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Abstract

Tiling is widely used by compilers and programmer to optienizientific and engineering code
for better performance. Many parallel programming langsasupport tile/tiling directly through
first-class language constructs or library routines. Hakethe current OpenMP programming
language isile oblivious, although it is thele facto standard for writing parallel programs on shared
memory systems. In this paper, we introdtite aware parallelization into OpenMP. We propose
tilereduction, an OpenMP tile aware parallelization technique that adlogduction to be performed
on multi-dimensional arrays. The paper has three contobst(a) it is the first paper that proposes
and discusses tile aware parallelization in OpenMP. Weeatlgat, it is not only necessary but also
possible to have tile aware parallelization in OpenNt®;the paper introduces the methods used
to implement tile reduction, including the required OpeniP extension and the associated code
generation techniqueg;) we have applied tile reduction on a set of benchmarks. Therarpntal
results show that tile reduction can make parallelizatiamematural and flexible. It not only can
expose more parallelism in a program, but also can imprewtsaita locality.

1 Introduction

Tiling [1] [2] has been used as an effective compiler optimizing techniqueneigte high performance
scientific codes. Tiling not only can improve data locality for both the sequemtthparallel programs
[3] , but also can help the compiler to maximize parallelism and minimize synchtmmiz@] for
programs running on parallel machines. Thus, sometimes, it is used bydp@pmers to hand-tune
their scientific programs to get better performance.

Tiling is essentially a program design paradigm. It is a natural represenfationany important
data objects that are heavily used in scientific and engineering algorithnestific code that is writ-
ten with the concept of tile/tiling in mind usually looks concise and clear, and thosiéh easier to
understand and less error prone.

Due to these advantages, it is desirable to provide certain high level @@guastructs in the
programming languages to support tile/tiling in program design directly. To theetequirement,
researchers have proposed various designs in many parallel progrg languages or sublanguages.
The examples include HPF[5], UPCJ6], X10[7], ZPL[8], CAF[9], Tiam[10], and HTA[11], which
are among the most popular parallel languages. However, it is interesfing twut that, in the current
OpenMP APIs, no directive or clause can be used to annotate data tilesiamduch information to
the OpenMP compiler. In other words, the current OpenMP programmingidaye istile oblivious,
although it is thede facto standard for writing parallel programs on shared memory systems.

In this paper, we proposiie aware paralldization for the OpenMP programming language. Its
purpose is to enhance the OpenMP API with the concept of tile/tiling so that dateeparallelism
can be exposed to the OpenMP compiler. Besides granting greater flexibilitg ©@®penMP compiler
to perform more data parallelization, it brings better data locality into the colies i§ achieved by
extending the current OpenMP directives, clauses, and runtime routinggroducing new language
constructs into OpenMP. Our first effort in this direction is terrtibgreduction, an OpenMP tile aware
parallelization technique that allows parallel reduction to be performed on dinl@nsional arrays.
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Reduction is a form of recursive calculation that use mathematically assecitd commutative
operators to "aggregate” a set of data. Reduction can be performedahgbto improve performance.
For this reason, many programming languages and sub-languagestsugmadiel reduction. Some
examples are UPC [12], MPI [13], ZPL [14], and OpenMP [15]. Acling to the current OpenMP API
specification, reduction can only be performed on "named scalar” yasialtt cannot be applied on
multi-dimensional arrays. We call this kind of reductigzalar reduction. In this paper, we introduce
a new technique calletile reduction, which evolves the current reduction parallelization from scalar
variables to multi-dimensional arrays. We have extended the traditi@dlict i on clause to allow
the programmers to annotate their code where tile reduction can be appliédvé/also developed the
required code generation technique to interpret themeduct i on clause and generate the required
parallel code accordingly. The major contributions of this paper are:

1. As far as the authors are aware, this is the first paper that propasgediscusses tile aware
parallelization in OpenMP. We argue that, it is not only necessary but alssiljje to have tile
aware parallelization techniques in OpenMP

2. The paper introduces tile reduction, an OpenMP tile aware parallelizatbnitgie that applies
reduction on multi-dimensional arrays. We discuss the methods used to implkdmezduction,
including the required OpenMP API extension and the associated codeagjen technique.

3. We evaluate the tile reduction technique with a set of benchmarks. Thdamental results show
that using tile reduction can make the code parallelization more natural aitdelelt not only
can expose more parallelism in the program but also can improve its data locality

The rest of the paper is organized as follows. In Section 2, we use aatiogexample to show
why tile reduction is necessary. Section 3 will discuss how to implement tile tiedua the OpenMP
compiler. We present our experimental data in Section 4 and make our smmdin Section 5.

2 Motivation

In this section, we use the "histogram reduction” [16] code as an examgientonstrate the limits of
the current OpenMP reduction clause. We will also use the same examplewdrsih advantages of
extendingscalar reduction to tile reduction.

long long Al1[2][2];

[i4] [00] (03] [10] [1)
= ' 32 Bytes!

1 for (k=1; k<10000000; k++)

2 for (i=0; i<2; i++)

3 for (j=0; j<2; j++)

4 ALOI[i][i] += ALKI[i][j]

g A WN P o

(a) Original Histogram Reduction Code (b) The 3D Diagram As)Memory Layout

Figure 1: The Histogram Reduction Example



Figure 1(a) shows the code of the histogram reduction program. Thewoiks onA[][][]., a
3-dimensional array with each element containing an 8-byteg | ong. It aggregates all elements
along thek dimension and stores the results in the2 tile Al 0] [][]. The diagram in Figure 1(b)
shows these operations. We assume that the cache line size is 32 byteat &inel tihe array is stored in
a row-major order in the memory. Therefore, elements with the dapwordinate can be fed into the
same cache line, as shown in Figure 1(c). There are three nested labpsode. Each loop traverses
one of the , | , k dimension of the array. Data dependence only exit in lodygcause of the recursive
calculation.

0 for (k=1; k<10000000; k++) 0 for (k=1; k<10000000; k++)

1 #pragnmae onp parallel for 1 #pragnma onp parallel for collapse(2)
2 for (i=0; i<2; i++) 2 for (i=0; i<2; i++)

3 for (j=0; j<2; j++) 3 for (j=0; j<2; j++)

4 ALOT[iIT0j] += ALKI[i][]] 4 ALOT[IT0j] += ALKITi]I]]

(a) Parallelize loop "i” (b) Parallelize loop "i” and "j" usig the collapse clause

Figure 2: Parallelize the Histogram Reduction Program Without Changingdte

Given the code in Figure 1(a), there are many different ways to paraliéliHlowever, due to the
data dependence in lodg we cannot parallelize this loop. Therefore, without changing the code, w
can only parallelize loop andj , as shown in Figure 2(a) and 2(b). It is obvious that there are trivial
workload and little parallelism in loop and loopj . Thus, it is not worthwhile to parallelize these two
loops, even while using theol | apse clause (supported in OpenMP 3.0 [15]).

0 #pragma onp parallel for 0 #pragma onp parallel for collapse(2)
1 for (j=0; j<2; j++) 1 for (j=0; j<2; j++)
2 for (i=0; i<2; i++) 2 for (i=0; i<2; i++)
3 for (k=1; k<10000000; k++) 3 for (k=1, k<10000000; k++)
4 ALOT[jI[i] += ALKI[j][i] 4 ALOI[jI[i] += ALKI[j][i]

(a) Parallelize the outer loop (b) Parallelize the outer lvaps
0 #pragma onp parallel for private(sum collapse(2)
1 for (j=0; j<2; j++) [ij] [00] [O1] [10] [11]
2 for (i=0; i<2; i++) { k=0 : : :
3 sum = 0; 1 3 3 3
4 #pragma onp parallel for shared(sum reduction(+:sum 2 : : :
5 for (k=0; k<10000000; k++) : : :
6 sum += ALKI[j][i] S
7 ALOI[j1[i] = sum S I I
8 } 5 LYy

(c) Nested parallelization to harvest more parallelism (djeaccess pattern

Figure 3: More Parallelization for Histogram Reduction Code
To get a larger workload and more parallelism, we can interchange the noapsally before par-

allelizing the code, as shown in Figure 3. In Figure 3(a) and 3(b), th&leax that can be assigned
to the threads is large enough. However, the available parallelism is stilsweai} (only supports two
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or four concurrent threads). Figure 3(c) shows a better solutiofrigare 3(c), a nestedar al | el

f or directive is used to parallelize the recursive addition usingrtaéuct i on clause (with trivial
code change). Although the code in Figure 3(c) can leverage all leiplsrallelism in the program,
its strided data access pattern would cause a great number of unmg@esde misses, as shown in
Figure 3(d). Code in Figure 3(a) and 3(b) have the same data localitlepmnoB\pparently, the current
OpenMP parallelization techniques cannot harvest the maximum paralleligrdaga locality in the
code at the same time. They suffer from either insufficient parallelism ar ghata locality.

[ij] [00] [01] [10] [11]
k =

ah wWwN PR o

(a) Schema of tile reduction (b) Better locality

Figure 4: The Ideal Parallelization Schema for the Histogram Reductioa Cod

The ideal parallelization is shown in Figure 4. Logically, the recursivatiaxdcan be viewed as
being performed on an array 8k2 data tiles. In theory, these tiles can be added together in parallel
by multiple threads, as shown in Figure 4(a). In this way, the code canvachah the maximum
parallelism and the best data locality (see Figure 4(b)). Besides, froprdgeammers’ angle, this is
the most natural way to perform parallelization on this piece of code. Hemvéve current OpenMP
specification does not provide any mechanism to support such kindalfglaation. This motivates us
to extend the traditionacalar reduction tatile reduction.

3 TileReduction

In this section, we will discuss the techniques used to implement tile reductiory ifblude the
extended OpenMP programming interface and the required code genatasign. The related runtime
support will be mentioned when needed.

3.1 Programming I nterface Extension

In order to support tile reduction, we need to extend the current OpgbtRamming interface. The
extension was made based on three criteria. First, it must be able to coveofrttos common cases
of tile reduction code. Second, it must be simple and easy to use and ptheigeeogrammers with
the maximal flexibility. Third, the extension should not complicate the code ggoerof the OpenMP
compiler and the OpenMP runtime. Figure 5(a) shows the OpenMP API (G/&tension we proposed
for ther educt i on clause. Figure 5(b) gives a simple example that uses the extemadhdt i on
clause to parallelize the tile reduction code.



reduction(operator : T[jg, Ly, Ug]...[j2, L2, U2][j1, L1, U1])

T: Tile name

k:  Dimension of the tile

ji: the loop index that is used in the traversal of tHedimension of the tile
L;: the lower bound of;

U;: the strict upper bound of;

(a) OpenMP API (C/C++) extension for theduct i on clause

int B[2][2] = {{0,0},{0,0}};

0 #pragma onp parallel for reduction(+: B[j,0,2][i,0,2])
1 for (k=0; k<10000000; k++)

2 for (j=0; j<2; j++)

3 for (i=0; i<2; i++)

4 Bjl[i] += ALKI[j][i]

(b) Simple example using the extended API

Figure 5: OpenMP API (C/C++) extension and a simple example code

Compared with the current OpenMP API specification, the difference iseihitist construct. In
addition to the "named scalar” variables, we allow the programmers to put a "dilénsional array”
inthel i st construct. This "multi-dimensional array” is not a real array data stradtuthe language
sense. Itis a language construct that conveys important information @pgeeMP compiler. It tells
the compiler the shape, the size, and the element type of the tile and how its elenecinéversed by
the loops.

To make the paper easy to follow, we call the tile under reduction asetiuetion tile; the "multi-
dimensional array” in théi st construct as théle descriptor; and the loops involved in performing
"one” recursive calculation as theduction kernel loops. For the example in Figure 5(b), the reduction
tileisB[ ][], the tile descriptori®[j, 0, 2] [i, 0, 2], and the reduction kernel loops are fhand
i loops (not including th& loop, i.e., the parallelized loop). In our design, the shape of the reduction
tile must be a rectangle or a high-dimensional rectangle. Triangle or othpeslare not yet supported.
The exact shape and size of the reduction tile are determined by the tilgt@scr

The format of the tile descriptor is shown in Figure 5(a). It has two partstilth name (i.e., T)
and thedimension descriptor (i.e., [k, Lk, Ux]..-[j2, L2, U2][j1, L1, U1]). Tile name must be the same
as the multi-dimensional array variable on which the recursive calculatienpeaformed. For the
example in Figure 5(b), this corresponds to the name ofttheariable in line 4, which i8. It tells the
OpenMP compiler the data type of the tile element, which must be a built-in scalafTigpelimension
descriptor, on the other hand, is an array of 3-tuples. Each 3-tuplespands to one dimension of
the tile and stores important information of that dimension. These 3-tuples tailisthe dimension
descriptor in descendant order (higher dimension first). Each 3-t@sehnee elements: loop index
variable, upper bound expression, and lower bound expressielo®j index variable identifies a loop
in the reduction kernel loops. Since stride accesses are not allowddpthstride is alwayg, so it is
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omitted from the tuple. The size of tikedimensional tile is calculated from equation (1).

(Uk — Lk) X (UQ — Lg) X (U1 — Ll) (1)

The information stored in the tile descriptor is very important for the OpenMRpder to generate
correct parallel code.

The oper at or, as usual, must be a mathematically associative and commutative operator that
performs the recursive calculation. In our current example, itis'a”

0 #pragma onp parallel for reduction(+: A[j,0,2][i,0,2])
1 for (k=1; k<10000000; k++)

2 for (j=0; j<2; j++)
3 for (i=0; i<2; i++)
4 ALOI[jITiI] += ALKI[j][T]

Figure 6: Tile reduction: tile is part of a bigger multi-dimensional array

The reduction tile is not required to be a standalone multi-dimensional amayeald, it can be
part of another larger multi-dimensional array. For example, in the codgurd-6, the reduction tile
isA[O]1[j][i] (b = {0,1},7 = {0,1}). Itis a2 x 2 slice cut out from the 3-dimensional array

ALTLILTS

Besides, as we have mentioned before, the lower and upper boundgimtngsion descriptor are
expressions. They are not required to be constants. Generally, tee 4o upper bounds can be a
function of other variables, as long as the result of the function can tidetkat runtime. Figure 7
shows such an example. The code in Figure 7 is a blocked matrix multiplicatignapno It is easy
to see that there is an opportunity to apply tile reduction on the loop in line 3, i.ekktheop. The
diagram on the right hand side gives an intuitive illustration. In this exampderetiuction tiles are
blocks cut out from a big x 2 matrix (C ] [ ] ). Therefore, the lower and upper bounds of the reduction
tiles are not fixed values. In addition, the mat@] [ ] might not be able to be evenly blocked. So, the
tiles located at the margin of the matrix are usually smaller than the tiles located ifigite roatrix.
Thus, the sizes of the reduction tiles are not necessarily the same. Allitii@seation is reflected in
the lower and upper bound expressions (or functions) in the dimenssmmnigker. Moreover, there is a
restriction for the lower bound and upper bound expressions. Theytéghot be functions of any index
variable in the reduction kernel loops, i.e., they are orthogonal. This is te e that the shape of
the reduction tile is a rectangle, or high-dimensional rectangle.

An interesting observation of this example code is that the number of theti@ukernel loops
(which is 3, from line 4 to line 6) is not the same as the dimension of the reduction tile (whizh is
Generally, we do not require the number of the reduction kernel loops thebsame as the dimension
of the reduction tile. We only require that the operations performed by tte icothe reduction ker-
nel loops can be viewed as one associative and commutatioe® operation performed on the entire
reduction tile.



0 for (ii=0; ii<n; ii+=b)
1 for (jj=0; jj<n; jj+=b)
2 #pragma parallel for reduction(+: \
Qi ii,mn(ii+b,mI[j,jj,mn(jj+b n]) R T L A
3 for (kk=0; kk<n; kk+=b) 0 0 0
4 for (i=ii; i<mn(ii+b,n); i++) 1 1 1
5 for (j=jj; j<mn(jj+b,n); j++) 2 =2 X2
6 for (k=kk; k<m n(kk+b,n); k++) 3 3 3
7 CLillj1+=ALT][K]+B[K][j]; 4 a s

Figure 7: Tile reduction: upper and lower bounds are functions

3.2 Code Generation

Since tile reduction is derived from scalar reduction, its code generdiamesthe same framework as
scalar reduction. Thus, we illustrate the code generation for tile reduatider ithe same framework
as scalar reduction and use the code generation for scalar reductiorfasence. Generally, the code
generation needs to deal with the following problems:

1. Distribute the iterations of the parallelized loop among the threads;
2. Allocate memory for the private copy of the tile used in the local recursileulation;
3. Perform the local recursive calculation which is specified by thectemtukernel loops;

4. Update the global copy of the reduction tile;

Figure 8 shows the code generated for the tile reduction example in Figlieeriake the paper easy
to follow, we present the pseudo C code in the figure.

As we have mentioned at the beginning of Section 3.1, we try to avoid compli¢thrgpde gener-
ation when we were developing the extension forrteeluct i on clause. A good example is the code
generation for distributing the iterations of the parallelized loop among themigrtareads. Actually,
this part of the code generation for tile reduction is the same as that for sedigection.

In the tile reduction program, the reduction kernel loops can be viewedsagjle statement that
performs the recursive calculation, which is the same as its counterpaet sedhar reduction program.
So, from the angle of iteration distribution, the scalar reduction code antlléheduction code are
logically the same. Therefore, the method used to generate iteration distribatlerfor scalar reduc-
tion can also be used to generate iteration distribution code for tile reductidoesn’t matter which
schedul e policy (st ati ¢, dynam c, gui ded, orrunt i ne) is deployed.

In Figure 8, we use thet at i ¢ scheduling policy as an example. In the code from line 2 to line
6, the iterations of thék loop (line 3 in Figure 7) are evenly distributed among the threads. The
iterations of the loop are divided into chunks and each chunk is assigretetdynamic thread. The
iteration chunk assigned to the thread is delimited by the lower bound vafiabe and the upper
bound variablé' ub" , which are determined by theread number of the owner thread. This piece of
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/+ statically partition the iteration space anong the threads */

numthr = __builtin_onp_get_numthreads ();

thr_id = __builtin_onp_get_thread_num ()

chunk_size = (((n+(b-1))/(b-1))%umthr) == 0 2\
(((n+(b-1))/(b-1))/numthr) : (((n+(b-1))/(b-1))/numthr)+1

A WDNPEFO

5 |Ib = chunk_size * thr_id; /* |ower bound */

6 ub = mn((lb+chunk_size),n); /+* upper bound */

7

8 /x allocate nmenmory for private tile */

9 private_tile = (int *)__builtin_onp_nenory_alloc( \
(mn(ii+b,n)-ii)*x(mn(jj+b,n)-jj)=*sizeof(int));

10

11 /=* local tile reduction: serial =*/
12 for (kk=lb; kk<ub; kk+=b)

13 for (i=ii; i<min(ii+b,n), i++)

14 for (j=ij; j<mn(jj+b,n), j++)

15 for (k=kk; k<m n(kk+b,n), kk++)

16 private_tile[i-ii][j-jj] += Ali][Kk]*B[k][j]
17

18 /= update the global reduction tile */
19 _ builtin_onp_atonic_start ();

20 for (i=ii; i<min(ii+b,n), i++)

21 for (j=ij; j<mn(jj+b,n), j++)

22 Cill[j] += private_tile[i-ii]l[j-jj];
23 __builtin_onp_atom c_end ()

24

25 free(private_tile);

26

Figure 8: Pseudo code generated for the matrix multiplication example to petiferreduction

code only deals with the parallelized loop and the user specified OpenNRmetars. It does not even
need to look into the code of the reduction kernel loops. This is the saméhfer schedule policies.

In line 9, the OpenMP runtime routine allocates memory for the the privategtileat e_ti | e),
which is a 2-dimensional array. This private tile is used by the thread as atarjstorage to perform
the local sequential tile reduction. Its size is calculated from the parameeziied in the dimension
descriptor (see equation 1). Its element data type is inferred from the tile.nall this information is
obtained from the extendededuct i on clause.

The local sequential tile reduction is performed in the code from line 12 to bnerhis piece of
code is almost the same copy as the original sequential program (line 3 to lik@gine 7) except two
places. In line 12, the lower and upper bounds of the loop are changeédtoand” ub". This is to
restrict the range of the iteration space in the chunk assigned to thetdinesd. Besides, in line 16,
we replace the original reduction tile with the private tile and update its indidas.ifidex calibration
is required because the global reduction tile is cut out from a bigger multirgiimeal array, while the
private tile is a standalone array. This piece of code performs local tiletieth sequentially, as in the
original un-parallelized code.

After finishing the local tile reduction, the thread must update the globattiedfitile. The code is
shown in line 19 to line 23. The runtime routines in lines 19 & 23 ensure atomicadoghe global
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reduction tile. The loops in line 20 and line 21 are extracted fronrédaction kernel loops. Only

the loops listed in théile descriptor are selected. So, the lodpin the reduction kernel loops is not
included. Thdhsvariable of the statement in line 22 is the same variable as in the original cod@ (line
in Figure 7). However, thehs variable has been replaced with the private tile, in which the indices have
been updated.

From the code in Figure 8, it is easy to see that the code generation for thediletion is as
easy as that for the traditional scalar reduction. Meanwhile, no exttanersupports is required.
These advantages make the implementation of tile reduction in the OpenMP corepjieagy. In the
next section, we will present the experimental results of applying the tilectoh on several typical
benchmarks.

4 Experiments

We have applied tile reduction on three benchmarks: the 2D histogramtiggunatrix-matrix mul-
tiplication and matrix-vector multiplication. The required code generation was imgslieed through
source-to-source transformation and was prototyped in the Omni-1.6M@peampiler [17]. The ma-
chine used in the experiments has 4 Intel Dual-Core Xeon (Paxville) clish are clocked at 3.0
GHz. Each core has HyperThreading (HT) enabled. Thereforenti@ine can be viewed as a 16-
processor shared memory parallel computer. Each chip has 4MB L2 ¢2btB each core) and each
core has 16KB L1 cache.

Figure 9 shows the experimental data of the three benchmarks. Thegraples on the left column
display the speedup of the benchmark programs parallelized either thiteaigjle reduction clause (w/
tile reduction) or through the standard OpenMP APIs (w/o tile reductiong Br charts on the right
column demonstrate the difference of the absolute execution time betweenrisponding programs
(w/ and w/o tile reduction) of the same set of benchmarks.

Figure 9(b) shows great performance enhancement if we paralleliz2DtH@stogram reduction
benchmark with the tile reduction clause. Generally, compared with the pnquaeallelized with stan-
dard OpenMP pragma, the absolute execution time of the tile reduction veesiraded aboQ0% and
its speedup on 8 threads increased friofto 4.5. The performance gain comes from the improved data
locality, which owes to the tile reduction optimization. Without using tile reduction2ibédistogram
reduction program exhibit very poor scalability (shown in Figure 3). fileereduction parallelization
successfully rectifies the data access pattern and thus significantly imptewsealability. However,
no matter what kind of optimizations are used, this benchmark stops scalingd8ythreads. This is
because of the huge number of memory references in the code, whitts iaghat its performance is
finally restricted by the bandwidth of the shared memory bus.

The same phenomena are also observed in the matrix-matrix multiplication bekdiseaFigure
9(c) and 9(d)). Tile reduction can also decrease its execution time andveipsscalability. However,
the magnitude of the performance enhancement caused by tile reductidrasvig as that of the 2D
histogram reduction benchmark. This is also the same for the scalability@thant. The reason is
that the data locality of the tiled matrix-matrix multiplication program is better than thei@bDdram
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(f) Matrix-vectmultiplication: execution time

Figure 9: Comparison of the speedup and execution time between the mrpgrallelized with tile
reduction and the program parallelized with the standard OpenMP pragma.

reduction benchmark. Therefore, the performance gain from tile tieduio the matrix multiplication
program is less than that in the 2D histogram reduction program. On avdhegexecution time de-
creased4% after applying tile reduction and its speedup increased ftdmto 3.18 on 8 threads and

from 2.26 to 3.32 on 16 threads.

For the matrix-vector multiplication case, the performance enhancemerghtrabiout by tile re-



duction is smaller than that of the previous two benchmarks. The reasonsartiee as the previous
one. Moreover, compared with the other two benchmarks, there aredtsssydmory references in this
benchmark. So, the program’s performance degrades a little bit whemsitvith 8 or 16 threads. This
is because of the synchronization overhead caused by the code in lmel 23 in Figure 8. In average,
its execution time decreasé®8%.

5 Summary and Conclusions

In this paper, we introduced the concept of tile aware parallelization fen®if. Meanwhile, we de-
veloped the first tile aware parallelization technique - tile reduction, and iltestthe details of code
generation for the tile reduction clause. We also designed a series afregpts to evaluate the tile
reduction technique. From the experimental results and our experieépaeatielizing the benchmarks,
we have the following conclusions:

1. As a building block of the tile aware parallelization theory, tile reduction lsringre opportuni-
ties to parallelize dense matrix applications.

2. For some benchmarks, tile aware parallelization is a more natural and mtwity to reason
about the best parallelization decision.

3. Tile reduction not only can improve data locality for some programs, batcas expose more
parallelism.

6 Related Work

Parallel reduction operations are supported in many parallel programnriggdges. They include
C**[18], SAC [19], ZPL [16], UPC [12], and MPI [13]. Most of thra support user-defined reduction
operations, either through language constructs or through library esutisser-defined reduction oper-
ation provides a flexible way to implement tile reduction. However, programmead to change both
data structures and algorithms, which, sometimes, is not a tirivial job.

Another piece of work that we need to mention is [20]. In [20], the autpoppose to extend the
OpenMPr educt i on clause to parallelize C++ generic algorithms. They propose to suppart use
defined types, overloaded operators, and function objects in the sayaswhe built-ins supported
in the current OpenMPPeduct i on clause. Their work is very close to that presented in this paper.
However, we study the reduction problem from a different angle. Wepgse tile reduction as one of
the tile aware parallelizing technique for OpenMP, while [20] proposesdefined reduction operation
to complete their OpenMP extensions for parallelizing generic libraries.ritileaware parallelization
technique, we are concerned with the data partition, locality and a more flexidlefficient way to
parallelize dense matrix programs written in cannonical C syntax, while thpgeiof [20] is to allow
people to parallelize programs written in modern C++ idioms sucitegators and function objects,
which are not cannonical C syntax. Second, due to the non-trivisrdicnoverhead of the generic
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techniques, generic libraries are not widely used in programming higbrphce scientific and engi-
neering algorithms. Finally, there are no experimental data in [20].

7 Future Work

Tile reduction is one of the building block of the tile aware paralleization teckendpveloped for
OpenMP. One of our future work is to develop more parallelizing technidikestile reduction) such
that OpenMP compiler can "recognize” data tiles and allow its runtime library topukate them. Our
goal is to add tile aware parallelizing directives or clauses into the Openbiifgnming interface.
The purpose is to evolve OpenMP into an appropriate programming modeldioy-core processors
with explicitly managed memory hierarchy [21], e.g. the IBM CELL [22] andIB Cyclops-64 [23]
processor.
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