
University of Delaware
Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

Analysis and Performance Results of Computing Betweenness

Centrality on IBM Cyclops64

Guangming Tan†, Andrew Russo†, Vugranam Sreedhar††, Guang R. Gao†

CAPSL Technical Memo 083

April 9, 2008

Copyright c© 2008 CAPSL at the University of Delaware

†Email: {guangmin,russo,ggao}@capsl.udel.edu

††Email: vugranam@us.ibm.com

University of Delaware • 140 Evans Hall •Newark, Delaware 19716 • USA

http://www.capsl.udel.edu • ftp://ftp.capsl.udel.edu • capsladm@capsl.udel.edu

Abstract

This paper presents a joint study of application and architecture to improve the performance and
scalability of an irregular application – computing betweenness centrality (BC) – on a many-core ar-
chitecture IBM Cyclops64. Dynamically non-contiguous memory access, unstructured parallelism
and low arithmetic intensity in BC program pose an obstacle to an efficient mapping of parallel
algorithms on such many-core architectures. By identifying several key architectural features, we
propose and evaluate an efficient strategy for achieving scalability on a massive multi-threading
many-core architecture. We demonstrate how to explore multi-grain parallelism and just-in-time
locality with explicit memory hierarchy, non-preemptive thread execution and fine-grain data syn-
chronization. Comparing to a conventional parallel algorithm, we get 4X-50X improvement in
performance and 16X improvement in scalability on a 128-cores IBM Cyclops64 simulator .

i

Contents

1 Introduction 1

2 Irregular Characteristics of BC Algorithm 3

3 IBM Cylops64 Architecture 5

4 Mapping BC Algorithm to IBM Cyclops64 6
4.1 Preliminary Algorithm with Multi-grained Parallelism 7
4.2 Achieving Just-in-time Locality . 8
4.3 Using Architectural Support of Fine-grain Data Synchronization 11

5 Evaluation 12
5.1 Methodology . 12
5.2 Empirical Results for Mapping Parallel BC Algorithm 13
5.3 Discussion .16

6 Related Work 18

7 Conclusion 19

List of Figures

1 Adjacency array of a graph. 3
2 The performance of OpenMP implementation – HPCS SSCA2. The number ofvertices

and edges is 1024 and 8192, respectively 5
3 IBM Cyclops64 chip architecture 5
4 Structure of SSB entry . 6
5 thread execution graph .. 9
6 A demonstration of the parallel pipelining process for the BFS phase ofthe BC algo-

rithm. For readability, the transformation (linearization/scatter) and data movement are
depicted as two steps. A real implementation finishes them in single step by memory
threads. 10

7 An illustration of BFS codes achieving just-in-time locality at one level 11
8 The incremental optimization results. JITL: just-in-time locality13
9 Scalabilityresults of the parallel betweenness centrality algorithm (higher is better). The

number of verticesn = 2scale, E(n) = 8n. 14
10 Time distribution and achieving off-chip memory latency tolerance. 15
11 The comparison of running time using different sizes (bytes) of buffers. 15
12 Overhead of barrier synchronization for scale = 10. The measuredbarriers include the

barriers in both BFS and backtrace phase. 16
13 The comparison of software lock and SSB (BFS phase) 17

List of Tables

1 Simulation parameters of C64. 13
2 The comparison of TEPS on three platforms.scale = 10 17

ii

1 Introduction

Computer architects and designers are exploring the massive many-core architecture space with the hope
of improved execution of scientific applications. At a high level there are two kinds of applications—
“regular applications” where data access and control flow follow regular and (statically) predictable
patterns, and “irregular applications” where data access and control flow have statically (and often even
dynamically) unpredictable patterns. Analysis and optimization of such irregular applications are noto-
riously difficult. With the advent of massive many-core architectures, such as Intel Tera-scale [33] and
IBM Cyclops64 [14] that contain tens or even hundreds of on-chip cores, it is extremely important to
tackle the difficult problem of optimizing and scaling irregular applications. On-chip memory hierar-
chy, limited on-chip memory per core, and other features in such architectures make the problem even
more difficult. Researchers are realizing that for many-core architectures the problem of scaling and
optimizing irregular applications have to be done at different phases, including algorithmic changes and
improvements to take advantage of the many-core architecture features [20, 30]. Many irregular appli-
cations are often implemented using pointer data structures such as graphs and queues and recursive
control flow to traverse and manipulate such pointer data structures. It is difficult and often impossible
to capture the data access patterns at compilation time. For architectures thatsupport memory hierarchy,
unpredicatable data access patterns often lead to higher off-chip memoryaccess latency, which in turn
can degrade the performance and scalability of irregular applications.

Computing betweenness centrality (BC) [17] in graph analysis is a good example of such irregular
problems. BC is a popular quantitative index for the analysis of large scale complex network. It has been
used extensively to build protein interaction network, identify key actors in terrorist network and study
sexual/AIDS network. BC measures the control a vertex has over communication in the network. Bran-
des’ algorithm [5] is one of fast algorithms for computing BC. In this paper,we refer to BC algorithm as
one proposed by Brandes [5]. In general, BC algorithm calculates thecentrality through two steps: BFS
(breadth first search) traversal and backtrace accumulation. Due toscale-free [1] sparse graph traversal
in these important applications, BC algorithm exhibitsdynamically non-contiguous memory accessand
unstructured parallelism. Another explicit characteristic islow arithmetic intensity– the ratio between
arithmetic operations and memory operations, which obviously forces programmers to expose an ade-
quate amount of parallelism to the underlying many-core architecture within anapplication, instead of
using higher speed processor. In this paper, we leverage some key features on a many-core architecture
– IBM Cyclops64 to improve the performance of computing betweenness centrality in the scale-free
sparse graph. The motivation of behind this idea is to be able to identify not only how programmers
will use mechanisms provided in the emerging many-core architecture, but relative usefulness of various
mechanisms as evidenced by their impact on application performance.

In consideration ofdynamically non-contiguous memory access, unstructured parallelismand low
arithmetic intensityin a large class of irregular applications, we identify four key properties of IBM
Cyclops64 (C64) to address the challenge of executing irregular programs on many-core architectures:

• Massive hardware thread units . C64 integrates 160 simple 64-bit, single issue, in-order RISC
processor operating at a moderate clock size (500MHz). The design oflight-weight cores leaves
more space for integrating more cores in a chip. For an application with low arithmetic intensity,

1

it is desirable to exploit more parallelism. We not only implement a multi-grained parallel BC
algorithm, but unearth additional parallelism to address the issue of irregular memory access.

• Non-preemptive thread execution model & Explicit memory hierarchy. These properties are
fundamental to the proposed strategy for optimizing dynamically non-contiguous memory access.
The ”dynamic” of memory operations is caused by data dependences, i.e. the level-by-level graph
traversal in BC algorithm leads to producer-consumer data flow. Our strategy decouples computa-
tion with memory operations so that the memory accesses are operated by separated thread units
to achievejust-in-time locality– data are local to a processing core just before computational
consumer threads are scheduled to the core. Once the data dependences are specified by pro-
grammers, in the non-preemptive multi-thread execution model a producer-consumer operations
are completed within once thread scheduling slot. It avoids multiple additional data swappings
through memory hierarchy, which often degrades performance. Meanwhile, C64 is configured
with three levels of memory hierarchy, which can be directly addressed (load/store) by all pro-
cessing cores. With the explicit memory hierarchy programmers can exactly specify which level
of memory the data are. Combining with non-preemptive execution it is feasible toschedule com-
putation threads only access lower latency memory space. Our re-structure of BC algorithm is
an orchestration of the computation and memory threads in a pipelining way so that the higher
latency memory accesses are hidden and just-in-time locality is achieved.

• Fine-grain data synchronization. The fine-grained parallelism of visiting neighbors of a vertex
(we refer to it as an extension operation) in BC algorithm is limited by the degrees of vertices, most
of which is low in the scale-free sparse graph [1]. The multi-grained parallel algorithm exploits
the parallelism between multiple extension operation in the same level. When twoextension
operations share the same neighbors, they require a synchronization sothat one vertex is processed
only one times. C64 provides an architectural support of fine-graineddata synchronization –
synchronization state buffer (SSB) [38]. Our strategy to optimize irregular memory access also
takes good advantage of the SSB mechanism, and show that it is valuable to support fine-grain
data synchronization on many-core architectures.

By utilizing the key architectural properties to map parallel BC algorithm we obtained a performance
improvement of 4-50 times and scalability of 16 times on IBM Cyclops64. To the best of our knowledge
this paper is the first indepth study of implementing a high performance BC program on many-core
architectures. The rest of the paper is organized as follows: In section2, we describe betweenness
centrality (BC) algorithm and its characteristics. In section 3, we introduce IBM Cyclops64 (C64)
architecture. Section 4 discusses how to leverage the key properties ofC64 to re-structure BC algorithm.
Section 5 evaluates the performance on a many-core chip architecture and draws implications on many-
core architecture and programming. In section 6, we discuss the existing related techniques. Finally,
section 7 concludes this paper.

2

2 Irregular Characteristics of BC Algorithm

In this section, we will briefly describe BC algorithm (for the detailed algorithm,refer to [5]), then
examine the important irregular characteristics. Given a graphG = (V,E) whereV denotes the set of
vertices andE the set of edges inG, the betweenness centrality (BC) measure of a vertexv is given by

bc(v) =
∑

s 6=v 6=t∈V

δst(v) (1)

whereδst(v) denotes the fraction of shortest paths betweens andt that pass through a particular vertex
v, and is sometimes called as the pair-dependency of(s, t) onv. The algorithm contains a BFS (breath-
first search) traversal and a backtrace accumulation. In the BFS traversal, the set ofpredecessorsof a
vertexv on a shortest path from source vertexs is generated:

Ps(v) = {u ∈ V : {u, v} ∈ E, dG(s, v) = dG(s, u) + w(u, v)} (2)

At the same time, thedependencyof s onv ∈ V is calculated:

σs(v) =
∑

t∈V

σst(v) (3)

In the backtrace accumulation, a partialbc value of a predecessor is accumulated according to its
successors. Equation 4 and 5 describe the calculation.

δs(v) =
∑

w:v∈Ps(w)

σsv

σsw

(1 + δs(w)) (4)

bc(v) =
∑

s 6=v∈V

δs(v) (5)

A space efficient data structure for sparse graphG is an indexed adjacency array data structure.
Figure 1 is an example of an index adjacency array, which is composed of index array and a successor
array. In fact, the predecessor setP records the trace of BFS tree, it is stored in another adjacency array.
The parametersd, δ, σ, and the measurebc are implemented in linear array. However, the references to
the three linear arrays are very dependent on that to the adjacency array ofG, P .

5

0
0

1

6

3
7

4

12109853

6533032714742 6 6

v0 v1 v2 v3 v4 v5 v6 v7

13 index array

neighbor array

2

Figure 1: Adjacency array of a graph.

Unlike regular applications where the inherent locality and parallelism are apparent and easy to
exploit, it takes careful understanding of the locality and parallelism behavior of irregular applications
before one can achieve high performance and scalability of such applications. We summarize three
important features of BC algorithm, which represents a large class of irregular applications.

3

• Dynamically non-contiguous memory access.For instance, during the BFS phase, a queue is used
to maintain the current vertices that is being extended (visiting the neighboringvertices of a vertex
is referred to as an extension operation). The effectiveness of the existing locality optimization
techniques such as prefetching and speculation rely on the continuity of theneighboring vertices
and regular distance of different region of neighboring vertices in adjacency arrays. In a scale-
free sparse graph, the degrees or neighbors of vertices are highly variable. Considering the simple
example shown in Figure 1, we assume that the nodesv2, v4 andv7 are currently in queue from
which we pick nodes and process them. Notice that not only the neighboring nodes ofv2, v4

and v7 are located in different region in the adjacency array, but also the strides between the
different regions are not constant. Also, the references tod, δ, σ, BC are almost random because
the neighbors or predecessors of a node depends on the input graph. For an instance of visiting
neighbors ofv2, v4 andv7, the sequence of reference tod is d[1], d[6], d[7], d[3], d[5], d[6] (the
same forσ). The dependence betweend, δ, σ, andbc and the adjacency arrays means that the
references tod, δ, σ, andbc are determined at runtime. Therefore, such non-contiguous or non-
linear memory access pattern cannot benefit from current prefetchingor speculation techniques.

• Unstructured parallelism.The available parallelism within an extension operation is proportional
to the degrees of vertices. However, the degrees in the scale free graph obeys a power-law distri-
bution [1], which means most of vertices has low degrees. Therefore, on many-core architectures
with massive cores the parallelism will be very fine-grained. In order to utilize the ample pro-
cessing units, an alternative way is to exploit more parallelism in BC algorithm,i.e. multi-grain
parallel algorithms. The multiple extension operations at the same level can befinished in parallel
only if they do not share the same neighboring vertices. In Figure 1v2, v4, v7 are at the same level
of BFS tree. There exits parallelism during the extension of them, however,v2 andv7 share the
same neighboring vertexv6, a synchronization between two thread units processingv2 andv7 is
required so thatv6 is touched by only one thread. Intuitively, a fine-grained mutex lock is a solu-
tion to the conflicts. We note that the size of memory storing lock is the number ofvertices, which
is usually so huge that the small local memory or cache can not hold it. Much worse, the memory
access pattern to the lock array depends on that to the vertices, therefore, it is also dynamically
non-contiguous.

• Low arithmetic intensity.The profiling of BC program execution shows that BFS traversal is the
most time consuming. Looking at equation 2, 3 used in BFS traversal, an extension of one vertex
needs two arithmetic (float point addition) operations, six memory operations. Although most
of many-core designs do not resort to increase the speed of single core any more, the number
of cores in a chip is increasing for a higher arithmetic performance. For traditional scientific
computing applications with high arithmetic intensity and high parallelism, they naturally benefit
from many-core architectures. In order to improve the performance of memory bound programs
like BC algorithm, the key to a successful parallel program will be an efficient strategy to reduce
the memory access overhead using the massive parallel thread units.

Most of current multi/many-core architectures are designed for regular scientific computing with
high arithmetic intensity and highly explicit parallelism, the irregular applications like BC program

4

Execution Time (in seconds)

2 4 8 16 32

0

2

4

6

8

10

12
IBM Cyclops64

Figure 2: The performance of OpenMP implementation – HPCS SSCA2. The number of vertices and
edges is 1024 and 8192, respectively

show different behaviors which do not match well with the many-core architecture. HPCS benchmark
suite SSCA2 [2] specifies an OpenMP implementation of BC algorithm. Figure 2 shows its performance
on IBM Cyclops64. As the number of threads is increased, the scalability and performance degrades.
In order to achieve high performance on current many-core architectures, it is important to identify the
characteristics impacting on application performance.

3 IBM Cylops64 Architecture

In this section we describe our many-core architecture, highlighting some of its core features that we
exploit in improving the performance and scalability of irregular applications.IBM Cyclops64 (C64)
is a manycore architecture designed to serve as a dedicated petaflop computing engine for running high
performance applications.

Gigabit
ethernet

FPGA

Control
network

1 2Processor 80 Chip

Node

FP interface

SP SP

GM

TU

SP

TU

HDFP

GM

TU

GM

SP

A−switch

GM

Host

TU

GM

SP SP
3D−mesh

TU TU

GM

FP

Crossbar Network

DDR2 SDRAM
memory
Off−chip

controller

Figure 3: IBM Cyclops64 chip architecture

5

1. A C64 chip employs a multiprocessor-on-a-chip design with 160 hardware thread units, half as
many floating point units, embedded memory, an interface to the off-chip SDRAM memory and
bidirectional inter-chip routing ports. On-chip resources are connected to a 96-port crossbar net-
work, which sustains all the intra-chip traffic communication. In regard to intra-chip commu-
nication bandwidth, each processor within a C64 chip is connected to a crossbar network that
can deliver 4GB/s per port, totaling 384GB/s in each direction. The bandwidth provided by the
crossbar supports intra-chip communication, i.e. access to other processor’s on-chip memory.

2. C64 chip has no data cache and features a three-level (scratchpadmemory, on-chip SRAM, off-
chip DRAM) memory hierarchy. A portion of each thread unit’s corresponding on-chip SRAM
bank is configured as the scratchpad memory (SP). Therefore, the thread unit can access to its own
SP with very low latency through a backdoor, which provides a fast temporary storage to exploit
locality under software control. The remaining sections of all on-chip SRAMbanks that together
form the on-chip global memory (GM) that is uniformly addressable from allthread units. There
are 4 memory controllers connected to 4 off-chip DRAM banks.

3. C64 incorporates efficient support for thread level execution. For instance, a thread can stop
executing instructions for a number of cycles or indefinitely; and when asleep it can be woken
up by another thread through a hardware interrupt. All the thread units within a chip connect
to a 16-bit signal bus, which provides a means to efficiently implement barriers. C64 provides
no resource virtualization mechanisms: the thread execution isnon-preemptiveand there is no
hardware virtual memory manager. The former means the OS will not interrupt the user thread
running on a thread unit unless the user explicitly specifies termination or an exception occurs.
The latter means the three-level memory hierarchy of C64 chip isvisibleto the programmer.

4. C64 providessynchronization state buffer (SSB)to support fine-grain data synchronization (refer
to [38] for details). SSB is small buffer attached to the memory controller of each memory bank. It
records and manages states of active synchronized data units to support and accelerate word-level
fine-grain synchronization. Thus, SSB avoids enormous memory storage cost and high latency
memory access. the structure of an SSB is show in Figure 4. Each SSB entryconsists of four parts:
1) address field that is used to determine a unique location in a memory bank, 2) thread identifier,
3) an 8-bits counter and 4) a 4-bits field that supports 16 different synchronization modes. SSB
mechanism uses instructions ofssblock/unlockto implement fine-grain lock synchronization.

addressstate (4−bits) counter (8−bits) thread id

Figure 4: Structure of SSB entry

4 Mapping BC Algorithm to IBM Cyclops64

In this section, we discuss in detail betweenness centrality with graph traversal and show how to map a
parallel algorithm to C64 by leveraging on the architectural support. As noted in section 2, due to highly

6

variable degrees and data dependence, both low arithmetic intensity and unstructured parallelism lead
to the low utilization of massive hardware units, and both high memory storage cost and dynamically
non-contiguous memory access patterns incur high overhead of off-chip memory accesses. Our strategy
is to combine the algorithmic re-structure with key architectural properties:

1. Greedy parallelism.The underlying many-core architecture provides massive hardware thread
units and efficient fine-grain data synchronization, we try to exploit as much parallelism as pos-
sible in parallel programs. Therefore, we develop a multi-grain parallelBC algorithm, which
implements coarse-, medium- and fine-grained parallelism simultaneously. The architectural sup-
port of efficient data synchronization is used in the multi-grained parallel algorithm. Being aware
of low arithmetic intensity and memory hierarchy, we decouple computation (arithmetic) opera-
tions with memory operations, then exploit additional parallelism between them tomake better
use of massive parallel thread units.

2. Just-in-time locality.Like cache-based architecture, it is desirable to schedule most of threads
to access low latency on-chip local storage. Due to dynamically non-contiguous memory ac-
cess, traditional prefetching and speculation techniques is hard to optimize. We identify that the
architectural characteristics of explicit memory hierarchy plus non-preemptive thread execution
model make Dataflow-like execution model [15] possible. Although we can not eliminate the
intrinsic data dependence (producer-consumer in BC algorithm), the decoupled computation op-
erations and memory operations may be executed according to data-centric mechanism. Because
data movement is under control of programmer and threads processing the data is not preemptive,
computation threads consumejust-in-time localityproduced by memory threads, that is, data are
local to computing core just before the core starts to processing the data.

Recall that there are two phases in the BC algorithm: the BFS traversal andbacktrace accumulation
(Section 2). Both phases have the similar computing behavior (although the backtrace accumulation is
of high arithmetic intensity, our optimization strategies still work). To simplify the presentation we only
describe the optimization for the BFS traversal phase.1

4.1 Preliminary Algorithm with Multi-grained Parallelism

Intuitively, the BC algorithm exhibits three level of parallelism itself. Each BFSfrom one source vertex
can be started in parallel. For example in Figure 1, two BFS searches from vertexv0 andv2 can be
dispatched to different parallel threads, respectively. The coarse-grained parallelism require multiple
copies of the whole data structure. The medium-grained parallelism is exploitedwhen two threads are
visiting the neighboring vertices of different vertices in the same level. Forexample,v2, v4, v7 lie in the
same level of BFS tree. When visiting their neighbors, three parallel threads are activated to do the three
task, respectively. However, if two vertices share the same neighboringvertices, a synchronization is
forced to keep the shared neighbors being visited for just one times. Thefine-grained parallelism is to
visit the neighbors of a vertex in parallel. We may schedule three threads tovisit the three neighboring

1algorithm for backtrace phase is very similar.

7

verticesv2, v4, v7 of vertexv0 in parallel. However, there are two factors hindering the various paral-
lelism. First, The embarrassingly coarse-grained parallelism needs a copyof all data structures in the
memory space of each thread. For a large scale graph in real world, the memory space usage is so huge
that it often exceeds the physical memory even in traditional parallel computers, not speaking of current
many-core architectures with small on-chip memory size. On the other hand, intensively concurrent
memory accesses place burden on bandwidth, then slack the scalability. Second, note that the scale-free
sparse graph has few vertices with high degrees. Both the available medium-and fine-grained paral-
lelism depend on the degrees of vertices. Therefore, current parallel implementations [2–4] which only
exploit either one of medium- and fine-grain parallelism can not achieve good performance on massive
multi-threading architectures.

In the multi-grain parallel algorithm, the coarse-grain parallelism is easy to understand, we in detail
present the combination of medium- and fine-grain parallelism. Let us denote the set of the vertices
that is being extended in the current queue (theith level of BFS tree) asVi = {vi1, vi2, ..., vik}. Let
Nj = {uj1, uj2, ..., ujkj

}, 1 ≤ j ≤ k denote the neighboring set of vertices of a vertexvij . During
execution the unvisited neighbor verticesu (d[u] = −1) are added to the current queue and the vertices
being extended in the shortest path (d[u] = d[v] + w[u][v]) are added to the set of predecessorP [u].
The multi-grain parallel algorithmlogically compacts all the neighbors in one level into one large set:
UNi =

⋃
1≤j≤n Nj , then partitions it among parallel threads. In the case of ignoring shared neighboring

vertices, the multi-grain parallel algorithm achieves at leastp =
|UNi|=

Pk
j=1

|Nj |

maxk
j=1

|Nj |
times of parallelism

than the fine-grain parallel algorithm at each level. However, in this initial multi-grain parallel BC
algorithm there are two problems to be addressed:

• The multi-grain parallel algorithm achievesp times of parallelism at the cost of concurrently
accessingp times of memory addresses. On C64 the small local storage is too small to hold
the entire combined neighboring set, therefore a large number of high latency off-chip memory
accesses happen. Meanwhile, the concurrent off-chip memory accesses make the contention of
the limited off-chip bandwidth worse.

• Because the operations on one vertex are involved with only two arithmetic operations, the criti-
cal section protected by synchronization operations are so small that thesynchronization overhead
dilates the size of critical section. Thus, an efficient synchronization mechanism SSB on C64 will
make a significant performance improvement. However, as noted in [38], SSB performance will
degrade if the overflow of SSB happens when a synchronization operation is taken over by soft-
ware. The multi-grain parallel algorithm may increase the number of activatingsynchronization
memory addresses.

4.2 Achieving Just-in-time Locality

In the preliminary version of the multi-grain parallel BC program, we observeamount of off-chip mem-
ory accesses. In fact, the access to on-chip local storage have muchhigher bandwidth and lower latency
than that to off-chip memory on many-core architectures including C64. Therefore, it is reasonable to
schedule as many threads as possible to only access on-chip local memoryspace. Because both on-chip

8

and off-chip memory are addressed by all threads in a uniform space with different latency, in a con-
ventional execution model a thread is activated as soon as its data/control dependencies are satisfied,
regardless of the data are in on-chip local storage or off-chip memory.In this paper, we refer to this
thread execution model as aweaker model. Such weaker thread execution model may do well for reg-
ular applications, where there is an inherent cache/memory locality in the application. Unfortunately,
irregular applications like BC program often have dynamically non-contiguous memory access. Note
that C64 is configured with explicit memory hierarchy and non-preemptive thread execution model.
Programmers can explicitly state where the data are in explicit memory hierarchy. Non-preemptive
thread execution model forces a thread to finish consuming its data withoutre-schedule. Based on these
architectural properties, programmers can specify the exact relationship between a thread execution and
places of its data. Inspired by Dataflow model [15], we propose a strategy to achieve just-in-time locality
for dynamically non-contiguous memory accesses on C64.

(b). A thread exeuction graph with locality dependence

si sj

sk sk

si sj

(a). Generic thread execution graph

locality requirement si’

Figure 5: thread execution graph

We represent a program as a directed acyclic thread graph, where each node is a thread, and a
direct arc between two nodes represents a precedence relation between threads (See Figure 5). In a
thread graph, a nodes (i.e., a thread) is enabled if all its predecessor nodes have completed and the
required data and control dependences have been satisfied. We calla thread that satisfies both data and
control dependence requirements as beinglogically enabled. In order to achieve just-in-time locality
for a thread execution, it is not sufficient for a logically enabled thread torun. We introduce locality
constraint in addition to data and control dependence requirements to overcome the latency gap through
memory hierarchy. Using locality constraint a logically enabled thread often cannot immediately run
since the data may still be in off-chip memory hierarchy or in the local memory ofother cores. All data
referenced by the thread should become local before a thread can begin execution. We call a logically
enabled thread aslocality enabledif it also satisfies locality constraints (See Figure 5). The locality
requirements ensures that the corresponding data of the candidate thread are resident in the same level
of memory hierarchy where it is to be enabled. The stronger constraint onthread execution is data-
centric, that is, the local data enables a thread execution.

Obviously, our strategy results in additional operations for ”creating” locality constraint. Note that
the massive hardware thread units on C64 and low arithmetic intensity of BC program, we separate
several threads to complete locality constraint. Meanwhile, the computation operations and memory op-
erations are decoupled so that the parallel program is mapped to such stronger thread execution model.
Within memory hierarchy, the memory operations may involve either collecting the data toward the
cores where the thread is enabled, or sending/migrating the data away fromthe cores. Since most archi-

9

Logically transformation

vi vkvj

... ...

Transferring to off−chip

adjacent array other arrays (i.e. d)

off−chip memory

on−chip memory

...

compute

pipleline

...
...

Transferring to on−chip

Figure 6: A demonstration of the parallel pipelining process for the BFS phase of the BC algorithm. For
readability, the transformation (linearization/scatter) and data movement are depicted as two steps. A
real implementation finishes them in single step by memory threads.

tectures (including many-core architectures) are designed to exploit “linear locality”2 it is important to
transform non-linear locality into linear locality just in time for the computation. Forinstance, consider
the example shown in Figure 1, and assume thatv2, v4 andv7 are currently in queue, and assume we
extend (during BFS) nodev2, to bring in nodesv1, v6 andv7. Since these three nodes are contiguous
we exploit the locality among them and arrange them in a linear contiguous memory (in-core memory).
However, neitherd[1], d[6], d[7] nor σ[1], σ[6], σ[7] are contiguous, if we performed a linearization to
these discrete memory locations just before they will be used to compute, thenwe achieve the ”created”
spatial locality. In an implementation, programs donot explicitly perform such a linearization opera-
tions in off-chip memory, but naturally complete it during data movement throughmemory hierarchy.
For example, a memory thread, which transfers data from off-chip memory toon-chip memory, con-
sists of computing the start address and size of the neighboring vertices region in adjacency array of
each vertex, and collecting neighboring vertices dispersed in the off-chip memory address (adjacency
array) into a contiguous on-chip memory address. It also collects the corresponding elements ind, σ

into a contiguous on-chip memory address. Notice that there is a producer-consumer relationship be-
tween the collection of neighboring vertcies and collection ofd, σ. Also, the memory references of
d, σ are discrete because the distribution of the neighboring vertices obeys a law of power in scale-free
graphs. Once computing the relevant information (d, σ) we write them back to off-chip memory using
yet another memory threads.

In order to tolerate the overhead of ”creating” locality constraint, we exploit parallelism between
computation threads and memory threads. The multi-grain parallel algorithm partitions union setUNi

into multiple sub-blocks. When computation threads are processing the data inblock i, some memory
threads gather the data in blocki + 1 and other memory threads scatter the results that are generated
using the data in blocki−1. Figure 6 illustrates the overall process across on-chip and off-chip memory.
The threads operating multiple sub-blocks forms a pipeline, which achieves just-in-time locality for each

2We use the term linear locality to mean that data access have constant stridesand for contiguous accesses the strides have
one unit value, typically one word length.

10

1 / / O r i g i n a l s e r i a l Code
2 BFS (i n t v) {
3 i n t dv = d [v] ;
4 i n t sigmav = sigma [v] ;
5 f o r (i = 0 ; i < NumEdges [v] ; i ++) {
6 w = Ad jacen tA r ray [i ndex [v]+ i] ;
7 i f (d [w] < 0) {
8 d [w] = dv + 1 ;
9 sigma [w] = 0 ;

10 }
11 i f (d [w] = dv + 1)
12 sigma [w] = sigmav + 1 ;
13 }
14 }
15
16 / / Code a c h i e v i n g j u s t−in−t ime l o c a l i t y us i n g t h r e e p i p e l i n e d phase :
17 / / (1) o f f−ch ip memory read (Ad jacen tA r ray) ;
18 / / (2) compuat ion (a c c e s s i n g on−ch ip memory : b u f f , bu f f 1 , bu f f 2 , b u f f 3) ;
19 / / (3) o f f−ch ip memory w r i t e (Ad jacen tA r ray) .
20 BFS (i n t v) {
21 i n t o f f s e t = 0 ;
22 i n t t u r n = 0 ;
23 i n t dv = d [v] ;
24 i n t sigmav = sigma [v] ;
25 SPAWNTHERAD{
26 f o r (i = 0 ; i < b u f f s i z e ; i ++)
27 b u f f [t u r n] [i] = Ad jacen tA r ray [i ndex [v]+ o f f s e t + i] ;
28 o f f s e t += b u f f s i z e ;
29 t u r n ˆ= 1 ;} ;
30 BARRIERWAIT () ;
31 whi le (o f f s e t < NumEdges [v]) {
32 / / 1 . o f f−ch ip memory read
33 SPAWNTHERAD{
34 f o r (i = 0 ; i < b u f f s i z e ; i ++)
35 b u f f [t u r n] [i] = Ad jacen tA r ray [i ndex [v]+ o f f s e t + i] ;
36 o f f s e t += b u f f s i z e ;
37 }
38 t u r n ˆ= 1 ;} ;
39 SPAWNTHERAD{
40 f o r (i = 0 ; i < b u f f s i z e ; i ++) {
41 w = b u f f [t u r n] [i] ;
42 b u f f 2 [t u r n] [i] = d [w] ;
43 b u f f 3 [t u r n] [i] = sigma [w] ;
44 }
45 t u r n ˆ= 1 ;} ;
46 / / (2) . compuat ion (a c c e s s i n g on−ch ip memory) ;
47 SPAWNTHERAD{
48 f o r (i = 0 ; i < b u f f s i z e ; i ++) {
49 i f (b u f f 2 [t u r n] [i] < 0) {
50 bu f f 2 [t u r n] [i] = dv +1;
51 bu f f 3 [t u r n] [i] += 0 ;
52 }
53 i f (b u f f 2 [t u r n] [i] == dv +1)
54 bu f f 3 [t u r n] [i] += sigmav ;
55 }
56 t u r n ˆ= 1 ;} ;
57 / / (3) . o f f−ch ip memory w r i t e .
58 SPAWNTHERAD{
59 f o r (i = 0 ; i < b u f f s i z e ; i ++) {
60 w = b u f f [t u r n] [i] ;
61 d [w] = bu f f 2 [i] ;
62 sigma [w] = bu f f 3 [i] ;
63 }
64 t u r n ˆ= 1 ;} ;
65 BARRIERWAIT () ;
66 }
67 }

Figure 7: An illustration of BFS codes achieving just-in-time locality at one level

sub-block. The complete multi-grain parallel for BFS phase is shown in Figure 7.

4.3 Using Architectural Support of Fine-grain Data Synchronization

Our previous work on C64 [11, 38] indicates that lock-based synchronization is better than lock-free
one for explicit memory hierarchy. In fact, since there is no priority inversion and convoying problem in
C64, performance and memory contention are the only factors of a lock-free data structure. For lock-free
synchronization [19] in parallelizing betweenness centrality, due to irregular memory access pattern, we

11

observed many failure of speculation and rollback. However, with software lock mechanism, we have
to use additional lock array to assign one lock to each vertex. The size of lock array is the same with
the number of vertices, which is usually huge in real world. Thus, for a large scale graph, it generates
amounts of irregular off-chip memory accesses since these accesses are associated with that of vertices.

There are two remarkable features of the proposed parallel pipelining algorithm : 1). We explicitly
separate computation from memory threads. The computation and memory threads access different
memory locations at any instancet implemented by double-buffering. 2). The algorithm accesses the
arrays in a chunking way, that is, in each pipelining stage, only small blocksreside in on-chip memory
at any instancet. Note that the on-chip memory of C64 is organized in multiple banks way where each
process is associated with a memory bank. LetN = M ×B be the number of memory locations, where
M is the size of each memory bank andB is the number of memory bank. At any instancet, let S(t)

be the amount of synchronization by all threads. Since the two remarkable features of the algorithm and
the number of active threadsT ≪ N , the program is easily adaptive to satisfy an important constraint:

S(t) ≪ N (6)

Therefore, at any instance only a small fraction of memory locations are actively participating in syn-
chronization. This observation exactly satisfies the condition of no overflow in SSB.

5 Evaluation

In this section we report experimental results and show the architectural and algorithmic impact on pro-
gram performance, then summarize interesting implications on many-core architecture and program-
ming.

5.1 Methodology

We evaluate the performance characteristics of mapping approaches on acycle-accurate C64 simula-
tor [12] for the parallel BC program. The parameters of C64 architectureused in the experiments are
summarized in Table 1. The toolchain on C64 consists of an optimized GCC compiler, a thread exe-
cution runtime systems TNT [13] (Pthread-like) and a TNT-based OpenMP [11]. By modifying HPCS
SSCA2 bechmark [2], the proposed parallel algorithm is implemented using theTNT library. The TNT
runtime always maintains as many threads as the number of cores. The directive SPWANTHREAD in
figure 7 is simply expressed as checking/assigning a idle thread.

We report the experimental results only for small problem sizes. Exceptfor the limitation of simu-
lator itself, note that C64 is devised as an accelerating engine for building a Petaflops supercomputer,
and there will be massive C64 nodes in the systems. In a massive parallel algorithm the working-set
in each node may be usually small. On traditional supercomptuers, most parallel applications have put
emphasis onweak scaling, where speed is achieved when the number of processors is increasedwhile
the problem size per processor remains constant, effectively increasing the overall problem size. The

12

Table 1: Simulation parameters of C64.
Component # of units Params./unit

Threads 128 single in-order issue, 500MHz
FPUs 64 floating point/MAC, divide/square root
I-cache 16 32KB
SRAM (on-chip) 128 32KB (20 cycles load,10 cycles store)
DRAM (off-chip) 4 256MB (36 cycles load,18 cycles store)

Crossbar 1 96 ports, 4GB/s port

weak scalingmeasures the exploitable parallelism to solve a larger problem. We can achievebetter
weak scalingby increasing the computational power of a single processor. However,on the emerging
many-core architectures, although the number of cores grows rapidly,the speed of individual processing
element is reduced. Therefore, we should measure the achieved speedwhen the number of processors
increased while the overall problem size is kept constant, which effectively decreases the problem size
per processor. That meansstrong scalingis greatly emphasized for the fine-grain parallel algorithm on
many-core architectures. It is also reasonable to evaluate performanceof small size of problems on a
simulator.

5.2 Empirical Results for Mapping Parallel BC Algorithm

In this section we present our empirical results. At first glance, we summarize an incremental optimiza-
tion results of the parallel algorithm for just-in-time locality and synchronization using SSB. Figure 8
depicts 4-50 times reduction of execution time by comparing to the ported HPCS SSCA2 with OpenMP
on IBM Cyclops64. The experimental data sets are generated by the program in HPCS SSCA2 bench-
mark.

#cores
4 8 16 32 64

0

5

10

15

20

execution time (in seconds) − scale=10

Original
JITL
JITL+SSB

Figure 8: The incremental optimization results. JITL: just-in-time locality

For BC algorithm we focus on four different performance characteristics. First we focus on perfor-
mance and scalability as we increase both the problem (graph) size and the number of threads. Second

13

#cores
4 8 16 32 64 128

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07
TEPS for different problem size

scale=8
scale=9
scale=10

Figure 9: Scalability results of the parallel betweenness centrality algorithm (higher is better). The
number of verticesn = 2scale, E(n) = 8n.

we focus on understanding locality and memory latency as we increase the number of threads. Third we
focus on the effect of barrier synchronization on the performance.Lastly, we present the performance
improvement by SSB lock synchronization.

• For BC algorithm we represent the problem size in term ofscale, where the number of vertices
is n = 2scale. Figure 9 illustrates the performance and scalability as we increase the number
of threads for three different scales (i.e., the problem size). We referto the number of traversed
edges per second (TEPS) as a performance metric, i.e.TEPS = n∗E(n)

T (n) , wheren is the problem
size. Comparing the result with the OpenMP implementation (Figure 2), we can see that our
optimization strategy shows a 16 times improvements of scalability. Using our approach we
achieve a linear speedups for all test cases when the number of threads is less than 32. For the
test case with a problem sizescale = 8, the performance stops increasing when the number of
threads reaches128 because the number of available parallel sub-tasks is less than the number of
hardware thread units. However, we improve the performance when the problem size is increased,
i.e for scale = 9 and10. For BC algorithm the degree of a vertex determines the amount of
parallelism that we can exploit. Although the multi-grain parallel algorithm reduces the number
of idle threads, the maximum degree of a vertex is 64 for problem sizescale = 8. So the
available parallelism for this small problem size still leads to a little improvement on128 threads.
For scale = 9 and10, where the maximum vertex degrees are94 and348, the performance and
scalability is further improved.

• Figure 10 shows the effect of memory latency tolerance using the techniquefor creating just-time
locality. Recall that the main purpose for creating just-in-time locality is to transform non-linear
off-chip memory access to linear on-chip memory access in such a way thatthe overhead of
the transformation is hidden. The implementation on C64 uses on-chip double buffers to hide
the off-chip memory latency. The memory threads are used to transfer data between two mem-
ory levels. The overlapping of memory operations and computation operations is important to

14

time profiling

#cores
4 8 16 32 64

0

0.5

1

1.5

2

2.5

3

3.5

4

overlapped
memory
computation

Figure 10: Time distribution and achieving off-chip memory latency tolerance.

256

16
32
64
128

1024
512

 0

 0.4

321684

T
im

e
(s

ec
on

ds
)

#cores

Execution time for different buffer size

 0.3

 0.25

 0.2

 0.15

 0.1

 0.05

 0.35

Figure 11: The comparison of running time using different sizes (bytes) of buffers.

achieve high performance. In order to figure out the overlapping time, weprofiled the execu-
tion time of computation and memory operations. Although the computation only access on-chip
memory, the overall execution time of computation tasks is more than that of the memory tasks
due to synchronization that is required among the computation tasks for computing the shortest
path information. Next we wanted to understand the effect of increasing buffer size used in the
parallel pipeline on the overall scalability. Interestingly increasing the buffer had little effect on
the scalability. Note that degrees of most of vertices in scale-free graph are low so that we can not
hide more off-chip memory access by increasing the buffer size. Figure 11 shows that increasing
buffer size does not achieve better performance.

• When implementing the parallel pipelining algorithm, we insert a barrier synchronization opera-
tion at the end of each pipeline. The overhead of a barrier is determined mostly by load balance
and the number of barriers.The algorithm loads the adjacency array into theon-chip buffers one
block at a time. It is important to note in the BC algorithm the computation behavior ofeach
vertex may be different. For example, if a vertex is not one of the predecessors of a neighbor that

15

Barrier Overhead

4 8 16 32 64 128

0

10

20

30

40

50
Rate (%)

Figure 12: Overhead of barrier synchronization for scale = 10. Themeasured barriers include the
barriers in both BFS and backtrace phase.

is currently loaded into the on-chip memory, we do not have to insert this vertex into the prede-
cessor set of the neighbor (otherwise we unnecessarily incur several additional memory accesses).
Therefore, the execution time of each block may be different and so workload may not be bal-
anced among multiple threads. Also, we cannot achieve a perfect overlapbetween computation
and memory tasks at every stage of the pipeline. On the other hand by increasing the number
of tasks, the workload on each thread decreases so that the difference of the workloads is not so
significant, and we achieve more overlapping time. Unfortunately such fine grain partition may
increase the depth of the pipeline and the number of barrier synchronization. Figure 12 illustrates
the percent of overhead of barrier synchronization with respect to theoverall execution time.

• Since in our parallel algorithm we only access a small portion of data duringthe computation
phase to create just-in-time locality, only a small portion of memory participate in datasynchro-
nization. Using SSB for data synchronization seems very effective. Asreference, we implemented
a highly optimized MCS [25] algorithm using in-memory atom operations on C64[11, 14]. As
shown in section 3 for C64 architecture, each core accesses his own SP with very low latency.
Thus, we use it as a ”local memory” in MCS algorithm. Figure 13 compares theperformance of
the parallel programs with MCS lock to that with SSB. SSB further reduces the execution time
and is very effective for the parallel algorithm.

5.3 Discussion

In order to highlight our joint study of architecture and algorithm, we compare the proposed parallel
BC algorithm with both HPCS SSCA2 [2] on a Intel 4-way dual-cores XeonSMP (8-processors) and a
specific BC algorithm implemented by John Feo (previously in Cray Inc.) on 40-processors Cray MTA-
2. Table 2 reports the TEPS performance on the three platforms. Althoughthe L2 cache size of the SMP
is 2MB, which can contain the whole graph data structure for the small problem size, the performance
still is low because an efficient lock synchronization is unavailable. The low performance on MTA-2 is
caused by low utilization of thread streams for the small problem size. In fact, we observed a sub-linear
scalability on MTA-2 when the problem size is large enough (i.e.,scale = 22. Unfortunately, we can

16

#cores
4 8 16 32 64

0

1

2

3

4

5

execution time (in seconds) for SSB & MCS lock

SSB
MCS

Figure 13: The comparison of software lock and SSB (BFS phase)

not run so large test sets on the C64 simulator), but the performance on theSMP is still weak (Due
to space limitation, we do not present the detail here). This comparison indicates that the algorithm
on MTA-2 achieves good weak scalability, but our algorithm on C64 achieves better strong scalability
because we unearth more additional parallelism even for small problem sizes.

Table 2: The comparison of TEPS on three platforms.scale = 10

#threads C64 SMPs MTA-2

4 2917082 5369740 752256

8 5513257 2141457 619357

16 9799661 N/A 488894

32 17349325 N/A 482681

Although we present the results of one case of computing betweenness centrality, it represents a
class of general applications with irregular memory access, low arithmetic intensity and unstructured
parallelism, which are different from traditional scientific computing. The experiments on gives some
interesting hints on many-core architectural design space and programming:

• A performance critical application with irregular memory access prefers tono-cache mechanism
memory hierarchy. Hardware-managed memory (cache) automatically exploit locality in pro-
grams. The irregular memory access pattern in BC sets an obstacle to the capability of cache
and incurs a large number of cache misses which hurt the memory bindwidth.For many-core
architectures, an increasing gap between the number of cores and bindwidth is a serious obstacle
to scalability of a parallel program. Configured with explicit memory hierarchy, C64 provides
an architectural support to programmer for precisely orchestrating memory movement for just-
in-time locality at algorithmic level using multiple simple hardware thread units. The results on
Cray MTA-2 with flat memory (no cache) prove a similar point.

17

• Architectural support of fine-grain synchronization is reasonable. In a fine-grain parallel program
on a many-core architecture, the overhead of synchronization is more sensitive since working-set
of each thread is small. Using software synchronization it becomes worse because the memory ac-
cess in a irregular program is unpredictable. The SSB on C64 is proven tobe favorable. Similarly
Cray MTA-2 provides full/empty mechanism at much more hardware cost.

• A runtime system supporting programmers to utilize just-in-time locality is promising. The ex-
perimental results show that achieving just-in-time locality in programs is an efficient alterna-
tive technique for developing high performance algorithms on many-corearchitectures. In algo-
rithmic level, programmers separate memory from computation and pipeline multiple memory-
computation stages. In parallel programming model, users specify the tasksand their depen-
dences, a runtime system could parse the task graph and automatically determines the granularity
of decoupling and a way of pipelining so that the program would be optimally adaptive to mem-
ory hierarchies. Another advantage of the runtime system may be to provide virtualization of
non-preemptive execution model, which is one of the conditions to just-in-time locality on C64.
The resource virtualization is important for easy programming.

6 Related Work

Due to the importance of computing betweenness centrality, there have beenseveral works on paral-
lelization on conventional parallel architectures [2–4]. These parallelprogram exploited inherent par-
allelism and solved a large scale graph on several parallel computers withhuge memory storage. Our
work focused on optimizing the irregular memory access using multi-threading many-core architec-
tures, which propose different challenges on parallelizing a performance critical application. On the
other hand, our work paid more attention to a joint study of architecture and algorithm. It is helpful to
give some implications on many-core architecture design in the future.

Our approach achieving just-in-time locality is inspired by Dataflow [15], it shares the same point
with percolation, which was briefly discussed by Gao in the context of HTMT project [18]. In Gao’s
work a percolation process was proposed to pack the code and data into atiny thread. Since there is no
implementation of Gao’s percolation model, it is unclear whether his approachwas effective in practice.
We have also implemented our approach in C64 and also used sophisticated fine-grain synchroniza-
tion (such as SSB) to improve performance and scalability of irregular applications on a many-core
architecture.

In our parallel pipelining algorithm we overlap computation task with memory task. The concept
of overlapping computation with I/O, network, and other long latency operations is an old concept.
Prefetching techniques [8, 21, 22, 24, 26, 35, 37] and thread speculation [6, 9, 10, 28, 31, 36] also use
such overlapping concept. Most previous work on prefetching also focused on moving data (mostly
contiguous data) from main memory to local memory (either to register or cache)prior to execution.
There are several differences between our approach and prefetching. (1) In software prefetching order
of execution of a program is predetermined and prefetch instructions areinserted to ensure that the
data are available when they are needed by the computation. In other words, conceptually computation

18

threads ”pull” the data locally using prefetch instructions. On the other hand, in our method the local
data determines which computation thread is ready to execute. In other words, data that is local to a core
will ”pull” computation thread to execute on the core. (2) In our threading model, a thread has to satisfy
two requirements before it can be enabled and ready to run: (i) data/control dependencies and (ii) locality
constraints. Our execution model is also non-preemptive and so we cannot bring in more data than what
can be consumed. In prefetching there is no control on how much data to prefetch—prefetching too
much or too less data can impact the performance. Besides, previous works do not discuss the impact
of prefetching in the context of massive multithreading many-core. A variant of thread level speculation
uses dependences by monitoring the reads and writes to memory locations. Inproducer-cosumer loop
iterations, the speculative execution leads to a violation of dependence, then must roll back. For the
irregular memory access in the BC algorithm, in addition to the random reference to arraysd, σ, andδ,
the references in the next iteration depends on the results in the current iteration. If we speculate the
references based on the remaining neighbor vertices, it can lead to a large number of roll backs if the
vertices have been marked.

There have been several work on the optimization of irregular programs on parallel architectures.
Recently, Williams et.al. [34]’s work on sparse matrix-vector multiplication on conventional multi-core
platforms implies that new methods for parallel irregular computing is imperative. Erez et.al [16] per-
formed a comprehensive study of 4 irregular scientific computing applications on a streaming processor.
Both their work and ours share the streaming programming style of gather-compute-scatter. The way
to gather data ahead make our approach different from theirs. In [16]the streaming processor uses a
DMA-style transfer, our approach utilizes the ample hardware thread units, where to hide the overhead
of transformation is easier and require less hardware cost. Salz et.al. [29] studied runtime methods to au-
tomatically parallelization and scheduling of loops. Trabado et.al [32] proposed a data parallel language
extensions for exploiting locality in irregular problems, their work also focus on loops. Nikolopoulos
et.al.’s [27] work tried to minimize the programming effort with OpenMP for irregular parallel codes.
Lucco [23] developed a methodology for compiling and executing irregularparallel programs, the goal
of his work is to achieve a optimal dynamic scheduling method. Based on objected-orented language,
Chien [7] indicated that explicit management of namespace is efficient for irregular programs, but their
experiments only reported the results for traditional scientific computing on conventional parallel com-
puters.

7 Conclusion

Emerging future microprocessor chip technology unveils a new generationof many-core chip architec-
tures that may contain 100 to 1,000 processing cores using a shared memoryorganization with large
number of on-chip memory banks. Computer architects, system software designers and application
scientists are realizing that they must work closely together to investigate howto exploit the computa-
tional power of such new many-core architecture to improve performance and scalability of large-scale
scientific applications. IBM Cyclops64 represents a new class of many-core architecture featuring with
shared address space for on-chip memory between cores and explicit addressing without cache. This pa-
per presents a study of evaluating the new many-core architectural features and shows how such features

19

can be effectively exploited when executing challenging irregular applications in practice.

Because of the irregular behavior of BC algorithm, it is difficult to achievehigh performance on
a parallel architecture. By leveraging on the key properties of explicit memory hierarchy and non-
preemptive execution model, we propose a parallel pipelining algorithm to implement just-in-time lo-
cality for BC program on IBM Cyclops64. The parallel algorithm make a good usage of the architectural
support of fine-grain data synchronization. Our experimental results show that our methods are promis-
ing to improve scalability and performance of irregular application in a many-core architecture. Our
future work will focus on implementing a runtime systems for supporting programmability on many-
core architectures.

20

References

[1] David Alderson, John C. Doyle, Lun Li, and Walter Willinger. Towardsa theory of scale-free
graphs: Definition, properties, and implications.Internet Math, 2(4):431–523, 2005.

[2] David A Bader. Hpcs scalable synthetic compact applications 2 graphanalysis.
www.highproductivity.org/SSCABmks.htm, 2006.

[3] David A. Bader and Kamesh Madduri. Designing multithreaded algorithms for breadth-first search
and st-connectivity on the cray mta-2. InThe 35th International Conference on Parallel Processing
(ICPP 2006), 2006.

[4] David A. Bader and Kamesh Madduri. Parallel algorithms for evaluating centrality indices in
real-world networks. InThe 35th International Conference on Parallel Processing (ICPP 2006),
2006.

[5] Ulrik Brandes. A faster algorithm for betweenness centrality.Journal of Mathematical Socialogy,
25(2):163–177, 2001.

[6] nones Carlos Garcı́a Qui Carlos Madriles, Jesús Śanchez, Pedro Marcuello, Antonio González,
and Dean M. Tullsen. Mitosis compiler: an infrastructure for speculativethreading based on
pre-computation slices. InPLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation, pages 269–279, 2005.

[7] A. Chien, J. Dolby, B. Ganguly, V. Karamcheti, and X. Zhang. Evaluating high level parallel
programming support for irregular applications in icc++. InProceedings of International Scientific
Computing in Object-Oriented Parallel Environments Conference (ISCOPE’97), 1997.

[8] Trishul M. Chilimbi and Martin Hirzel. Dynamic hot data stream prefetching for general-purpose
programs. InPLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on Programming
language design and implementation, pages 199–209, New York, NY, USA, 2002. ACM.

[9] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen. Dynamic speculative precomputation. In
the 34th Annual International Symposium on Microarchitecture, 2001.

[10] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, D. Lavery, andJ. P. Shen. Speculative precom-
putation: Long-range prefetching of delinquent loads. InThe 28th International Symposium on
Computer Architecture, 2001.

[11] Juan del Cuvillo, Weirong Zhu, and Guang R. Gao. Landing openmpon cyclops-64: An efficient
mapping of openmp to a many-core system-on-a-chip. InThe 3rd ACM International Conference
on Computing Frontiers, Ischia, Italy, 2005.

[12] Juan del Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. Gao. Fast:A functionally accurate sim-
ulation toolset for the cyclops-64 cellular architecture. InWorkshop on Modeling, Benchmarking
and Simulation (MoBS), held in conjunction with the Annual International Symposium on Com-
puter Architecture (ISCA’05), 2005.

21

[13] Juan del Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. Gao. Tinythreads: a thread virtual ma-
chine for the cyclops-64 cellular architecture. InFifth Workshop on Massively Parallel Processing
(WMPP), held in conjunction with the 19th rnational Parallel and Distributed Processing System,
2005.

[14] Monty Denneau and Henry S. Warren, Jr. 64-bit Cyclops: Principles of operation. April 2005.

[15] Jack B. Dennis and David P. Misunas. A preliminary architecture fora basic data-flow processor.
In ISCA ’75: Proceedings of the 2nd annual symposium on Computer architecture, pages 126–132,
New York, NY, USA, 1975. ACM.

[16] Mattan Erez, Jung Ho Ahn, Jayanth Gummaraju, Mendel Rosenblum, and William J. Dally. Exe-
cuting irregular scientific applications on stream architectures. InICS ’07: Proceedings of the 21st
annual international conference on Supercomputing, pages 93–104, New York, NY, USA, 2007.
ACM.

[17] Linton C. Freeman. A set of measures of centrality based on betweenness.Sociomtry, 40(1):35–41,
1977.

[18] Guang R. Gao and et.al. Programming models and system software for future high-end compting
systems: work in progress. InProceedings of the 17th International Symposium on Parallel and
Distributed Processing, 2003.

[19] Maurice Herlihy. Wait-free synchronization.ACM Transactions on Programming Languages and
Systems, 11(1):124–149, 1991.

[20] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and P. Chew. Optimistic paral-
lelism requires abstractions. InProceedings of the 2007 ACM SIGPLAN conference on Program-
ming language design and implementation, pages 211–222, 2007.

[21] Yuan Lin and David Padua. Compiler analysis of irregular memory accesses. InPLDI ’00: Pro-
ceedings of the ACM SIGPLAN 2000 conference on Programming language design and implemen-
tation, pages 157–168, New York, NY, USA, 2000. ACM.

[22] Jiwei Lu, Abhinav Das, Wei-Chung Hsu, Khoa Nguyen, and Santosh G. Abraham. Dynamic helper
threaded prefetching on the sun ultrasparc cmp processor. InMICRO 38: Proceedings of the 38th
annual IEEE/ACM International Symposium on Microarchitecture, pages 93–104, Washington,
DC, USA, 2005. IEEE Computer Society.

[23] Steven Lucco. A dynamic scheduling method for irregular parallel programs. InPLDI ’92: Pro-
ceedings of the ACM SIGPLAN 1992 conference on Programming language design and implemen-
tation, pages 200–211, New York, NY, USA, 1992. ACM.

[24] Chi-Keung Luk and Todd C. Mowry. Automatic compiler-inserted prefetching for pointer-based
applications.IEEE Transactions on Computers, 48(2), 1999.

22

[25] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalablesynchronization on
shared-memory multiprocessors. InACM Transactions on Computer Systems, volume 9, page 1,
1991.

[26] Todd Mowry and Anoop Gupta. Tolerating latency through software-controlled prefetching in
shared-memory multiprocessors.Journal of Parallel and Distributed Computing, 12(2):87–106,
1991.

[27] D. S. Nikolopoulos, C. D. Polychronopoulos, and E. Ayguade.Scaling irregular parallel codes
with minimal programming effort. InSC’01, 2001.

[28] L. Rauchwerger, Y. Zhan, and J. Torrellas. Hardware for speculative run-time parallelization in
distributed shared memory multiprocessors. InProceedings of the 4th International Symposium
on High-Performance Computer Architecture, page 162, 1998.

[29] J. H. Salz, R. Mirchandaney, and K. Crowley. Run-time parallelization and scheduling of loops.
In IEEE Transactions on Computers, volume 40, pages 603–612, 1991.

[30] Mikhail Smelyanskiy, Victor W. Lee, Daehyun Kim, Anthony Nguyen, and Pradeep Dubey. Scal-
ing performance of interior-point method on large-scale chip multiprocessor system. InIEEE/ACM
SC’07, 2007.

[31] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable approach to thread-level spec-
ulation. InProceedings of the 27th Annual International Symposium on Computer Architecture,
2000.

[32] Guillermo P. Trabado and Emilio L. Zapata. Data parallel language extensions for exploiting
locality in irregular problems. InLanguages and Compilers for Parallel Computing, pages 218–
234, 1997.

[33] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,D. Finan, P. Iyer, A. Singh,
T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar. An 80-tile 1.28tflops network-
on-chip in 65 nm cmos. InIn Proceedings of IEEE International Solid-State Circuits Conference,
pages 98–589, 2007.

[34] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimization of sparse
matrix-vector multiplication on emerging multicore platforms. InIEEE/ACM SC’07, 2007.

[35] Youfeng Wu. Efficient discovery of regular stride patterns in irregular programs and its use in
compiler prefetching. InPLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on
Programming language design and implementation, pages 210–221, New York, NY, USA, 2002.
ACM.

[36] W. Zhang and D. M. Tullsen. Accelerating and adapting precomputation threads for efficient
prefetching. In3th International Symposium on High Performance Computer Architecture, 2007.

23

[37] Zheng Zhang and Josep Torrellas. Speeding up irregular applicaitons in shared-memory multipro-
cessors: Memory binding and group prefetching. In22nd International Symposium on Computer
Architecture, 1995.

[38] Weirong Zhu, Vugranam C. Sreedhar, Ziang Hu, and Guang R. Gao. Synchronization state buffer:
Supporting efficient fine-grain synchronization on many-core architectures. InThe 34th Interna-
tional Symposium on Computer Architecture, 2007.

24

