

[12] P.Thulasiraman, Theobald, K., A.A.Khokhar, Gao, G.: Multithreaded algorithms for the fast
fourier transform. In: ACM Symposium on Parallel Algorithms and Architectures. (2000) 176–
185

[13] K.B.Thepbald: EARTH: An efficient architecture for running threads. In: PhD thesis. (1999)

[14] Püschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Singer, B.W., Xiong, J., Franchetti,
F., Gǎcić, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.: SPIRAL: Code generation for
DSP transforms. Proceedings of the IEEE, special issue on “ProgramGeneration, Optimization,
and Adaptation”93(2) (2005) 232–275

[15] Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. In:Proceedings of the IEEE
93. Volume 2. (2005) 216–231

[16] Franz Franchetti, Yevgen Voronenko, M.P.: FFT program generation for shared memory: SMP
and Multicore. In: Proc. Supercomputing (SC). (2006)

xiii

