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Abstract

This paper presents a joint study of application and archite to improve the performance and
scalability of an irregular application — computing betweess centrality (BC) — on a many-core ar-
chitecture IBM Cyclops64. Dynamically non-contiguous negynaccess, unstructured parallelism
and low arithmetic intensity in BC program pose an obstaglart efficient mapping of parallel
algorithms on such many-core architectures. By identifyseveral key architectural features, we
propose and evaluate an efficient strategy for achievinfplsitity on a massive multi-threading
many-core architecture. We demonstrate how to exploreiqgrain parallelism and just-in-time
locality with explicit memory hierarchy, non-preemptilee¢ad execution and fine-grain data syn-
chronization. Comparing to a conventional parallel aldpn, we get 4X-50X improvement in
performance and 16X improvement in scalability on a 12&sdBM Cyclops64 simulator .
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1 Introduction

Computer architects and designers are exploring the massive manyralttecdure space with the hope
of improved execution of scientific applications. At a high level there acelinds of applications—
“regular applications” where data access and control flow follow reguta (statically) predictable
patterns, and “irregular applications” where data access and cowntrdhfive statically (and often even
dynamically) unpredictable patterns. Analysis and optimization of suchuilaegpplications are noto-
riously difficult. With the advent of massive many-core architectured) asdntel Tera-scale [33] and
IBM Cyclops64 [14] that contain tens or even hundreds of on-chipsdt is extremely important to
tackle the difficult problem of optimizing and scaling irregular applications-cBip memory hierar-
chy, limited on-chip memory per core, and other features in such archisatuake the problem even
more difficult. Researchers are realizing that for many-core archigecthe problem of scaling and
optimizing irregular applications have to be done at different phasesdinglalgorithmic changes and
improvements to take advantage of the many-core architecture featur&8®J2Many irregular appli-
cations are often implemented using pointer data structures such as grnabfjgseales and recursive
control flow to traverse and manipulate such pointer data structures.iffié¢siltiand often impossible
to capture the data access patterns at compilation time. For architecturagihait memory hierarchy,
unpredicatable data access patterns often lead to higher off-chip mewca®ys latency, which in turn
can degrade the performance and scalability of irregular applications.

Computing betweenness centrality (BC) [17] in graph analysis is a gamd@e of such irregular
problems. BC is a popular quantitative index for the analysis of large soalplex network. It has been
used extensively to build protein interaction network, identify key actorsrinrigt network and study
sexual/AIDS network. BC measures the control a vertex has over comatiomién the network. Bran-
des’ algorithm [5] is one of fast algorithms for computing BC. In this pawerrefer to BC algorithm as
one proposed by Brandes [5]. In general, BC algorithm calculatesetiiteality through two steps: BFS
(breadth first search) traversal and backtrace accumulation. Dale-free [1] sparse graph traversal
in these important applications, BC algorithm exhilgiy;mamically non-contiguous memory accasd
unstructured parallelismAnother explicit characteristic isw arithmetic intensity- the ratio between
arithmetic operations and memory operations, which obviously forcesgrogers to expose an ade-
guate amount of parallelism to the underlying many-core architecture withapplication, instead of
using higher speed processor. In this paper, we leverage someditesefeon a many-core architecture
— IBM Cyclops64 to improve the performance of computing betweennedgatinin the scale-free
sparse graph. The motivation of behind this idea is to be able to identifynipthow programmers
will use mechanisms provided in the emerging many-core architecture J@tineaisefulness of various
mechanisms as evidenced by their impact on application performance.

In consideration oflynamically non-contiguous memory acceassstructured parallelisnand low
arithmetic intensityin a large class of irregular applications, we identify four key propertfd8!
Cyclops64 (C64) to address the challenge of executing irregulargresgon many-core architectures:

e Massive hardwarethread units. C64 integrates 160 simple 64-bit, single issue, in-order RISC
processor operating at a moderate clock size (500MHz). The deslgyhbfveight cores leaves
more space for integrating more cores in a chip. For an application with itdwraatic intensity,



it is desirable to exploit more parallelism. We not only implement a multi-graineallphBC
algorithm, but unearth additional parallelism to address the issue of iaragemory access.

Non-preemptive thread execution model & Explicit memory hierarchy. These properties are
fundamental to the proposed strategy for optimizing dynamically non-canigmemory access.
The "dynamic” of memory operations is caused by data dependenceseilevéiby-level graph
traversal in BC algorithm leads to producer-consumer data flow. Otegyrdecouples computa-
tion with memory operations so that the memory accesses are operated atestffaread units
to achievejust-in-time locality— data are local to a processing core just before computational
consumer threads are scheduled to the core. Once the data depsnaienspecified by pro-
grammers, in the non-preemptive multi-thread execution model a prodooswner operations
are completed within once thread scheduling slot. It avoids multiple additi@atalsivappings
through memory hierarchy, which often degrades performance. Wtebm C64 is configured
with three levels of memory hierarchy, which can be directly addressad/étore) by all pro-
cessing cores. With the explicit memory hierarchy programmers can expetyiyswhich level
of memory the data are. Combining with non-preemptive execution it is feasibtdealule com-
putation threads only access lower latency memory space. Our re-stro€tBC algorithm is
an orchestration of the computation and memory threads in a pipelining wawtsthéhhigher
latency memory accesses are hidden and just-in-time locality is achieved.

Fine-grain data synchronization. The fine-grained parallelism of visiting neighbors of a vertex
(we refer to it as an extension operation) in BC algorithm is limited by the degifeertices, most
of which is low in the scale-free sparse graph [1]. The multi-grainedllpaedgorithm exploits
the parallelism between multiple extension operation in the same level. Wheaxtension
operations share the same neighbors, they require a synchronizatian soe vertex is processed
only one times. C64 provides an architectural support of fine-graila¢al synchronization —
synchronization state buffer (SSB) [38]. Our strategy to optimize iteeguemory access also
takes good advantage of the SSB mechanism, and show that it is valuabfgpttdine-grain
data synchronization on many-core architectures.

By utilizing the key architectural properties to map parallel BC algorithm weiiodtea performance

improvement of 4-50 times and scalability of 16 times on IBM Cyclops64. Todisédf our knowledge
this paper is the first indepth study of implementing a high performance BGagrogn many-core
architectures. The rest of the paper is organized as follows: In seZtiare describe betweenness
centrality (BC) algorithm and its characteristics. In section 3, we introdBé& Cyclops64 (C64)
architecture. Section 4 discusses how to leverage the key proper@éd ob re-structure BC algorithm.
Section 5 evaluates the performance on a many-core chip architectldeaavs implications on many-
core architecture and programming. In section 6, we discuss the existatgd techniques. Finally,
section 7 concludes this paper.



2 lrregular Characteristics of BC Algorithm

In this section, we will briefly describe BC algorithm (for the detailed algorithefier to [5]), then
examine the important irregular characteristics. Given a géaph (V, E') whereV denotes the set of
vertices and? the set of edges itv, the betweenness centrality (BC) measure of a veriexgiven by

be(v) = Z 05t (V) 1)

s#Ev#ELEV

whered,; (v) denotes the fraction of shortest paths betweandt that pass through a particular vertex
v, and is sometimes called as the pair-dependengy,of onv. The algorithm contains a BFS (breath-
first search) traversal and a backtrace accumulation. In the BR&dedyvthe set opredecessorsf a
vertexv on a shortest path from source verteis generated:

Py(v) ={u eV :{u,v} € E,dg(s,v) =da(s,u) +w(u,v)} 2)
At the same time, thdependencyf s onv € V is calculated:

os(v) = Z ost(v) ()

teV

In the backtrace accumulation, a partial value of a predecessor is accumulated according to its
successors. Equation 4 and 5 describe the calculation.

@)= Y Tl bw) (4
w:wE P (w) sw

be(v) = > 64(v) (5)
s#veEV

A space efficient data structure for sparse grépis an indexed adjacency array data structure.
Figure 1 is an example of an index adjacency array, which is composedef array and a successor
array. In fact, the predecessor getecords the trace of BFS tree, it is stored in another adjacency array.
The parameters, §, o, and the measuri: are implemented in linear array. However, the references to
the three linear arrays are very dependent on that to the adjaceayyéé, P.

vO vl v2 v3 v4 V5 V6 V7
[o[3]s[8] 9] 10 12 13 index array

]

l2]a]7]ale6]a]e6]7]2]3]0]3]3]5]6] neighborara

Figure 1: Adjacency array of a graph.

Unlike regular applications where the inherent locality and parallelism gvarapt and easy to
exploit, it takes careful understanding of the locality and parallelism heha¥irregular applications
before one can achieve high performance and scalability of such afpptis. We summarize three
important features of BC algorithm, which represents a large class ofiiategpplications.
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e Dynamically non-contiguous memory accdsst instance, during the BFS phase, a queue is used
to maintain the current vertices that is being extended (visiting the neighbaitiges of a vertex
is referred to as an extension operation). The effectiveness of iskngxocality optimization
techniques such as prefetching and speculation rely on the continuity oéitjeboring vertices
and regular distance of different region of neighboring vertices incadigy arrays. In a scale-
free sparse graph, the degrees or neighbors of vertices are hagtdble. Considering the simple
example shown in Figure 1, we assume that the nedes, andv; are currently in queue from
which we pick nodes and process them. Notice that not only the neiglgboodes ofvs, vy
and v; are located in different region in the adjacency array, but also the sthidiveen the
different regions are not constant. Also, the referencesdoo, BC are almost random because
the neighbors or predecessors of a node depends on the input §@phn instance of visiting
neighbors ofv,, v4 andvz, the sequence of referencedas d[1], d[6], d[7], d[3], d[5], d[6] (the
same foros). The dependence betweérs, o, andbc and the adjacency arrays means that the
references tal, 6, o, andbc are determined at runtime. Therefore, such non-contiguous or non-
linear memory access pattern cannot benefit from current prefetohsmeculation techniques.

e Unstructured parallelismThe available parallelism within an extension operation is proportional
to the degrees of vertices. However, the degrees in the scale frdeajvaps a power-law distri-
bution [1], which means most of vertices has low degrees. Therefomamy-core architectures
with massive cores the parallelism will be very fine-grained. In order to @ttliz ample pro-
cessing units, an alternative way is to exploit more parallelism in BC algoritbmgulti-grain
parallel algorithms. The multiple extension operations at the same level denshed in parallel
only if they do not share the same neighboring vertices. In Figusedy, v7 are at the same level
of BFS tree. There exits parallelism during the extension of them, howevandv, share the
same neighboring vertex;, a synchronization between two thread units processirandovs is
required so thatg is touched by only one thread. Intuitively, a fine-grained mutex lock is a solu
tion to the conflicts. We note that the size of memory storing lock is the numhertides, which
is usually so huge that the small local memory or cache can not hold it. Mudfeywtbe memory
access pattern to the lock array depends on that to the vertices, teeiteferalso dynamically
non-contiguous.

e Low arithmetic intensityThe profiling of BC program execution shows that BFS traversal is the
most time consuming. Looking at equation 2, 3 used in BFS traversal, arsmxiarf one vertex
needs two arithmetic (float point addition) operations, six memory operatidlisough most
of many-core designs do not resort to increase the speed of singleanprmore, the number
of cores in a chip is increasing for a higher arithmetic performance. Fdititaal scientific
computing applications with high arithmetic intensity and high parallelism, they nigtbemnefit
from many-core architectures. In order to improve the performance ofanebound programs
like BC algorithm, the key to a successful parallel program will be aniefficstrategy to reduce
the memory access overhead using the massive parallel thread units.

Most of current multi/many-core architectures are designed for regualantific computing with
high arithmetic intensity and highly explicit parallelism, the irregular applicatiors BIC program
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Figure 2: The performance of OpenMP implementation — HPCS SSCA2. Trhberwf vertices and
edges is 1024 and 8192, respectively

show different behaviors which do not match well with the many-coreit@ature. HPCS benchmark
suite SSCAZ2 [2] specifies an OpenMP implementation of BC algorithm. Figuressits performance
on IBM Cyclops64. As the number of threads is increased, the scalabilitypariormance degrades.
In order to achieve high performance on current many-core archiés;titis important to identify the
characteristics impacting on application performance.

3 IBM Cylopst4 Architecture

In this section we describe our many-core architecture, highlighting sérite aore features that we
exploit in improving the performance and scalability of irregular applicatioB81 Cyclops64 (C64)
is a manycore architecture designed to serve as a dedicated petaflogiogrepgine for running high
performance applications.

Node

Processor 1 2 80 Chip

[sp|[sp]||[sp][sP] [sp|[sP]

[tu |[Tu ]| |[Tu][Tu] [Tu][Tu] b\,ﬂh‘ omesn
o Gigabit

ethernet

~ Host || D
interface FPGA

Control
Crossbar Network network

I 1
GM || GM GM || GM GM || GM ! !
DDR2 SDRAM Off—chip
controller memory

Figure 3: IBM Cyclops64 chip architecture




1. A C64 chip employs a multiprocessor-on-a-chip design with 160 haedthaead units, half as
many floating point units, embedded memory, an interface to the off-chip 3IDR&mory and
bidirectional inter-chip routing ports. On-chip resources are caeddo a 96-port crossbar net-
work, which sustains all the intra-chip traffic communication. In regard t@iolip commu-
nication bandwidth, each processor within a C64 chip is connected to sbarosetwork that
can deliver 4GB/s per port, totaling 384GB/s in each direction. The bialtlolywrovided by the
crosshar supports intra-chip communication, i.e. access to other prosesschip memory.

2. C64 chip has no data cache and features a three-level (scrattigpaary, on-chip SRAM, off-
chip DRAM) memory hierarchy. A portion of each thread unit's corresiog on-chip SRAM
bank is configured as the scratchpad memory (SP). Therefore, thd thmé can access to its own
SP with very low latency through a backdoor, which provides a fast teanpstorage to exploit
locality under software control. The remaining sections of all on-chip SR¥akks that together
form the on-chip global memory (GM) that is uniformly addressable frorthadlad units. There
are 4 memory controllers connected to 4 off-chip DRAM banks.

3. C64 incorporates efficient support for thread level executior. igtance, a thread can stop
executing instructions for a number of cycles or indefinitely; and whérepdt can be woken
up by another thread through a hardware interrupt. All the thread uniténvédtichip connect
to a 16-bit signal bus, which provides a means to efficiently implement bsrri@4 provides
no resource virtualization mechanisms: the thread executionrispreemptiveand there is no
hardware virtual memory manager. The former means the OS will not iptethva user thread
running on a thread unit unless the user explicitly specifies termination orcaptn occurs.
The latter means the three-level memory hierarchy of C64 chijsilsleto the programmer.

4. C64 providesynchronization state buffer (SSB)support fine-grain data synchronization ( refer
to [38] for details). SSB is small buffer attached to the memory controlleacii ememory bank. It
records and manages states of active synchronized data units totsanbaccelerate word-level
fine-grain synchronization. Thus, SSB avoids enormous memory stasi and high latency
memory access. the structure of an SSB is show in Figure 4. Each SSBemsigts of four parts:
1) address field that is used to determine a unique location in a memory Bdnfe&d identifier,

3) an 8-bits counter and 4) a 4-bits field that supports 16 differentsgnization modes. SSB
mechanism uses instructionssshlock/unlockto implement fine-grain lock synchronization.

state (4-bits) counter (8—bitsﬁ thread id address

Figure 4: Structure of SSB entry

4 Mapping BC Algorithm to IBM Cyclopst4

In this section, we discuss in detail betweenness centrality with graphgtedesrd show how to map a
parallel algorithm to C64 by leveraging on the architectural support. #&dnn section 2, due to highly
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variable degrees and data dependence, both low arithmetic intensitynammdatured parallelism lead
to the low utilization of massive hardware units, and both high memory storagecd dynamically
non-contiguous memory access patterns incur high overhead ofipffrmory accesses. Our strategy
is to combine the algorithmic re-structure with key architectural properties:

1. Greedy parallelism.The underlying many-core architecture provides massive hardwagadhr
units and efficient fine-grain data synchronization, we try to exploit ashnparallelism as pos-
sible in parallel programs. Therefore, we develop a multi-grain parBiizlalgorithm, which
implements coarse-, medium- and fine-grained parallelism simultaneouslyrcHieetural sup-
port of efficient data synchronization is used in the multi-grained paedtierithm. Being aware
of low arithmetic intensity and memory hierarchy, we decouple computation (atittjropera-
tions with memory operations, then exploit additional parallelism between thenake better
use of massive parallel thread units.

2. Just-in-time locality. Like cache-based architecture, it is desirable to schedule most of shread
to access low latency on-chip local storage. Due to dynamically non-cmutigmemory ac-
cess, traditional prefetching and speculation techniques is hard to optiviiz@entify that the
architectural characteristics of explicit memory hierarchy plus nonappsiee thread execution
model make Dataflow-like execution model [15] possible. Although we adreliminate the
intrinsic data dependence (producer-consumer in BC algorithm), theipglecbcomputation op-
erations and memory operations may be executed according to data-oeethanism. Because
data movement is under control of programmer and threads processidatthis not preemptive,
computation threads consunust-in-time localityproduced by memory threads, that is, data are
local to computing core just before the core starts to processing the data.

Recall that there are two phases in the BC algorithm: the BFS traversddaaktrace accumulation
(Section 2). Both phases have the similar computing behavior (althoughtktdime accumulation is
of high arithmetic intensity, our optimization strategies still work). To simplify tresspntation we only
describe the optimization for the BFS traversal phiase.

4.1 Preiminary Algorithm with Multi-grained Parallelism

Intuitively, the BC algorithm exhibits three level of parallelism itself. Each Bfe& one source vertex
can be started in parallel. For example in Figure 1, two BFS searches fdexy, andwv, can be
dispatched to different parallel threads, respectively. The capesred parallelism require multiple
copies of the whole data structure. The medium-grained parallelism is expldited two threads are
visiting the neighboring vertices of different vertices in the same levelekampleps, v4, v7 lie in the
same level of BFS tree. When visiting their neighbors, three parallel thegadhctivated to do the three
task, respectively. However, if two vertices share the same neighbegitiges, a synchronization is
forced to keep the shared neighbors being visited for just one timesfinghigrained parallelism is to
visit the neighbors of a vertex in parallel. We may schedule three threadsttthe three neighboring

Lalgorithm for backtrace phase is very similar.



verticesvs, vy, v7 Of vertexwvg in parallel. However, there are two factors hindering the various paral-
lelism. First, The embarrassingly coarse-grained parallelism needs aotafiydata structures in the
memory space of each thread. For a large scale graph in real world, thergngpace usage is so huge
that it often exceeds the physical memory even in traditional parallel conspuat& speaking of current
many-core architectures with small on-chip memory size. On the other, iv@dedsively concurrent
memory accesses place burden on bandwidth, then slack the scalabildpdSeote that the scale-free
sparse graph has few vertices with high degrees. Both the available meatidniine-grained paral-
lelism depend on the degrees of vertices. Therefore, current pamgilementations [2—4] which only
exploit either one of medium- and fine-grain parallelism can not achieve gedormance on massive
multi-threading architectures.

In the multi-grain parallel algorithm, the coarse-grain parallelism is easy teratehd, we in detail
present the combination of medium- and fine-grain parallelism. Let ustelé¢he set of the vertices
that is being extended in the current queue (thelevel of BFS tree) a¥; = {v;1,via, ..., v }. Let
N; = {ujl,ujg,...,ujkj},l < j < k denote the neighboring set of vertices of a vertgx During
execution the unvisited neighbor vertice$d[u] = —1) are added to the current queue and the vertices
being extended in the shortest patt{ = d[v] + wlu][v]) are added to the set of predecesBfu|.

The multi-grain parallel algorithrtogically compacts all the neighbors in one level into one large set:
UN; = U1gjgn N;, then partitions it among parallel threads. In the case of ignoring sharghlboring
[UNi|=35_1 |N;]

max";:1|N]-|
than the fine-grain parallel algorithm at each level. However, in this initidtifgrain parallel BC
algorithm there are two problems to be addressed:

vertices, the multi-grain parallel algorithm achieves at Igast times of parallelism

e The multi-grain parallel algorithm achievestimes of parallelism at the cost of concurrently
accessing times of memory addresses. On C64 the small local storage is too small to hold
the entire combined neighboring set, therefore a large number of higleyaddfirchip memory
accesses happen. Meanwhile, the concurrent off-chip memorysascesake the contention of
the limited off-chip bandwidth worse.

e Because the operations on one vertex are involved with only two arithmetiateapes, the criti-
cal section protected by synchronization operations are so small tretrtbleronization overhead
dilates the size of critical section. Thus, an efficient synchronizatiomareésm SSB on C64 will
make a significant performance improvement. However, as noted in [38 p&rformance will
degrade if the overflow of SSB happens when a synchronization tapers taken over by soft-
ware. The multi-grain parallel algorithm may increase the number of activayinghronization
memory addresses.

4.2 Achieving Just-in-time L ocality

In the preliminary version of the multi-grain parallel BC program, we obsameunt of off-chip mem-
ory accesses. In fact, the access to on-chip local storage havehighen bandwidth and lower latency
than that to off-chip memory on many-core architectures including C64refdre, it is reasonable to
schedule as many threads as possible to only access on-chip local nsgraocey Because both on-chip
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and off-chip memory are addressed by all threads in a uniform spilealifferent latency, in a con-
ventional execution model a thread is activated as soon as its datalaependencies are satisfied,
regardless of the data are in on-chip local storage or off-chip mentorhis paper, we refer to this
thread execution model asneaker modelSuch weaker thread execution model may do well for reg-
ular applications, where there is an inherent cache/memory locality in the applic Unfortunately,
irregular applications like BC program often have dynamically non-contigunemory access. Note
that C64 is configured with explicit memory hierarchy and non-preemptrgathexecution model.
Programmers can explicitly state where the data are in explicit memory higrakdn-preemptive
thread execution model forces a thread to finish consuming its data withsohedule. Based on these
architectural properties, programmers can specify the exact relafdrestfiveen a thread execution and
places of its data. Inspired by Dataflow model [15], we propose a syraieghieve just-in-time locality
for dynamically non-contiguous memory accesses on C64.

2NG
locality requirement N

©)

(a). Generic thread execution graph (b). A thread exeuction graph with locality dependenct

Figure 5: thread execution graph

We represent a program as a directed acyclic thread graph, wheltenede is a thread, and a
direct arc between two nodes represents a precedence relation hehnesds (See Figure 5). In a
thread graph, a node(i.e., a thread) is enabled if all its predecessor nodes have completedeand th
required data and control dependences have been satisfied. \@dloaiad that satisfies both data and
control dependence requirements as bédaggcally enabled In order to achieve just-in-time locality
for a thread execution, it is not sufficient for a logically enabled threadito We introduce locality
constraint in addition to data and control dependence requirements tmowethe latency gap through
memory hierarchy. Using locality constraint a logically enabled thread ofianat immediately run
since the data may still be in off-chip memory hierarchy or in the local memooyhalr cores. All data
referenced by the thread should become local before a thread cianelsegution. We call a logically
enabled thread dscality enabledif it also satisfies locality constraints (See Figure 5). The locality
requirements ensures that the corresponding data of the candidatbdheaasident in the same level
of memory hierarchy where it is to be enabled. The stronger constraitiiread execution is data-
centric, that is, the local data enables a thread execution.

Obviously, our strategy results in additional operations for "creatingélity constraint. Note that
the massive hardware thread units on C64 and low arithmetic intensity of Bffaong we separate
several threads to complete locality constraint. Meanwhile, the computatiostions and memory op-
erations are decoupled so that the parallel program is mapped to sunfpesttioread execution model.
Within memory hierarchy, the memory operations may involve either collecting dtee tdward the
cores where the thread is enabled, or sending/migrating the data awath@ores. Since most archi-
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Figure 6: A demonstration of the parallel pipelining process for the BFSebfthe BC algorithm. For
readability, the transformation (linearization/scatter) and data movemenepiget as two steps. A
real implementation finishes them in single step by memory threads.

tectures (including many-core architectures) are designed to explagtliocality”? it is important to
transform non-linear locality into linear locality just in time for the computation.ifstance, consider
the example shown in Figure 1, and assume that, andwv; are currently in queue, and assume we
extend (during BFS) node,, to bring in nodes, vg andv;. Since these three nodes are contiguous
we exploit the locality among them and arrange them in a linear contiguous méimaore memory).
However, neither[1], d[6], d[7] nor o[1], o[6], o[7] are contiguous, if we performed a linearization to
these discrete memory locations just before they will be used to computeyéachieve the "created”
spatial locality. In an implementation, programs raat explicitly perform such a linearization opera-
tions in off-chip memory, but naturally complete it during data movement througimory hierarchy.
For example, a memory thread, which transfers data from off-chip memag-tthip memaory, con-
sists of computing the start address and size of the neighboring vertigies in adjacency array of
each vertex, and collecting neighboring vertices dispersed in thehigffreemory address (adjacency
array) into a contiguous on-chip memory address. It also collects thesponding elements i o
into a contiguous on-chip memory address. Notice that there is a pmdoicgumer relationship be-
tween the collection of neighboring vertcies and collectionlaf. Also, the memory references of
d, o are discrete because the distribution of the neighboring vertices obeysoh p@ower in scale-free
graphs. Once computing the relevant informatiéns) we write them back to off-chip memory using
yet another memory threads.

In order to tolerate the overhead of "creating” locality constraint, we éixpbrallelism between
computation threads and memory threads. The multi-grain parallel algorahtitigns union set/ N;
into multiple sub-blocks. When computation threads are processing the ddteky, some memory
threads gather the data in blotk- 1 and other memory threads scatter the results that are generated
using the data in block— 1. Figure 6 illustrates the overall process across on-chip and off-chipame
The threads operating multiple sub-blocks forms a pipeline, which achiesteimjtime locality for each

2\We use the term linear locality to mean that data access have constantamddes contiguous accesses the strides have
one unit value, typically one word length.
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/1 Original serial Code
BFS(int v) {
int dv = d[v];
int sigmav = sigma[v];
for (i = 0; i < NumEdges[v]; i++){
w = AdjacentArray[index[v]+i];
if (diw] < 0) {
d[w] = dv + 1;
sigma[w] = 0;
if (diw] = dv + 1)
sigma[w] = sigmav + 1;

}

//Code achieving justin—time locality using three pipelined phase:

Il (1) off—chip memory read (AdjacentArray);

/1 (2) compuation (accessing emhip memory: buff, buffl, buff2,

Il (3) off—chip memory write (AdjacentArray).
BFS(int v) {

int offset = 0;

int turn = 0;

int dv = d[v];
int sigmav = sigma[v];
SPAWNTHERAD{

for (i = 0; i < buffsize; i++)

buff[turn][i] = AdjacentArray[index[v]+offset+i];
offset += buffsize;
turn "= 1},
BARRIERWAIT () ;
while (offset < NumEdges[v]) {
/11. off—chip memory read
SPAWNTHERAD{
for (i = 0; i < buffsize; i++)

buff[turn][i] = AdjacentArray[index[v]+offset+i];

offset += buffsize;

turn "= 13},
SPAWNTHERAD{
for (i = 0; i < buffsize; i++) {
w = buff[turn][i];
buff2[turn][i] = d[w];
buff3[turn][i] = sigmalw];

turn "= 13},
/1 (2). compuation (accessing emhip memory);
SPAWNTHERAD{
for (i = 0; i < buffsize; i++) {
if (buff2[turn][i] < 0) {
buff2[turn][i] = dv+1;
buff3[turn][i] += 0;

}
if (buff2[turn][i] == dv+1)
buff3[turn][i] += sigmav;

turn "= 13};
/1 (3). off—chip memory write .
SPAWNTHERAD{

for (i = 0; i < buffsize; i++) {
w = buff[turn][i];
d[w] = buff2[i];
sigma[w] = buff3[i];

turn "= 1}};
BARRIERWAIT () ;

buff3);

Figure 7: An illustration of BFS codes achieving just-in-time locality at onelleve

11

sub-block. The complete multi-grain parallel for BFS phase is shown inr&igu

4.3 Using Architectural Support of Fine-grain Data Synchronization

Our previous work on C64 [11, 38] indicates that lock-based symikation is better than lock-free
one for explicit memory hierarchy. In fact, since there is no priority ine@rand convoying problem in
C64, performance and memory contention are the only factors of ateeldata structure. For lock-free
synchronization [19] in parallelizing betweenness centrality, due toutaegnemory access pattern, we




observed many failure of speculation and rollback. However, with soéMock mechanism, we have
to use additional lock array to assign one lock to each vertex. The sizeloatoay is the same with

the number of vertices, which is usually huge in real world. Thus, forgelacale graph, it generates
amounts of irregular off-chip memory accesses since these accessssaciated with that of vertices.

There are two remarkable features of the proposed parallel pipeliningthlm : 1). We explicitly
separate computation from memory threads. The computation and memorystless different
memory locations at any instaneémplemented by double-buffering. 2). The algorithm accesses the
arrays in a chunking way, that is, in each pipelining stage, only small bleskde in on-chip memory
at any instance. Note that the on-chip memory of C64 is organized in multiple banks way wizete e
process is associated with a memory bank. Net M x B be the number of memory locations, where
M is the size of each memory bank aBds the number of memory bank. At any instaricéet S(t)
be the amount of synchronization by all threads. Since the two remarlesdtieds of the algorithm and
the number of active threads< N, the program is easily adaptive to satisfy an important constraint:

S(t) < N (6)

Therefore, at any instance only a small fraction of memory locations &ikelgcparticipating in syn-
chronization. This observation exactly satisfies the condition of no ovenfl&SB.

5 Evaluation

In this section we report experimental results and show the architectgralgorithmic impact on pro-
gram performance, then summarize interesting implications on many-cdriéeatare and program-
ming.

5.1 Methodology

We evaluate the performance characteristics of mapping approachesycleaccurate C64 simula-
tor [12] for the parallel BC program. The parameters of C64 architectsee in the experiments are
summarized in Table 1. The toolchain on C64 consists of an optimized G@®iker, a thread exe-
cution runtime systems TNT [13] (Pthread-like) and a TNT-based OperdMIP By modifying HPCS
SSCAZ2 bechmark [2], the proposed parallel algorithm is implemented usifg\tidibrary. The TNT
runtime always maintains as many threads as the number of cores. Thedi8RWANTHREAD in
figure 7 is simply expressed as checking/assigning a idle thread.

We report the experimental results only for small problem sizes. Exoefite limitation of simu-
lator itself, note that C64 is devised as an accelerating engine for buildiegefldps supercomputer,
and there will be massive C64 nodes in the systems. In a massive paligilethen the working-set
in each node may be usually small. On traditional supercomptuers, mobieapalications have put
emphasis onveak scalingwhere speed is achieved when the number of processors is increased
the problem size per processor remains constant, effectively incgetdsroverall problem size. The
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Table 1: Simulation parameters of C64.

Component # of units | Params./unit

Threads 128 single in-order issue, 500MHz

FPUs 64 floating point/MAC, divide/square root
I-cache 16 32KB

SRAM (on-chip) 128 32KB (20 cycles load,10 cycles store
DRAM (off-chip) 4 256MB (36 cycles load,18 cycles storg)
Crossbar 1 96 ports, 4GB/s port

weak scalingmeasures the exploitable parallelism to solve a larger problem. We can abeitee
weak scalindoy increasing the computational power of a single processor. Howavéhe emerging
many-core architectures, although the number of cores grows raghidiypeed of individual processing
element is reduced. Therefore, we should measure the achievedveperedhe number of processors
increased while the overall problem size is kept constant, which efédgtilecreases the problem size
per processor. That meassong scalings greatly emphasized for the fine-grain parallel algorithm on
many-core architectures. It is also reasonable to evaluate perforrobap®ll size of problems on a
simulator.

5.2 Empirical Resultsfor Mapping Parallel BC Algorithm

In this section we present our empirical results. At first glance, we suinenam incremental optimiza-
tion results of the parallel algorithm for just-in-time locality and synchronimatising SSB. Figure 8
depicts 4-50 times reduction of execution time by comparing to the ported HBC&Zwith OpenMP
on IBM Cyclops64. The experimental data sets are generated by thepron HPCS SSCA2 bench-
mark.

execution time (in seconds) — scale=10

20 m Original
m JITL
57 m JITL+SSB

32 64

16
#cores

Figure 8: The incremental optimization results. JITL: just-in-time locality

For BC algorithm we focus on four different performance charadiesisFirst we focus on perfor-
mance and scalability as we increase both the problem (graph) size anghthemof threads. Second
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Figure 9: Scalability results of the parallel betweenness centrality algorithm (higher is heftér®
number of vertices = 25¢4¢, E(n) = 8n.

we focus on understanding locality and memory latency as we increaserttienof threads. Third we
focus on the effect of barrier synchronization on the performahastly, we present the performance
improvement by SSB lock synchronization.

e For BC algorithm we represent the problem size in terrsazle where the number of vertices
isn = 2% Figure 9 illustrates the performance and scalability as we increase theenumb
of threads for three different scales (i.e., the problem size). We tefive number of traversed
edges per second (TEPS) as a performance metri@; E&2S = ”}]Zg‘) , wheren is the problem

size. Comparing the result with the OpenMP implementation (Figure 2), we eathatour

optimization strategy shows a 16 times improvements of scalability. Using ouoagpmwe
achieve a linear speedups for all test cases when the number ofghisdads than 32. For the
test case with a problem sizeale = 8, the performance stops increasing when the number of

threads reachel28 because the number of available parallel sub-tasks is less than the ndmber o

hardware thread units. However, we improve the performance whendhlem size is increased,

i.e for scale = 9 and10. For BC algorithm the degree of a vertex determines the amount of

parallelism that we can exploit. Although the multi-grain parallel algorithm ceduhe number

of idle threads, the maximum degree of a vertex is 64 for problem sizke = 8. So the

available parallelism for this small problem size still leads to a little improvemem28threads.

For scale = 9 and10, where the maximum vertex degrees Seand348, the performance and

scalability is further improved.

e Figure 10 shows the effect of memory latency tolerance using the techicigcreating just-time
locality. Recall that the main purpose for creating just-in-time locality is to foemsnon-linear
off-chip memory access to linear on-chip memory access in such a waghthawerhead of
the transformation is hidden. The implementation on C64 uses on-chip doufdeskio hide
the off-chip memory latency. The memory threads are used to transfer elstadm two mem-
ory levels. The overlapping of memory operations and computation opesasaomportant to
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Figure 10: Time distribution and achieving off-chip memory latency tolerance
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Figure 11: The comparison of running time using different sizes (byfda)fters.

achieve high performance. In order to figure out the overlapping timeyrafed the execu-
tion time of computation and memaory operations. Although the computation ondgacn-chip
memory, the overall execution time of computation tasks is more than that of thersntanks
due to synchronization that is required among the computation tasks for tamghe shortest
path information. Next we wanted to understand the effect of inargdsiffer size used in the
parallel pipeline on the overall scalability. Interestingly increasing theebii@d little effect on
the scalability. Note that degrees of most of vertices in scale-free graptvaso that we can not
hide more off-chip memory access by increasing the buffer size. Fidusbdws that increasing
buffer size does not achieve better performance.

When implementing the parallel pipelining algorithm, we insert a barrier synctation opera-
tion at the end of each pipeline. The overhead of a barrier is determingty/ropdoad balance
and the number of barriers.The algorithm loads the adjacency array intmtbleip buffers one
block at a time. It is important to note in the BC algorithm the computation behavieadt
vertex may be different. For example, if a vertex is not one of the pesdecs of a neighbor that
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Figure 12: Overhead of barrier synchronization for scale = 10. bkasured barriers include the
barriers in both BFS and backtrace phase.

is currently loaded into the on-chip memory, we do not have to insert thisxvvieteethe prede-
cessor set of the neighbor (otherwise we unnecessarily incur saddiional memory accesses).
Therefore, the execution time of each block may be different and soleaatknay not be bal-
anced among multiple threads. Also, we cannot achieve a perfect obetlapen computation
and memory tasks at every stage of the pipeline. On the other hand bgsimgye¢he number
of tasks, the workload on each thread decreases so that the difevetiee workloads is not so
significant, and we achieve more overlapping time. Unfortunately such faie gartition may
increase the depth of the pipeline and the number of barrier synchroniztgure 12 illustrates
the percent of overhead of barrier synchronization with respect tovirall execution time.

e Since in our parallel algorithm we only access a small portion of data dtigomputation
phase to create just-in-time locality, only a small portion of memory participate insglatdnro-
nization. Using SSB for data synchronization seems very effectiveef&sence, we implemented
a highly optimized MCS [25] algorithm using in-memory atom operations on [C6414]. As
shown in section 3 for C64 architecture, each core accesses hisPwittsvery low latency.
Thus, we use it as a "local memory” in MCS algorithm. Figure 13 comparepatfermance of
the parallel programs with MCS lock to that with SSB. SSB further reduaegxhcution time
and is very effective for the parallel algorithm.

5.3 Discussion

In order to highlight our joint study of architecture and algorithm, we camplae proposed parallel
BC algorithm with both HPCS SSCAZ2 [2] on a Intel 4-way dual-cores X8bP (8-processors) and a
specific BC algorithm implemented by John Feo (previously in Cray Inc.) gordBessors Cray MTA-
2. Table 2 reports the TEPS performance on the three platforms. Althibad!2 cache size of the SMP
is 2MB, which can contain the whole graph data structure for the small progitee, the performance
still is low because an efficient lock synchronization is unavailable. Tlekrformance on MTA-2 is
caused by low utilization of thread streams for the small problem size. ijwWawmbserved a sub-linear
scalability on MTA-2 when the problem size is large enough (keale = 22. Unfortunately, we can
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Figure 13: The comparison of software lock and SSB (BFS phase)

not run so large test sets on the C64 simulator), but the performance @MRes still weak (Due
to space limitation, we do not present the detail here). This comparisorafedithat the algorithm
on MTA-2 achieves good weak scalability, but our algorithm on C64 aekibetter strong scalability
because we unearth more additional parallelism even for small probles size

Table 2: The comparison of TEPS on three platforgagle = 10

#threads| C64 SMPs MTA-2
4 2917082 | 5369740| 752256
8 5513257 | 2141457| 619357
16 9799661 | N/A 488894
32 17349325| N/A 482681

Although we present the results of one case of computing betweenndsalitg it represents a
class of general applications with irregular memory access, low arithmetitsityteand unstructured
parallelism, which are different from traditional scientific computing. Tkeegiments on gives some
interesting hints on many-core architectural design space and programming:

e A performance critical application with irregular memory access prefengtcache mechanism
memory hierarchy. Hardware-managed memory (cache) automaticallyitebqaiality in pro-
grams. The irregular memory access pattern in BC sets an obstacle to thdityapaicache
and incurs a large number of cache misses which hurt the memory bindwidthmany-core
architectures, an increasing gap between the number of cores anddimina serious obstacle
to scalability of a parallel program. Configured with explicit memory hierar€64 provides
an architectural support to programmer for precisely orchestrating nyemavement for just-
in-time locality at algorithmic level using multiple simple hardware thread units. &helts on
Cray MTA-2 with flat memory (no cache) prove a similar point.
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e Architectural support of fine-grain synchronization is reasonahle.fine-grain parallel program
on a many-core architecture, the overhead of synchronization is ranséige since working-set
of each thread is small. Using software synchronization it becomegwecause the memory ac-
cess in airregular program is unpredictable. The SSB on C64 is provenfavorable. Similarly
Cray MTA-2 provides full/lempty mechanism at much more hardware cost.

e A runtime system supporting programmers to utilize just-in-time locality is promisitng. €x-
perimental results show that achieving just-in-time locality in programs is aneeffialterna-
tive technique for developing high performance algorithms on manyaratétectures. In algo-
rithmic level, programmers separate memory from computation and pipeline multiplergpremo
computation stages. In parallel programming model, users specify theaadkdheir depen-
dences, a runtime system could parse the task graph and automaticalyidesethe granularity
of decoupling and a way of pipelining so that the program would be optima#ipta to mem-
ory hierarchies. Another advantage of the runtime system may be to prowidalization of
non-preemptive execution model, which is one of the conditions to just-in-tinaditpon C64.
The resource virtualization is important for easy programming.

6 Reated Work

Due to the importance of computing betweenness centrality, there haveséamal works on paral-
lelization on conventional parallel architectures [2—4]. These pamaitairam exploited inherent par-
allelism and solved a large scale graph on several parallel computerswgéhmemory storage. Our
work focused on optimizing the irregular memory access using multi-threadimg-owae architec-
tures, which propose different challenges on parallelizing a perimcearitical application. On the
other hand, our work paid more attention to a joint study of architecture lgodtam. It is helpful to
give some implications on many-core architecture design in the future.

Our approach achieving just-in-time locality is inspired by Dataflow [15], #rek the same point
with percolation, which was briefly discussed by Gao in the context of ATivbject [18]. In Gao’s
work a percolation process was proposed to pack the code and dataimidraead. Since there is no
implementation of Gao’s percolation model, it is unclear whether his appwasieffective in practice.
We have also implemented our approach in C64 and also used sophisticatgdaiim synchroniza-
tion (such as SSB) to improve performance and scalability of irregularcgpigins on a many-core
architecture.

In our parallel pipelining algorithm we overlap computation task with memony. tatie concept
of overlapping computation with 1/0, network, and other long latency operati® an old concept.
Prefetching techniques [8, 21, 22, 24, 26, 35, 37] and threadugi®n [6, 9, 10, 28, 31, 36] also use
such overlapping concept. Most previous work on prefetching alsasfed on moving data (mostly
contiguous data) from main memory to local memory (either to register or caciog)to execution.
There are several differences between our approach and piafet¢l) In software prefetching order
of execution of a program is predetermined and prefetch instructionmseged to ensure that the
data are available when they are needed by the computation. In other, sondsptually computation
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threads "pull” the data locally using prefetch instructions. On the other,har@ur method the local
data determines which computation thread is ready to execute. In othds,wiata that is local to a core
will "pull” computation thread to execute on the core. (2) In our threadindeha thread has to satisfy
two requirements before it can be enabled and ready to run: (i) datadboeprendencies and (i) locality
constraints. Our execution model is also non-preemptive and so wetdaimgin more data than what
can be consumed. In prefetching there is no control on how much datefetgh—prefetching too
much or too less data can impact the performance. Besides, previous eriot discuss the impact
of prefetching in the context of massive multithreading many-core.riaraiof thread level speculation
uses dependences by monitoring the reads and writes to memory locatigmedliter-cosumer loop
iterations, the speculative execution leads to a violation of dependencemiis roll back. For the
irregular memory access in the BC algorithm, in addition to the random refeterarraysi, o, andd,
the references in the next iteration depends on the results in the curratibite If we speculate the
references based on the remaining neighbor vertices, it can lead geaniamber of roll backs if the
vertices have been marked.

There have been several work on the optimization of irregular progranpauallel architectures.
Recently, Williams et.al. [34]'s work on sparse matrix-vector multiplication @mventional multi-core
platforms implies that new methods for parallel irregular computing is imperdixez et.al [16] per-
formed a comprehensive study of 4 irregular scientific computing applicatiom streaming processor.
Both their work and ours share the streaming programming style of gedingpute-scatter. The way
to gather data ahead make our approach different from theirs. Inhg&e&treaming processor uses a
DMA-style transfer, our approach utilizes the ample hardware thread wtitse to hide the overhead
of transformation is easier and require less hardware cost. Salz et]atydied runtime methods to au-
tomatically parallelization and scheduling of loops. Trabado et.al [32]qzega data parallel language
extensions for exploiting locality in irregular problems, their work alsaigoon loops. Nikolopoulos
et.al’s [27] work tried to minimize the programming effort with OpenMP for itteg parallel codes.
Lucco [23] developed a methodology for compiling and executing irregudeallel programs, the goal
of his work is to achieve a optimal dynamic scheduling method. Based on abjeated language,
Chien [7] indicated that explicit management of namespace is efficiemtégular programs, but their
experiments only reported the results for traditional scientific computing wvectional parallel com-
puters.

7 Conclusion

Emerging future microprocessor chip technology unveils a new genedtimany-core chip architec-
tures that may contain 100 to 1,000 processing cores using a shared nmangemization with large
number of on-chip memory banks. Computer architects, system softweaignérs and application
scientists are realizing that they must work closely together to investigatechexploit the computa-
tional power of such new many-core architecture to improve perforenand scalability of large-scale
scientific applications. IBM Cyclops64 represents a new class of mamyacohitecture featuring with
shared address space for on-chip memory between cores and exjaieissing without cache. This pa-
per presents a study of evaluating the new many-core architecturaldearnd shows how such features
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can be effectively exploited when executing challenging irregular aggitsin practice.

Because of the irregular behavior of BC algorithm, it is difficult to achieigh performance on
a parallel architecture. By leveraging on the key properties of explicit mgmierarchy and non-
preemptive execution model, we propose a parallel pipelining algorithm to ingpigjust-in-time lo-
cality for BC program on IBM Cyclops64. The parallel algorithm make adgesage of the architectural
support of fine-grain data synchronization. Our experimental rewis that our methods are promis-
ing to improve scalability and performance of irregular application in a mang-acchitecture. Our
future work will focus on implementing a runtime systems for supporting progrability on many-
core architectures.
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