
University of Delaware
Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

Tile Reduction: an OpenMP Extension for Tile Aware

Parallelization

Ge Gan

Xu Wang

Joseph Manzano

Guang R. Gao

CAPSL Technical Memo 085

December, 2008

Copyright c© 2008 CAPSL at the University of Delaware

Email: {gan,wangxu,jmanzano,ggao}@capsl.udel.edu

University of Delaware • 140 Evans Hall •Newark, Delaware 19716 • USA

http://www.capsl.udel.edu • ftp://ftp.capsl.udel.edu • capsladm@capsl.udel.edu

Abstract

Tiling is widely used by compilers and programmer to optimize scientific and engineering code
for better performance. Many parallel programming languages support tile/tiling directly through
first-class language constructs or library routines. However, the current OpenMP programming
language istile oblivious, although it is thede facto standard for writing parallel programs on shared
memory systems. In this paper, we introducetile aware parallelization into OpenMP. We propose
tile reduction, an OpenMP tile aware parallelization technique that allows reduction to be performed
on multi-dimensional arrays. The paper has three contributions: (a) it is the first paper that proposes
and discusses tile aware parallelization in OpenMP. We argue that, it is not only necessary but also
possible to have tile aware parallelization in OpenMP;(b) the paper introduces the methods used
to implement tile reduction, including the required OpenMPAPI extension and the associated code
generation techniques;(c) we have applied tile reduction on a set of benchmarks. The experimental
results show that tile reduction can make parallelization more natural and flexible. It not only can
expose more parallelism in a program, but also can improve its data locality.

1 Introduction

Tiling [1] [2] has been used as an effective compiler optimizing technique to generate high performance
scientific codes. Tiling not only can improve data locality for both the sequential and parallel programs
[3] , but also can help the compiler to maximize parallelism and minimize synchronization [4] for
programs running on parallel machines. Thus, sometimes, it is used by the programmers to hand-tune
their scientific programs to get better performance.

Tiling is essentially a program design paradigm. It is a natural representation for many important
data objects that are heavily used in scientific and engineering algorithms. Scientific code that is writ-
ten with the concept of tile/tiling in mind usually looks concise and clear, and thus ismuch easier to
understand and less error prone.

Due to these advantages, it is desirable to provide certain high level language constructs in the
programming languages to support tile/tiling in program design directly. To meetthis requirement,
researchers have proposed various designs in many parallel programming languages or sublanguages.
The examples include HPF[5], UPC[6], X10[7], ZPL[8], CAF[9], Titanium[10], and HTA[11], which
are among the most popular parallel languages. However, it is interesting tofind out that, in the current
OpenMP APIs, no directive or clause can be used to annotate data tiles andcarry such information to
the OpenMP compiler. In other words, the current OpenMP programming language istile oblivious,
although it is thede facto standard for writing parallel programs on shared memory systems.

In this paper, we proposetile aware parallelization for the OpenMP programming language. Its
purpose is to enhance the OpenMP API with the concept of tile/tiling so that moredata parallelism
can be exposed to the OpenMP compiler. Besides granting greater flexibility tothe OpenMP compiler
to perform more data parallelization, it brings better data locality into the code. This is achieved by
extending the current OpenMP directives, clauses, and runtime routines, or introducing new language
constructs into OpenMP. Our first effort in this direction is termedtile reduction, an OpenMP tile aware
parallelization technique that allows parallel reduction to be performed on multi-dimensional arrays.

3

Reduction is a form of recursive calculation that use mathematically associative and commutative
operators to ”aggregate” a set of data. Reduction can be performed in parallel to improve performance.
For this reason, many programming languages and sub-languages support parallel reduction. Some
examples are UPC [12], MPI [13], ZPL [14], and OpenMP [15]. According to the current OpenMP API
specification, reduction can only be performed on ”named scalar” variables. It cannot be applied on
multi-dimensional arrays. We call this kind of reductionscalar reduction. In this paper, we introduce
a new technique calledtile reduction, which evolves the current reduction parallelization from scalar
variables to multi-dimensional arrays. We have extended the traditionalreduction clause to allow
the programmers to annotate their code where tile reduction can be applied. Wehave also developed the
required code generation technique to interpret the newreduction clause and generate the required
parallel code accordingly. The major contributions of this paper are:

1. As far as the authors are aware, this is the first paper that proposesand discusses tile aware
parallelization in OpenMP. We argue that, it is not only necessary but also possible to have tile
aware parallelization techniques in OpenMP

2. The paper introduces tile reduction, an OpenMP tile aware parallelization technique that applies
reduction on multi-dimensional arrays. We discuss the methods used to implementtile reduction,
including the required OpenMP API extension and the associated code generation technique.

3. We evaluate the tile reduction technique with a set of benchmarks. The experimental results show
that using tile reduction can make the code parallelization more natural and flexible. It not only
can expose more parallelism in the program but also can improve its data locality.

The rest of the paper is organized as follows. In Section 2, we use a motivating example to show
why tile reduction is necessary. Section 3 will discuss how to implement tile reduction in the OpenMP
compiler. We present our experimental data in Section 4 and make our conclusions in Section 5.

2 Motivation

In this section, we use the ”histogram reduction” [16] code as an example todemonstrate the limits of
the current OpenMP reduction clause. We will also use the same example to show the advantages of
extendingscalar reduction to tile reduction.

long long A[][2][2];
...

1 for (k=1; k<10000000; k++)
2 for (i=0; i<2; i++)
3 for (j=0; j<2; j++)
4 A[0][i][j] += A[k][i][j]

k

j

i

re
du

ce

32 Bytes

1

2

3

4

5

k = 0

[00] [01] [10] [11][i,j]

(a) Original Histogram Reduction Code (b) The 3D Diagram (c)A’s Memory Layout

Figure 1: The Histogram Reduction Example

4

Figure 1(a) shows the code of the histogram reduction program. The code works onA[][][], a
3-dimensional array with each element containing an 8-bytelong long. It aggregates all elements
along thek dimension and stores the results in the2x2 tile A[0][][]. The diagram in Figure 1(b)
shows these operations. We assume that the cache line size is 32 bytes and that the the array is stored in
a row-major order in the memory. Therefore, elements with the samek coordinate can be fed into the
same cache line, as shown in Figure 1(c). There are three nested loops inthe code. Each loop traverses
one of thei, j, k dimension of the array. Data dependence only exit in loopk because of the recursive
calculation.

0 for (k=1; k<10000000; k++)
1 #pragma omp parallel for
2 for (i=0; i<2; i++)
3 for (j=0; j<2; j++)
4 A[0][i][j] += A[k][i][j]

0 for (k=1; k<10000000; k++)
1 #pragma omp parallel for collapse(2)
2 for (i=0; i<2; i++)
3 for (j=0; j<2; j++)
4 A[0][i][j] += A[k][i][j]

(a) Parallelize loop ”i” (b) Parallelize loop ”i” and ”j” using the collapse clause

Figure 2: Parallelize the Histogram Reduction Program Without Changing theCode

Given the code in Figure 1(a), there are many different ways to parallelize it. However, due to the
data dependence in loopk, we cannot parallelize this loop. Therefore, without changing the code, we
can only parallelize loopi andj, as shown in Figure 2(a) and 2(b). It is obvious that there are trivial
workload and little parallelism in loopi and loopj. Thus, it is not worthwhile to parallelize these two
loops, even while using thecollapse clause (supported in OpenMP 3.0 [15]).

0 #pragma omp parallel for
1 for (j=0; j<2; j++)
2 for (i=0; i<2; i++)
3 for (k=1; k<10000000; k++)
4 A[0][j][i] += A[k][j][i]

0 #pragma omp parallel for collapse(2)
1 for (j=0; j<2; j++)
2 for (i=0; i<2; i++)
3 for (k=1; k<10000000; k++)
4 A[0][j][i] += A[k][j][i]

(a) Parallelize the outer loop (b) Parallelize the outer twoloops

0 #pragma omp parallel for private(sum) collapse(2)
1 for (j=0; j<2; j++)
2 for (i=0; i<2; i++) {
3 sum = 0;
4 #pragma omp parallel for shared(sum) reduction(+:sum)
5 for (k=0; k<10000000; k++)
6 sum += A[k][j][i]
7 A[0][j][i] = sum;
8 }

1

2

3

4

5

k = 0

[00] [01] [10] [11][i,j]

(c) Nested parallelization to harvest more parallelism (d) Data access pattern

Figure 3: More Parallelization for Histogram Reduction Code

To get a larger workload and more parallelism, we can interchange the loopsmanually before par-
allelizing the code, as shown in Figure 3. In Figure 3(a) and 3(b), the workload that can be assigned
to the threads is large enough. However, the available parallelism is still verysmall (only supports two

5

or four concurrent threads). Figure 3(c) shows a better solution. InFigure 3(c), a nestedparallel
for directive is used to parallelize the recursive addition using thereduction clause (with trivial
code change). Although the code in Figure 3(c) can leverage all levels of parallelism in the program,
its strided data access pattern would cause a great number of unnecessary cache misses, as shown in
Figure 3(d). Code in Figure 3(a) and 3(b) have the same data locality problem. Apparently, the current
OpenMP parallelization techniques cannot harvest the maximum parallelism and data locality in the
code at the same time. They suffer from either insufficient parallelism or poor data locality.

....

+ + + + 1

2

3

4

5

k = 0

[00] [01] [10] [11][i,j]

(a) Schema of tile reduction (b) Better locality

Figure 4: The Ideal Parallelization Schema for the Histogram Reduction Code

The ideal parallelization is shown in Figure 4. Logically, the recursive addition can be viewed as
being performed on an array of2x2 data tiles. In theory, these tiles can be added together in parallel
by multiple threads, as shown in Figure 4(a). In this way, the code can achieve both the maximum
parallelism and the best data locality (see Figure 4(b)). Besides, from theprogrammers’ angle, this is
the most natural way to perform parallelization on this piece of code. However, the current OpenMP
specification does not provide any mechanism to support such kind of parallelization. This motivates us
to extend the traditionalscalar reduction totile reduction.

3 Tile Reduction

In this section, we will discuss the techniques used to implement tile reduction. They include the
extended OpenMP programming interface and the required code generation design. The related runtime
support will be mentioned when needed.

3.1 Programming Interface Extension

In order to support tile reduction, we need to extend the current OpenMPprogramming interface. The
extension was made based on three criteria. First, it must be able to cover most of the common cases
of tile reduction code. Second, it must be simple and easy to use and providethe programmers with
the maximal flexibility. Third, the extension should not complicate the code generation of the OpenMP
compiler and the OpenMP runtime. Figure 5(a) shows the OpenMP API (C/C++) extension we proposed
for thereduction clause. Figure 5(b) gives a simple example that uses the extendedreduction

clause to parallelize the tile reduction code.

6

reduction(operator : T[jk, Lk, Uk]...[j2, L2, U2][j1, L1, U1])

T: Tile name
k: Dimension of the tile
ji: the loop index that is used in the traversal of theith dimension of the tile
Li: the lower bound ofji

Ui: the strict upper bound ofji

(a) OpenMP API (C/C++) extension for thereduction clause

int B[2][2] = {{0,0},{0,0}};
...

0 #pragma omp parallel for reduction(+: B[j,0,2][i,0,2])
1 for (k=0; k<10000000; k++)
2 for (j=0; j<2; j++)
3 for (i=0; i<2; i++)
4 B[j][i] += A[k][j][i]

(b) Simple example using the extended API

Figure 5: OpenMP API (C/C++) extension and a simple example code

Compared with the current OpenMP API specification, the difference is in thelist construct. In
addition to the ”named scalar” variables, we allow the programmers to put a ”multi-dimensional array”
in thelist construct. This ”multi-dimensional array” is not a real array data structure in the language
sense. It is a language construct that conveys important information to theOpenMP compiler. It tells
the compiler the shape, the size, and the element type of the tile and how its elementsare traversed by
the loops.

To make the paper easy to follow, we call the tile under reduction as thereduction tile; the ”multi-
dimensional array” in thelist construct as thetile descriptor; and the loops involved in performing
”one” recursive calculation as thereduction kernel loops. For the example in Figure 5(b), the reduction
tile is B[][], the tile descriptor isB[j,0,2][i,0,2], and the reduction kernel loops are thej and
i loops (not including thek loop, i.e., the parallelized loop). In our design, the shape of the reduction
tile must be a rectangle or a high-dimensional rectangle. Triangle or other shapes are not yet supported.
The exact shape and size of the reduction tile are determined by the tile descriptor.

The format of the tile descriptor is shown in Figure 5(a). It has two parts: the tile name (i.e., T)
and thedimension descriptor (i.e., [jk, Lk, Uk]...[j2, L2, U2][j1, L1, U1]). Tile name must be the same
as the multi-dimensional array variable on which the recursive calculations are performed. For the
example in Figure 5(b), this corresponds to the name of thelhs variable in line 4, which isB. It tells the
OpenMP compiler the data type of the tile element, which must be a built-in scalar type. The dimension
descriptor, on the other hand, is an array of 3-tuples. Each 3-tuple corresponds to one dimension of
the tile and stores important information of that dimension. These 3-tuples are listed in the dimension
descriptor in descendant order (higher dimension first). Each 3-tuple has three elements: loop index
variable, upper bound expression, and lower bound expression. The loop index variable identifies a loop
in the reduction kernel loops. Since stride accesses are not allowed, theloop stride is always1, so it is

7

omitted from the tuple. The size of thek-dimensional tile is calculated from equation (1).

(Uk − Lk) × ...(U2 − L2) × (U1 − L1) (1)

The information stored in the tile descriptor is very important for the OpenMP compiler to generate
correct parallel code.

The operator, as usual, must be a mathematically associative and commutative operator that
performs the recursive calculation. In our current example, it is a ”+”.

0 #pragma omp parallel for reduction(+: A[j,0,2][i,0,2])
1 for (k=1; k<10000000; k++)
2 for (j=0; j<2; j++)
3 for (i=0; i<2; i++)
4 A[0][j][i] += A[k][j][i]

Figure 6: Tile reduction: tile is part of a bigger multi-dimensional array

The reduction tile is not required to be a standalone multi-dimensional array. Instead, it can be
part of another larger multi-dimensional array. For example, in the code in Figure 6, the reduction tile
is A[0][j][i] (j = {0, 1}, i = {0, 1}). It is a 2 × 2 slice cut out from the 3-dimensional array
A[][][];

Besides, as we have mentioned before, the lower and upper bounds in thedimension descriptor are
expressions. They are not required to be constants. Generally, the lower and upper bounds can be a
function of other variables, as long as the result of the function can be decided at runtime. Figure 7
shows such an example. The code in Figure 7 is a blocked matrix multiplication program. It is easy
to see that there is an opportunity to apply tile reduction on the loop in line 3, i.e., thekk loop. The
diagram on the right hand side gives an intuitive illustration. In this example, the reduction tiles are
blocks cut out from a big2×2 matrix (C[][]). Therefore, the lower and upper bounds of the reduction
tiles are not fixed values. In addition, the matrixC[][] might not be able to be evenly blocked. So, the
tiles located at the margin of the matrix are usually smaller than the tiles located inside of the matrix.
Thus, the sizes of the reduction tiles are not necessarily the same. All theseinformation is reflected in
the lower and upper bound expressions (or functions) in the dimension descriptor. Moreover, there is a
restriction for the lower bound and upper bound expressions. They should not be functions of any index
variable in the reduction kernel loops, i.e., they are orthogonal. This is to make sure that the shape of
the reduction tile is a rectangle, or high-dimensional rectangle.

An interesting observation of this example code is that the number of the reduction kernel loops
(which is3, from line 4 to line 6) is not the same as the dimension of the reduction tile (which is2).
Generally, we do not require the number of the reduction kernel loops to be the same as the dimension
of the reduction tile. We only require that the operations performed by the code in the reduction ker-
nel loops can be viewed as one associative and commutativemacro operation performed on the entire
reduction tile.

8

0 for (ii=0; ii<n; ii+=b)
1 for (jj=0; jj<n; jj+=b)
2 #pragma parallel for reduction(+: \

C[i,ii,min(ii+b,n)][j,jj,min(jj+b,n)])
3 for (kk=0; kk<n; kk+=b)
4 for (i=ii; i<min(ii+b,n); i++)
5 for (j=jj; j<min(jj+b,n); j++)
6 for (k=kk; k<min(kk+b,n); k++)
7 C[i][j]+=A[i][k]*B[k][j];

0

1

2

3

4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0

1

2

3

4

0

1

2

3

4

C A B

= X

Figure 7: Tile reduction: upper and lower bounds are functions

3.2 Code Generation

Since tile reduction is derived from scalar reduction, its code generation shares the same framework as
scalar reduction. Thus, we illustrate the code generation for tile reduction under the same framework
as scalar reduction and use the code generation for scalar reduction asa reference. Generally, the code
generation needs to deal with the following problems:

1. Distribute the iterations of the parallelized loop among the threads;

2. Allocate memory for the private copy of the tile used in the local recursivecalculation;

3. Perform the local recursive calculation which is specified by the reduction kernel loops;

4. Update the global copy of the reduction tile;

Figure 8 shows the code generated for the tile reduction example in Figure 7.To make the paper easy
to follow, we present the pseudo C code in the figure.

As we have mentioned at the beginning of Section 3.1, we try to avoid complicatingthe code gener-
ation when we were developing the extension for thereduction clause. A good example is the code
generation for distributing the iterations of the parallelized loop among the dynamic threads. Actually,
this part of the code generation for tile reduction is the same as that for scalar reduction.

In the tile reduction program, the reduction kernel loops can be viewed as asingle statement that
performs the recursive calculation, which is the same as its counterpart in the scalar reduction program.
So, from the angle of iteration distribution, the scalar reduction code and thetile reduction code are
logically the same. Therefore, the method used to generate iteration distributioncode for scalar reduc-
tion can also be used to generate iteration distribution code for tile reduction. It doesn’t matter which
schedule policy (static, dynamic, guided, orruntime) is deployed.

In Figure 8, we use thestatic scheduling policy as an example. In the code from line 2 to line
6, the iterations of thekk loop (line 3 in Figure 7) are evenly distributed among the threads. The
iterations of the loop are divided into chunks and each chunk is assigned toone dynamic thread. The
iteration chunk assigned to the thread is delimited by the lower bound variable"lb" and the upper
bound variable"ub", which are determined by thethread number of the owner thread. This piece of

9

0
1 /* statically partition the iteration space among the threads */
2 num_thr = __builtin_omp_get_num_threads ();
3 thr_id = __builtin_omp_get_thread_num ();
4 chunk_size = (((n+(b-1))/(b-1))%num_thr) == 0 ? \

(((n+(b-1))/(b-1))/num_thr) : (((n+(b-1))/(b-1))/num_thr)+1;
5 lb = chunk_size * thr_id; /* lower bound */
6 ub = min((lb+chunk_size),n); /* upper bound */
7
8 /* allocate memory for private tile */
9 private_tile = (int *)__builtin_omp_memory_alloc(\

(min(ii+b,n)-ii)*(min(jj+b,n)-jj)*sizeof(int));
10
11 /* local tile reduction: serial */
12 for (kk=lb; kk<ub; kk+=b)
13 for (i=ii; i<min(ii+b,n), i++)
14 for (j=jj; j<min(jj+b,n), j++)
15 for (k=kk; k<min(kk+b,n), kk++)
16 private_tile[i-ii][j-jj] += A[i][k]*B[k][j]
17
18 /* update the global reduction tile */
19 __builtin_omp_atomic_start ();
20 for (i=ii; i<min(ii+b,n), i++)
21 for (j=jj; j<min(jj+b,n), j++)
22 C[i][j] += private_tile[i-ii][j-jj];
23 __builtin_omp_atomic_end ();
24
25 free(private_tile);
26

Figure 8: Pseudo code generated for the matrix multiplication example to perform tile reduction

code only deals with the parallelized loop and the user specified OpenMP parameters. It does not even
need to look into the code of the reduction kernel loops. This is the same for other schedule policies.

In line 9, the OpenMP runtime routine allocates memory for the the private tile (private tile),
which is a 2-dimensional array. This private tile is used by the thread as a temporary storage to perform
the local sequential tile reduction. Its size is calculated from the parameters specified in the dimension
descriptor (see equation 1). Its element data type is inferred from the tile name. All this information is
obtained from the extendedreduction clause.

The local sequential tile reduction is performed in the code from line 12 to line 16. This piece of
code is almost the same copy as the original sequential program (line 3 to line 7 inFigure 7) except two
places. In line 12, the lower and upper bounds of the loop are changed to"lb" and"ub". This is to
restrict the range of the iteration space in the chunk assigned to the current thread. Besides, in line 16,
we replace the original reduction tile with the private tile and update its indices. This index calibration
is required because the global reduction tile is cut out from a bigger multi-dimensional array, while the
private tile is a standalone array. This piece of code performs local tile reduction sequentially, as in the
original un-parallelized code.

After finishing the local tile reduction, the thread must update the global reduction tile. The code is
shown in line 19 to line 23. The runtime routines in lines 19 & 23 ensure atomic access to the global

10

reduction tile. The loops in line 20 and line 21 are extracted from thereduction kernel loops. Only
the loops listed in thetile descriptor are selected. So, the loopk in the reduction kernel loops is not
included. Thelhs variable of the statement in line 22 is the same variable as in the original code (line7
in Figure 7). However, therhs variable has been replaced with the private tile, in which the indices have
been updated.

From the code in Figure 8, it is easy to see that the code generation for the tilereduction is as
easy as that for the traditional scalar reduction. Meanwhile, no extra runtime supports is required.
These advantages make the implementation of tile reduction in the OpenMP compiler very easy. In the
next section, we will present the experimental results of applying the tile reduction on several typical
benchmarks.

4 Experiments

We have applied tile reduction on three benchmarks: the 2D histogram reduction, matrix-matrix mul-
tiplication and matrix-vector multiplication. The required code generation was implemented through
source-to-source transformation and was prototyped in the Omni-1.6 OpenMP compiler [17]. The ma-
chine used in the experiments has 4 Intel Dual-Core Xeon (Paxville) chips,which are clocked at 3.0
GHz. Each core has HyperThreading (HT) enabled. Therefore, themachine can be viewed as a 16-
processor shared memory parallel computer. Each chip has 4MB L2 cache (2MB each core) and each
core has 16KB L1 cache.

Figure 9 shows the experimental data of the three benchmarks. The curvegraphs on the left column
display the speedup of the benchmark programs parallelized either throughthe tile reduction clause (w/
tile reduction) or through the standard OpenMP APIs (w/o tile reduction). The bar charts on the right
column demonstrate the difference of the absolute execution time between the corresponding programs
(w/ and w/o tile reduction) of the same set of benchmarks.

Figure 9(b) shows great performance enhancement if we parallelize the2D histogram reduction
benchmark with the tile reduction clause. Generally, compared with the program parallelized with stan-
dard OpenMP pragma, the absolute execution time of the tile reduction version decreased about90% and
its speedup on 8 threads increased from1.5 to 4.5. The performance gain comes from the improved data
locality, which owes to the tile reduction optimization. Without using tile reduction, the2D histogram
reduction program exhibit very poor scalability (shown in Figure 3). Thetile reduction parallelization
successfully rectifies the data access pattern and thus significantly improves its scalability. However,
no matter what kind of optimizations are used, this benchmark stops scaling beyond 8 threads. This is
because of the huge number of memory references in the code, which results in that its performance is
finally restricted by the bandwidth of the shared memory bus.

The same phenomena are also observed in the matrix-matrix multiplication benchmark (see Figure
9(c) and 9(d)). Tile reduction can also decrease its execution time and improve its scalability. However,
the magnitude of the performance enhancement caused by tile reduction is not as big as that of the 2D
histogram reduction benchmark. This is also the same for the scalability enhancement. The reason is
that the data locality of the tiled matrix-matrix multiplication program is better than the 2D histogram

11

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8

S
pe

ed
up

Number of Threads

w/o Tile Reduction
w/ Tile Reduction

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

1 2 4 8 16

m
ill

is
ec

on
d

Number of Threads

w/o Tile Reduction
w/ Tile Reduction

(a) 2D histogram reduction: speedup (b) 2D histogram reduction: execution time

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8

S
pe

ed
up

Number of Threads

w/o Tile Reduction
w/ Tile Reduction

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

1 2 4 8 16

m
ill

is
ec

on
d

Number of Threads

w/o Tile Reduction
w/ Tile Reduction

(c) Matrix-matrix multiplication: speedup (d) Matrix-matrixmultiplication: execution time

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8

S
pe

ed
up

Number of Threads

w/o Tile Reduction
w/ Tile Reduction

 0

 50000

 100000

 150000

 200000

 250000

 300000

1 2 4 8 16

m
ill

is
ec

on
d

Number of Threads

w/o Tile Reduction
w/ Tile Reduction

(e) Matrix-vector multiplication: speedup (f) Matrix-vector multiplication: execution time

Figure 9: Comparison of the speedup and execution time between the program parallelized with tile
reduction and the program parallelized with the standard OpenMP pragma.

reduction benchmark. Therefore, the performance gain from tile reduction in the matrix multiplication
program is less than that in the 2D histogram reduction program. On average, the execution time de-
creased34% after applying tile reduction and its speedup increased from2.15 to 3.18 on 8 threads and
from 2.26 to 3.32 on 16 threads.

For the matrix-vector multiplication case, the performance enhancement brought about by tile re-

12

duction is smaller than that of the previous two benchmarks. The reason is thesame as the previous
one. Moreover, compared with the other two benchmarks, there are less data memory references in this
benchmark. So, the program’s performance degrades a little bit when it runs with 8 or 16 threads. This
is because of the synchronization overhead caused by the code in line 19and 23 in Figure 8. In average,
its execution time decreased0.28%.

5 Summary and Conclusions

In this paper, we introduced the concept of tile aware parallelization for OpenMP. Meanwhile, we de-
veloped the first tile aware parallelization technique - tile reduction, and illustrated the details of code
generation for the tile reduction clause. We also designed a series of experiments to evaluate the tile
reduction technique. From the experimental results and our experience of parallelizing the benchmarks,
we have the following conclusions:

1. As a building block of the tile aware parallelization theory, tile reduction brings more opportuni-
ties to parallelize dense matrix applications.

2. For some benchmarks, tile aware parallelization is a more natural and intuitive way to reason
about the best parallelization decision.

3. Tile reduction not only can improve data locality for some programs, but also can expose more
parallelism.

6 Related Work

Parallel reduction operations are supported in many parallel programming languages. They include
C**[18], SAC [19], ZPL [16], UPC [12], and MPI [13]. Most of them support user-defined reduction
operations, either through language constructs or through library routines. User-defined reduction oper-
ation provides a flexible way to implement tile reduction. However, programmersneed to change both
data structures and algorithms, which, sometimes, is not a tirivial job.

Another piece of work that we need to mention is [20]. In [20], the authorspropose to extend the
OpenMPreduction clause to parallelize C++ generic algorithms. They propose to support user-
defined types, overloaded operators, and function objects in the same way as the built-ins supported
in the current OpenMPreduction clause. Their work is very close to that presented in this paper.
However, we study the reduction problem from a different angle. We propose tile reduction as one of
the tile aware parallelizing technique for OpenMP, while [20] proposes user-defined reduction operation
to complete their OpenMP extensions for parallelizing generic libraries. In our tile aware parallelization
technique, we are concerned with the data partition, locality and a more flexibleand efficient way to
parallelize dense matrix programs written in cannonical C syntax, while the purpose of [20] is to allow
people to parallelize programs written in modern C++ idioms such asiterators and function objects,
which are not cannonical C syntax. Second, due to the non-trivial dynamic overhead of the generic

13

techniques, generic libraries are not widely used in programming high performance scientific and engi-
neering algorithms. Finally, there are no experimental data in [20].

7 Future Work

Tile reduction is one of the building block of the tile aware paralleization technique developed for
OpenMP. One of our future work is to develop more parallelizing techniques (like tile reduction) such
that OpenMP compiler can ”recognize” data tiles and allow its runtime library to manipulate them. Our
goal is to add tile aware parallelizing directives or clauses into the OpenMP programming interface.
The purpose is to evolve OpenMP into an appropriate programming model formany-core processors
with explicitly managed memory hierarchy [21], e.g. the IBM CELL [22] and theIBM Cyclops-64 [23]
processor.

Acknowledgments

This work was supported by NSF (CNS-0509332, CSR-0720531, CCF-0833166, CCF-0702244), and
other government sponsors. We thank all the members of CAPSL group atUniversity of Delaware. We
thank Jason Lin and Lei Huang for their valuable comments and feedback.

References

[1] Anderson, J.M., Amarasinghe, S.P., Lam, M.S.: Data and computation transformations for multi-
processors. In: Proceedings of the Fifth ACM SIGPLAN Symposium on Principles & Practice of
Parallel Programming, Santa Barbara, California (July 19–21, 1995) 166–178SIGPLAN Notices,
30(8), August 1995.

[2] Anderson, J.M., Lam, M.S.: Global optimizations for parallelism and locality on scalable parallel
machines. In: Proceedings of the ACM SIGPLAN ’93 Conference on Programming Language
Design and Implementation, Albuquerque, New Mexico (June 23–25, 1993)112–125SIGPLAN
Notices, 28(6), June 1993.

[3] Wolf, M.E., Lam, M.S.: A data locality optimizing algorithm. In: Proceedings of the ACM SIG-
PLAN ’91 Conference on Programming Language Design and Implementation, Toronto, Ontario
(June 26–28, 1991) 30–44SIGPLAN Notices, 26(6), June 1991.

[4] Lim, A.W., Lam, M.S.: Maximizing parallelism and minimizing synchronization with affine
transforms. In: Conference Record of POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Paris (January 15–17, 1997)201–214

[5] High Performance Fortran Forum: High-performance fortran language specification version 2.0.
Technical report, Rice University (1997)

14

[6] El-Ghazawi, T., Carlson, W., Sterling, T., Yelick, K.: UPC: Distributed Shared-Memory Program-
ming. Wiley-Interscience (2003)

[7] Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun, C.,
Sarkar, V.: X10: an object-oriented approach to non-uniform cluster computing. In: OOPSLA
’05: Proceedings of the 20th annual ACM SIGPLAN conference on Object oriented programming,
systems, languages, and applications, New York, NY, USA, ACM (2005)519–538

[8] Deitz, S.J.: High-level programming language abstractions for advanced and dynamic parallel
computations. PhD thesis, Seattle, WA, USA (2005) Chair-Lawrence Snyder.

[9] Dotsenko, Y., Coarfa, C., Mellor-Crummey, J.: A multi-platform co-array fortran compiler. In:
PACT ’04: Proceedings of the 13th International Conference on Parallel Architectures and Com-
pilation Techniques, Washington, DC, USA, IEEE Computer Society (2004)29–40

[10] Hilfinger, P.N., Bonachea, D., Gay, D., Graham, S., Liblit, B., Pike, G., Yelick, K.: Titanium
language reference manual. Technical report, Berkeley, CA, USA (2001)

[11] Guo, J., Bikshandi, G., Fraguela, B.B., Garzaran, M.J., Padua, D.:Programming with tiles. In:
PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of
parallel programming, New York, NY, USA, ACM (2008) 111–122

[12] UPC Consortium: UPC Collective Operations Specifications V1.0 A publication of the UPC
Consortium (2003)

[13] Forum, M.P.I.: MPI: A message-passing interface standard (version 1.0). Technical report (May
1994) URL http://www.mcs.anl.gov/mpi/mpi-report.ps.

[14] Deitz, S.J., Chamberlain, B.L., Choi, S.E., Snyder, L.: The design and implementation of a parallel
array operator for the arbitrary remapping of data. In: PPoPP ’03: Proceedings of the ninth ACM
SIGPLAN symposium on Principles and practice of parallel programming, New York, NY, USA,
ACM (2003) 155–166

[15] OpenMP Architecture Review Board: OpenMP Application Program Interface Version 3.0 (May
2008) http://www.openmp.org/mp-documents/spec30.pdf.

[16] Deitz, S.J., Chamberlain, B.L., Snyder, L.: High-level language support for user-defined reduc-
tions. J. Supercomput.23(1) (2002) 23–37

[17] Kusano, K., Satoh, S., Sato, M.: Performance evaluation of the omni openmp compiler. In:
ISHPC ’00: Proceedings of the Third International Symposium on High Performance Computing,
London, UK, Springer-Verlag (2000) 403–414

[18] Viswanathan, G., Larus, J.R.: User-defined reductions for efficient communication in data-parallel
languages. Technical Report 1293, University of Wisconsin-Madison (Jan 1996)

15

[19] Scholz, S.B.: On defining application-specific high-level array operations by means of shape-
invariant programming facilities. In: APL ’98: Proceedings of the APL98 conference on Array
processing language, New York, NY, USA, ACM (1998) 32–38

[20] Kambadur, P., Gregor, D., Lumsdaine, A.: Openmp extensions for generic libraries. In: Lecture
Notes in Computer Science: OpenMP in a New Era of Parallelism, IWOMP’08, International
Workshop on OpenMP. Volume 5004/2008., Springer Berlin / Heidelberg (2008) 123–133

[21] Knight, T.J., Park, J.Y., Ren, M., Houston, M., Erez, M., Fatahalian, K., Aiken, A., Dally, W.J.,
Hanrahan, P.: Compilation for explicitly managed memory hierarchies. In: PPoPP ’07: Proceed-
ings of the 12th ACM SIGPLAN symposium on Principles and practice of parallel programming,
New York, NY, USA, ACM (2007) 226–236

[22] Eichenberger, A.E., O’Brien, K., O’Brien, K., Wu, P., Chen, T., Oden, P.H., Prener, D.A., Shep-
herd, J.C., So, B., Sura, Z., Wang, A., Zhang, T., Zhao, P., Gschwind, M.: Optimizing compiler
for the cell processor. In: PACT ’05: Proceedings of the 14th International Conference on Par-
allel Architectures and Compilation Techniques, Washington, DC, USA, IEEE Computer Society
(2005) 161–172

[23] del Cuvillo, J., Zhu, W., Hu, Z., Gao, G.R.: Fast: A functionally accurate simulation toolset for
the cyclops-64 cellular architecture. In: Workshop on Modeling, Benchmarking and Simulation
(MoBS’05) of ISCA’05, Madison, Wisconsin (June 2005)

16

