
University of Delaware
Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

A Study of Different Instantiations of the OpenMP Memory

Model and Their Software Cache Implementations

Chen Chen§
Joseph B Manzano†

Ge Gan†
Guang R. Gao†

Vivek Sarkar‡

CAPSL Technical Memo 086

January, 2009

Copyright c© 2009 CAPSL at the University of Delaware

§Tsinghua University

chchen00@mails.tsinghua.edu.cn

†University of Delaware

{jmanzano,gan,ggao}@capsl.udel.edu

‡Rice University

vsarkar@rice.edu

University of Delaware • 140 Evans Hall • Newark, Delaware 19716 • USA

http://www.capsl.udel.edu • ftp://ftp.capsl.udel.edu • capsladm@capsl.udel.edu

Abstract

An important open problem for future many-core chip architectures is the development

of shared-memory organizations and memory consistency models that are effective for small

local memory sizes per core, scalable to a large number of cores, and still productive for

software to use. Many multicore processors, such as the Cell Broadband Engine, Tilera, and

Cyclops64, include the use of software-managed local memories that avoid the known power

and scalability limitations of hardware-managed cache structures. OpenMP is a natural

candidate as a programming model for multicore processors with software-managed local

memories, thanks to its weak memory consistency model. The OpenMP memory model

allows each thread to maintain a temporary view of the shared memory, and includes a flush

operation that can be used to synchronize the temporary view with the shared memory.

In this paper, we address the problem of software cache implementations for the OpenMP

memory model on multicore processors. We first formalize the idealized OpenMP memory

model (Modelideal) that assumes unbounded space for temporary views, and then for-

malize three practical instantiations — Modelgf (based on nondeterministic global flushes),

Modellf (based on nondeterministic local flushes), and Modelrlf (a further refinement of

Modellf ’s flush operations). We introduce corresponding cache protocols for the three

instantiations. Performance evaluations of these protocols in software cache implementa-

tions for Cell show the following results: i) the cache protocol based on Modellf consistently

outperforms the protocol based on Modelgf , ii) this performance gap increases as the size of

the local memory per core decreases. Our conclusion is that the OpenMP’s relaxed mem-

ory model with temporary views is a good match for software cache implementations, and

that the refinements in Modellf and Modelrlf can lead to good opportunities for scalable

OpenMP implementations on future multicore processors.

1 Introduction

An important open problem for future multicore chip architectures is the development of shared-

memory organizations and memory consistency models that are effective for small local memory

sizes per core, scalable to a large number of cores, and still productive for software to use.

Despite the fact that strong memory models such as Sequential Consistency (SC) are supported

on mainstream small-scale SMPs, it seems likely that weaker memory models will be explored

in current and future multicore architectures such as the Cell Broadband Engine [1], Tilera [5],

and Cyclops64 [15].

OpenMP is a natural candidate as a programming model for multicore processors with

software-managed local memories, thanks to its weak memory consistency model. The OpenMP

model allows each thread to maintain a temporary view of the shared memory which “allows

the thread to cache variables and thereby avoid going to the memory for every reference of a

variable”. It includes a flush operation that can be used to synchronize the temporary view with

the shared memory. It is a weak consistency model “because a thread’s temporary view is not

required to be consistent with memory at all times”. This relaxation of the memory consistency

constraints provides room for computer system designers to experiment with a wide range of

caching schemes, each of which with different performance and cost tradeoffs.

3

In this paper, we address the problem of software cache implementations for the OpenMP

memory model on multicore processors. OpenMP is an attractive alternative to lower level

programming models for multicore processors with local memories, such as the Cell SDK in

which the programmer explicitly manages memory-to-memory transfers. A faithful implemen-

tation of the OpenMP model requires each core to maintain a private copy of the entire shared

memory, which is unrealistic especially for the small amount of memory available per core in

current and future multicore processors. It is a requirement for any scalable software cache

implementation to work with small cache sizes e.g., the local memory size per SPE in the Cell

processor is only 256KB. Therefore, we first formalize the idealized OpenMP memory model

(Modelideal) that assumes unbounded space for temporary views, and then formalize three

practical instantiations — Modelgf (based on nondeterministic global flushes), Modellf (based

on nondeterministic local flushes), and Modelrlf (a further refinement of Modellf ’s flush

operations).

We conducted a performance evaluation of these protocols in a software cache implemen-

tation for the Cell processor based on the OPELL (OpenMP on CELL) framework [27]. Our

experimental results are as follows: i) the cache protocol based on Modellf consistently out-

performs the protocol based on Modelgf , ii) this performance gap increases as the size of the

local memory per core decreases. The impact of a small cache size on cache miss/hit ratios is

well known. The new finding in this paper shows that a small cache size can also increase the

rate of cache line eviction depending on the memory consistency model and cache protocol as-

sumed, which is the motivation for studying these instantiations. As the size of available on chip

memory space per core is getting smaller as the number of cores increasing - this finding demon-

strates the increasing importance on the study of efficient memory models and cache protocols.

Our conclusion is that the OpenMP’s relaxed memory model with temporary views is a good

match for software cache implementations, and that the refinements done under Modellf and

Modelrlf can lead to good opportunities for scalable implementations of OpenMP on future

multicore processors.

The rest of the paper is organized as follows. Section 2 introduces the four instantiations

of OpenMP memory models. Section 3 introduces the cache protocols which implement the

models. Section 4 presents the experimental results. Section 5 discusses the related work. The

conclusion is presented in Section 6.

2 Formalization of the OpenMP Memory Model Instantiations

A necessary prerequisite to build OpenMP’s software cache implementations is the availability

of formal memory models that establish the legality conditions for determining if an implemen-

tation is correct. As observed in [12], “it is impossible to verify OpenMP applications formally

since the prose does not provide a formal consistency model that precisely describes how reads

and writes on different threads interact”. While there is general agreement that the OpenMP

4

memory model is based on temporary views and flush operations1, discussions with OpenMP

experts led us to conclude that the OpenMP specification provides a lot of leeway on when flush

operations can be performed and on the inclusion of additional flush operations (not specified

by the programmer) to deal with local memory size constraints. As we will see, this leeway

can lead to a family of OpenMP memory models with different semantics and performance

trade-offs.

In this section, we formalize four instantiations of the OpenMP Memory Model —

Modelideal , Modelgf , Modellf , and Modelrlf . All four instantiations build on OpenMP’s

relaxed-consistency memory model in which each worker thread maintains a temporary view of

shared data which may not always be consistent with the actual data stored in shared memory.

The OpenMP flush operation is used to establish consistency between these temporary views

and the shared memory at specific program points; furthermore, all flush operations for a given

datum must be serialized.

Modelideal assumes that each thread has sufficient memory available to make a full copy of

the address space, so that flush operations are only performed at the program points designated

by the programmer. The other three instantiations assume that additional flush operations may

be inserted nondeterministically between programmer-specified flush operations:

• Modelgf has global flush semantics which force all temporary views to be synchronized

with the shared memory.

• Modellf has local flush semantics which only force the local temporary view to be syn-

chronized with the shared memory.

• Modelrlf extends the flush operation of Modellf to support three types of refined flush

operations. Each one has weaker semantics than Modellf , but may be implemented more

efficiently.

Another important difference between Modelideal and the other three instantiations is that

under Modelideal , a flush operation may be applied on a set of shared locations. However, in

the other three, a flush operation is only applied on a single location. We assume that a memory

access on a single location is always atomic. Therefore, under these three instantiations, the

serializability requirement of flush operations is naturally satisfied. A flush operation on a set

of shared locations is decomposed into unordered flush operations on each individual locations.

2.1 Modelideal

In this section, we formalize the memory model for an idealized version of the “temporary

view” introduced in the OpenMP Memory Model. The main idealization is that each thread

is assumed to have sufficient memory available to make a full copy of the address space if

needed, so that flush operations are only performed at the program points designated by the

1Flush operations may also be implicit in synchronization operations such as barriers.

5

programmer and no additional flush operations need to be performed due to limited buffer

space.

A store, σ, is a mathematical representation of the machine’s shared memory, which maps

memory location addresses to values (σ : addr 7→ val). We model temporary views by intro-

ducing a distinct store, σi, for each worker thread Ti in an OpenMP parallel region. Following

OpenMP’s convention, thread T0 is assumed to be the master thread. σi[l] represents the value

stored in location l in thread Ti’s temporary view. The flush operation, flush(σi, σ) makes

temporary view σi consistent with the shared view σ. As in OpenMP, we assume that all flush

operations with a non-empty intersection of flush-sets are serialized i.e., are observed by all

threads to be completed in the same sequential order.

The operational semantics of memory operations in Modelideal is as follows:

• Memory read — If thread Ti needs to read the value of the location L, it performs a

read(Ti, L) operation on store σi. If Ti’s temporary view does not contain any value of

L, the value in the shared memory will be loaded to the temporary view and returned to

the read operation.

• Memory write — If thread Ti needs to write value v to the location L, it performs a

write(Ti, v, L) operation on store σi.

• Program Flush — If thread Ti needs to synchronize its own temporary view with the

memory on a subset S of all the shared locations, it performs a flush(Ti, S) operation.

For any location L in S, if Ti’s temporary view contains a “dirty value” of L, it will

write back the value into memory. Here the term “dirty value” means that one of Ti’s

write operations modified the location in the temporary view, and the value has not been

written back into memory as yet2. We also use the term “clean value” to represent a value

that was read but not written. After the flush operation, Ti will discard all the values

whose locations are in S.

We use the example OpenMP code fragment in Figure 1 (a) to illustrate the instantiations of

the OpenMP Memory Model discussed in this paper. It contains a single parallel sections

construct with three sections, all of which perform read/write accesses on a single shared loca-

tion X through pointers p and q. We will assume that the compiler cannot establish statically

that p == q in this example. (If necessary, we can make the example more complicated with

additional assignments to p and q to make this assumption more convincing, but we chose to

avoid adding gratuitous clutter to the example.)

Let us focus our attention on the execution of Parallel Section 3 which performs three read

operations on location X. In Modelideal , all three reads are guaranteed to return the same

value (0, 1 or 2) since no write operations or flush operations occur between the reads.

2See page 15 of the OpenMP specification 3.0 [32].

6

Temporary views and memory
under Model-LF for location X

Temporary views and memory
under Model-GF for location X

Executed
statement

22118

22117

22116

215

214

1212

0210213

01011

00Initially

MemoryT3T2T1MemoryT3T2T1

X = 0; p = &X; q = &X;
#pragma omp parallel sections

{

#pragma omp section
{ // Section 1, assume it is running on thread T1.

1: *p = 1;
2: #pragma omp flush (X)

}
#pragma omp section

{ // Section 2, assume it is running on thread T2.

3: *q = 2;
4: #pragma omp flush (X)

}
#pragma omp section

{ // Section 3, assume it is running on thread T3.

5: #pragma omp flush (X)
// Assume that compiler cannot establish that p == q

6: v1 = *p;
7: v2 = *q;

8: v3 = *p;
}

}

(a)

(b)

12 (dirty)1 (clean)3

22 (clean)1 (clean)4

11 (clean)2

01 (dirty)1

0Initially

MemoryT3T2T1

Temporary views and memory

under Model-RLF for location X

Executed
statement

(c)

Figure 1: Code example for the four instantiations. (a) Example OpenMP code fragment with

three parallel sections. (b) Comparing Modelgf with Modellf . The execution order is 1-3-2-

4-5-6-7-8. (c) Status of temporary views and shared memory under Modelrlf (assuming that

statements 2 and 4 are release operations).

2.2 Modelgf

In this section, we formalize Modelgf . First, we define the program global flush operation as

follows.

• Program Global Flush — If thread Ti needs to synchronize its own temporary view with

the memory and all the other temporary views on a shared location L, it performs a

g flush(Ti, L) operation. If Ti’s temporary view contains a “dirty value” of L, it will

write back the value into memory. Moreover, if any other temporary view contains a

clean or dirty value of L, that value will be discarded.

In Modelgf , program global flush operations are performed at the program points specified

by the programmer. Moreover, additional global flush operations may be inserted nondetermin-

istically by the implementation at any program point, which makes it possible to implement

the memory model with bounded space for temporary views. The operational semantics of

memory operations in Modelgf include the read, write, program global flush operations and an

additional nondeterministic global flush operation defined as follows:

• Nondeterministic Global Flush — Any thread Ti may choose to perform a g flush(Ti, L)

operation nondeterministically at any program point, for a shared location L. The non-

deterministic global flushes must be serialized with the program global flushes i.e., all

7

program global flushes and nondeterministic global flushes on the same shared location

must be observed by all threads to be completed in the same sequential order.

To see the difference between Modelideal and Modelgf , let us revisit the code example

in Figure 1, but now under Modelgf semantics. It may allow some outcomes which are not

allowed under Modelideal e.g., v1 = 1, v2 = 2, v3 = 2 may be obtained if a nondeterministic

global flush is inserted by the implementation between statements 6 and 7.

2.3 Modellf

The problem with Modelgf is that every single global flush operation requires all threads to

participate, which can become a scalability issue. To solve this problem, we formalize Modellf in

this section. Like Modelideal , it only requires that the shared memory and the owner thread

participate in a flush operation. Moreover, like Modelgf , it also allows flush operations to

be inserted nondeterministically by the implementation at any program point, which makes it

possible to implement the memory model with bounded space for temporary views.

The operational semantics of memory operations in Modellf include the read and write

operations introduced in Section 2.1 and the new program local flush and nondeterministic local

flush operations defined as follows:

• Program / Nondeterministic Local Flush — If thread Ti needs to synchronize its own

temporary view with the memory on a shared location L, it performs a l f lush(Ti, L)

operation. If Ti’s temporary view contains a “dirty value” of L, it will write back the

value into memory. After the flush operation, Ti’s temporary view will discard the value

of L. A thread performs program local flush operations at program points specified by

programmer, and can nondeterministically perform local flush operations at any program

point. All the program and nondeterministic local flush operations on the same shared

location must be observed by all threads to be completed in the same sequential order.

Let us revisit the code example in Figure 1 (a) to see the difference between Modelgf and

Modellf . Suppose that the execution order of the statements is 1-3-2-4-5-6-7-8 and no nonde-

terministic flush occurs. Under Modelgf , the result will be v1 = 1, v2 = 1, v3 = 1. However,

under Modellf , the result will be v1 = 2, v2 = 2, v3 = 2. Figure 1 (b) shows the status of

temporary views and shared memory for location X under the two models at each step.

2.4 Modelrlf

An extension to the temporary view models is to support finer-grain flush operations e.g., one

type of flush operation may write back the “dirty value” into memory, but not discard the value

in the temporary view.

8

In this section, we introduce Modelrlf which is an extension for Modellf to support finer-

grain flush operations. Modelrlf has three types of program flush operations — acquire, release

and barrier — which can be used instead of programmer-inserted flush operations.

The operational semantics of memory operations in Modelrlf include the read, write, and

nondeterministic local flush operations, which are the same as those in Modellf , and additional

operations, i.e., program acquire, program release, and program barrier operations, which are

introduced below:

• Program Acquire — A thread Ti can perform an acquire(Ti, L) operation on a shared lo-

cation L. If Ti’s temporary view contains a “clean value” of L, the value will be discarded.

An acquire operation is performed when the thread owns a lock for accessing some data

or enters a critical section.

• Program Release — A thread Ti can perform a release(Ti, L) operation on a shared

location L. If Ti’s temporary view contains a “dirty value” of L, the value will be written

back into memory. After that, it will be set as a “clean value”. A release operation is

performed when the thread releases a lock or exits a critical section.

• Program Barrier — A thread Ti can perform a barrier(Ti, L) operation on a shared

location L. The semantics of a barrier operation is equivalent to an acquire operation

followed by a release operation on location L. A barrier operation is performed when the

thread is performing a barrier semantic.

The situations of using different types of flush operations in OpenMP are as follows:

• Critical, Ordered, omp set lock and omp unset lock regions: On entry, a number of acquire

operations on participating shared locations will be performed. On exit, a number of

release operations on participating shared locations will be performed.

• OpenMP-Barrier: A number of barrier operations on participating shared locations will

be performed.

Let us revisit the code example in Figure 1 (a) to see how Modelrlf works. First, we have

to replace each flush operations in the example by one of the three types of finer-grain flush

operations. Suppose we replace statement 2 by a release operation on X, 4 by release, and 5

by acquire. Then assuming that the execution order of the first four statements is 1-2-3-4. As

we can see in 1 (c). T1 and T2’s temporary views keep “clean value” of X after each own flush

operation, respectively. Therefore, these values can be used for future read operations of T1

and T2 on X. However, under Modellf , a flush operation will always discard the value in the

temporary view.

9

2.5 Properties of the Four Instantiations

In this section, we claim that the four instantiations have the following properties.

1. Modelgf becomes equivalent to Modellf if no two temporary views contain

values for the same location at the same time.

Proof hint: The difference between the definitions of Modelgf and Modellf is that the

former model’s flush operation has global flush semantic but the latter one has local flush

semantic. However, if no two temporary views contain values for the same location at the

same time, the global flush semantic is equivalent to the local flush semantic. So the two

definitions are equivalent, too. Therefore, Modelgf becomes equivalent to Modellf .

2. Modelideal , Modelgf , Modellf and Modelrlf yield the same semantics for

Data-Race-Free programs.

Proof hint: First of all, we prove that for Data-Race-Free programs, removing non-

deterministic flush operations will not change the possible outcomes. The reason is that if

one non-deterministic flush operation write back a “dirty value” from the temporary view

of one thread (Ti) to the memory, no other thread can see the value before Ti performing

a programmer-specified flush operation on the same location of the value. Otherwise,

there is a data race. So a non-deterministic flush operation on a “dirty value” will never

change the outcomes of a Data-Race-Free program. If one non-deterministic flush oper-

ation discards a “clean value” in the temporary view of one thread (Ti), the most close

future read of Ti on the same location will get the same value from memory. Otherwise,

there is either a data race or a programmer-specified flush operation on the same location

between the read and the non-deterministic flush operation. So a non-deterministic flush

operation on a “clea value” will never change the outcomes of a Data-Race-Free program.

Therefore, in the following part of the proof we assume that no non-deterministic flush

operation occrus.

Now we prove that Modelideal is equivalent to Modellf . For Data-Race-Free programs,

the difference between Modelideal and Modellf is that under Modelideal all the flush

operations must be serialized, but under Modellf only the flush operations on the same

location should be serialized. However, the two requirements of the two models are

equivalent for Data-Race-Free programs. The reason is that under Modelideal , it is

impossible that two flush operations have intersection of their flush-sets and at least one

location in the intersection contains “dirty value”. Otherwise, there is a data race. So the

two flush operations can be performed simultaneously. Therefore, the two requirements of

the two models are equivalent for Data-Race-Free programs. So Modelideal is equivalent

to Modellf .

Then we prove that Modelgf is equivalent to Modellf . We have already that Modelgf be-

comes equivalent to Modellf if no two temporary views contain values for the same loca-

tion at the same time. For Data-Race-Free programs, the only case that two temporary

10

views contain values for the same location is that both of the two values are “clean val-

ues”. In this case, replacing global flush operation by local flush operation will not change

the possible outcomes of the program because flush a “clean value” will not change the

value of the memory. So Modelgf is equivalent to Modellf .

Finally, we prove that Modellf is equivalent to Modelrlf . In Section , we have explained

the situations of using different types of flush operations in OpenMP. From the explana-

tion, we can see that the acquire and release operations are always well paired. We first

consider the case that every memory accesse is in one of those acquire-release pairs. In

this case, a release operation is followed by an acquire operation with no memory access

between them. (The only exception is the last release operation, but we can add a fol-

lowing acquire operation because it will not change the outcomes of the program.) From

the definition of acquire and release operations, we can see that if a release operation is

followed by an acquire operation, they together is equivalent to a local flush operation.

So in this case Modellf is equivalent to Modelrlf . The other case is that there are some

memory accesses outside the acquire-release pairs. In this case, because the program has

no data race, one thread can not see the such memory accesses in another thread. In

other words, we can move such memory accesses into some acquire-release pair without

changing the possible outcomes of the program. So this case becomes the same as the

previous case. Therefore, Modellf is equivalent to Modelrlf . In the proof, we did not

discuss barrier operation because it can be viewed as an acquire operation followed by a

release operation.

The above properties indicate that it can be possible to implement a memory model which

achieves good performance without losing programmability. For example, Modelideal seems to

be the easiest memory model to understand, but the hardest to implement efficiently. However,

the more relaxed instantiations, Modelgf , Modellf or Modelrlf , promise to be more efficient

while still giving programmers the illusion that they are working with Modelideal for programs

with no data races.

3 Cache Protocols of Modelgf , Modellf and Modelrlf

In this section, we introduce the cache protocols that implement Modelgf , Modellf and

Modelrlf . We assume that each thread contains a cache which corresponds to its tempo-

rary view. Therefore, performing operations on the temporary view is equivalent to performing

such operations on the caches. Without loss of generality, in this section, we assume that each

operation is performed on one cache line. The reason is that an operation on one cache line

can be decomposed into sub operations; each of which is performed on a single location. We

use per-location dirty bits in a cache line to take care of the false sharing problem.

11

3.1 Cache Line States

We assume that each cache line contains multiple words. Each word can contain a “clean

value”, a “dirty value”, or no value (i.e. invalid). In all three cache protocols, each cache line

can be in one of five states which are addressed as follows.

Invalid: All the words of the cache line are invalid. For convenience, if a cache line does

not exist in the cache, we also say that the state of the cache line is invalid.

Clean: All the words of the cache line contain “clean values”.

Dirty: All the words of the cache line contain “dirty values”.

Clean-Dirty: Some words of the cache line contain “clean values”. The others contain

“dirty values”.

Invalid-Dirty: Some words of the cache line contain no value. The others contain “dirty

values”.

3.2 Cache Protocol of Modelgf

In this section, we introduce the Modelgf cache protocol. As we explained in Section 2.2, a

global flush operation may require all threads to participate. Therefore, in this protocol, we

assume that there is a centralized directory which contains the information for all the caches.

When a global flush operation is performed, the centralized directory can be looked up to find

which caches are involved in the global flush operation. We also assume that the centralized

directory is “idealized”, which means that the cost of cache information maintaining and lookup

is trivial. However, for a global flush operation, the cost of the communication between the

caches and the centralized directory cannot be ignored.

3.2.1 Cache Operations and State Transitions

The state transition diagram of Modelgf cache protocol is shown in Figure 2. Because both

Modelgf and Modellf cache protocols use the same state transition diagram, in the figure the

term “flush” has different meanings. Under Modelgf , this flush is the global flush. On the

other hand, under Modellf , this flush represents the local flush operation.

Next, we explain how each cache operations affects the state transition diagram.

• Read: If the original state of the cache line is invalid or invalid-dirty, the invalid words of

the cache line will load the “clean values” from memory. Therefore, the state will change

to clean or clean-dirty, respectively. In other cases, the state will not change. After that,

the values in the cache line will be returned.

• Write: A write operation writes specified “dirty values” to the cache line. Therefore,

if the original state is invalid or invalid-dirty, it becomes either invalid-dirty or dirty

12

Invalid Clean

Dirty

read

Clean-DirtyInvalid-Dirty
read

read

read/write

read/write

write write

write

write write

write write

flush

flush

flush
flush

flush

Figure 2: State transition diagram for the cache protocol of Modelgf and Modellf .

after a write operation, which depends on whether all the words of cache line contain

“dirty values”. Similarly, when the line contains “clean values”, the state becomes either

clean-dirty or dirty.

• Program / Nondeterministic Global Flush: A flush operation forces all the “dirty

values” of the cache line to be written back into memory. Then, the cache line will become

invalid. After that, the centralized directory will be looked up to find all the other cache

lines involved in the global flush operation. For each word of such cache lines, if the

corresponding word in the original cache line (on which the flush operation performs)

contained a “dirty value”, the word will be set to invalid. Moreover, because none of the

five cache line states allows a cache line to contain some “clean values” and some invalid

words at the same time, all words which contain “clean values” will be set invalid too.

3.3 Cache Protocol of Modellf

The significant difference between Modelgf cache protocol and Modellf cache protocol is that

under Modellf cache protocol a flush operation does not require to inform other threads. There-

fore, a centralized directory is not needed.

The state transition diagram of Modellf cache protocol is also shown in Figure 2. The

state transition rules for read and write operations are the same as those under Modelgf cache

protocol. The state transition rule for program / nondeterministic local flush operation is

defined as follows.

13

• Program / Nondeterministic Local Flush: A flush operation forces all the “dirty

values” of the cache line to be written back into memory. Then, the cache line will become

invalid.

Invalid Clean

Dirty

read

Clean-DirtyInvalid-Dirty

read

read/release

read/write

read/write/acquire

write write

write/acquire

write write

write write

acquire/barrier/flush

acquire

acquire/release/barrier/flush

release/
barrier

release

release barrier/

flush
barrier/
flush

flush

Figure 3: State transition diagram for the cache protocol of Modelrlf .

3.4 Cache Protocol of Modelrlf

In this section, we introduce Modelrlf cache protocol. This cache protocol supports six cache

operations, i.e., read, write, nondeterministic local flush, program acquire, program release and

program barrier. The read, write and nondeterministic local flush operations have the same

state transition rules as those in the other two cache protocols. The barrier operation can be

performed as an acquire operation followed by a release operation. Thus, we only introduce the

state transition rules for acquire and release operations. The complete state transition diagram

is shown in Figure 3.

• Program Acquire: An acquire operation sets the words with “clean values” to be

invalid. Therefore, if the cache state is clean or clean-dirty, the state will change to

invalid or invalid-dirty, respectively. In other cases, the state will not change.

• Program Release: An release operation write back the “dirty values” of the cache

line into memory. However, those values will still stay in the cache as “clean values”.

Therefore, if the cache state is dirty or clean-dirty, the state will change to clean. But if

the cache state is invalid-dirty, the state will change to invalid because no cache state in

14

the protocol can represent a cache line which has both “clean values” and some invalid

words. In other cases, the state will not change.

4 Experimental Results and Analyses

In this section, we introduce our experimental results under Modelgf , Modellf and

Modelrlf cache protocols. In section 4.1 we introduce the experimental testbeds. Then in

section 4.2 we introduce the major observations of our experiments. Finally, we introduce the

details and analyses of the observations in the last three sections.

4.1 Experimental Testbeds

The experimental results presented in this paper were obtained for the Cell Broadband Engine

(CBE). The framework used to test these software cache protocols is the OPELL (OPenmp for

cELL) [27] which is an open source toolchain / runtime effort to implement OpenMP for the

CBE. This framework is composed on four components, each of which can be modified to test

several research ideas, like our software cache protocols.

We implemented Modelgf , Modellf and Modelrlf cache protocols. All the three cache

protocols use 4-way set associative caches. The size of each cache line is 128 bytes. We ran the

experiments on various cache sizes which range from 4KB to 64KB. We executed the programs

on a PlayStation 3 [4] which has one 3.2 GHz Cell Broadband Engine CPU (with 6 accessible

SPEs) and 256MB global shared memory. Our experiments used all 6 SPEs with the exception

of the evaluation of speedup which used various numbers of SPEs from 1 to 6.

We used five benchmark programs in our experiments — RandomAccess and Stream from

the HPC Challenge benchmark suite [2], Integer Sort (IS), Embarrassingly Parallel (EP) and

Multigrid (MG) from the NAS Parallel Benchmarks [3]. In our experiments, the OpenMP code

was used with little change from the original benchmark version. Hence, the performance ad-

vantages obtained reported in this paper were achieved without any adverse impact on OpenMP

programmability.

4.2 Summary of Main Results

The main results of our experiments are as follows:

• Result I: Performance and Scalability (Section 4.3).

Modellf cache protocol consistently outperformed Modelgf cache protocol on all five

benchmark programs. Our results also demonstrate good overall performance scalability

as a function of the number of SPEs under Modellf cache protocol for the collection of

programs tested.

15

• Result II: Impact of Cache Size (Section 4.4).

Our results show that the performance gap between Modellf and Modelgf cache protocols

increases as the cache size becomes smaller. This observation is significant because the

current trend in manycore processors is the local memory size per core decreases as the

number of cores increases.

In Section 4.5, we introduce the preliminary experimental study of Modelrlf comparing

with Modellf . However, we are not able to provide a complete experimental analysis and

comparison between Modelrlf and Modellf . It will be left as a topic for future work. We

realize that a complete Modelrlf performance evaluation should be conducted in conjunction

with an efficient implementation of OpenMP critical sections that can exploit the acquire and

release operations of Modelrlf . In our current implementation we follow the convention that

only a single global lock is used for all the OpenMP (unnamed) critical sections. We believe that

to fully exploit the advantage of acquire and release operations, a finer-grain implementation

of global locks must be pursued as in [36].

4.3 Performance and Scalability

Performance improvement:

EP-A: 1.53

IS-W: 1.32

MG-W: 1.19
RandomAccess: 1.05

Stream: 1.36

Figure 4: Execution time comparison between Modelgf and Modellf cache protocols. Cache

size is 32KB.

Figure 4 shows the execution time comparison between Modelgf and Modellf cache pro-

tocols using 32KB cache size on all five benchmark programs.3 Modellf cache protocol con-

sistently outperformed Modelgf cache protocol. The reason is that the cost of global flush

operations (mainly caused by cache evictions) is much higher than the cost of local flush op-

erations. For example, Figure 5 shows the numbers of accessing centralized directory under

Modelgf and Modellf for MG-W and IS-W on various cache sizes. Because Modellf dose not

have centralized directory, the number of accessing is always zero. However, under Modelgf the

number is quite large.

3For convenience, we use EP-A to represent EP benchmark with input size A. The similar way is used for all

NAS Parallel Benchmarks.

16

097695920374758832K

011706403082711468K

0110555450443629916K

0120342470164876534K

Model-LFModel-GFModel-LFModel-GF

of accessing centralized
directory for IS-W

of accessing centralized
directory for MG-W

Cache
size

Figure 5: The numbers of accessing centralized directory under Modelgf and Modellf for MG-

W and IS-W on various cache sizes.

IS-W and EP-W

achieve almost

linear speedup.

MG-W performs

worse because

of unbalanced

workloads.

Figure 6: Speedup as a function of the number of SPEs under Modellf cache protocol.

Figure 6 shows the speedup as a function of the number of SPEs (We assume that each

SPE runs a thread.) under Modellf cache protocol. The tested applications are MG-W with

a 32KB cache size, and IS-W and EP-W with a 64KB cache size. We can see that for IS and

EP benchmarks, Modellf cache protocol nearly achieves linear speedup. For MG benchmark,

the speedup is not as good as the other two when the number of threads is 3, 5 and 6. The

reason is that the workloads among threads are not balanced when the number of threads is

not a power of 2.

4.4 Impact of Cache Size

Figure 7 and 8 show execution time and cache eviction ratio curves for IS-W and MG-W on

various cache sizes (4KB, 8KB, 16KB, 32KB and 64KB 4) per thread. The two figures show

that the cache eviction ratio curves under the two cache protocols are equal, but the normalized

execution time curves are not. Moreover, the difference in execution time becomes larger as

the cache size becomes smaller. This is because the cost of cache eviction in Modelgf cache

protocol is much higher. Moreover, the smaller the cache size is, the higher the cache eviction

ratio is.

464KB is only for IS-W

17

The difference of
normalized exec-
ution time increa-
sed from 0.15 to
0.25 as the cache
size per SPE was

decreased from
64KB to 4KB.

The two curves of
cache eviction rat-
io are overlapped

because of comp-
letely identical
cache settings.

Figure 7: Trends of execution time and cache eviction ratio for IS-W on various cache sizes.

4.5 Impact of Refinement of Flush Operations

In this section, we introduce the preliminary experimental results for refining the flush opera-

tions, which was implemented by Modelrlf cache protocol. Under Modelrlf cache protocol,

since its finer-grain flush operations may not remove data from cache, future cache access may

achieve more cache hits. Therefore, the performance of the application can be improved.

In the following table, we show the performance improvement of Modelrlf cache protocol

comparing with Modellf cache protocol on MG benchmark. From the table, we can see that

when the input size is fixed, the bigger the cache size is, the better the performance improve-

ment is. Moreover, when the cache size is fixed, the smaller the input size is, the better the

performance improvement is. It satisfies our analysis because when the input size is smaller and

the cache size is bigger, the cache hit ratio is higher. Therefore, more cache hits gain benefits

from Modelrlf cache protocol since its finer-grain flush operations may not remove data from

cache.

18

The difference of

normalized exec-
ution time increa-
sed from 0.04 to
0.16 as the cache
size per SPE was
decreased from

32KB to 4KB.

The two curves of
cache eviction rat-
io are overlapped
because of comp-

letely identical
cache settings.

GF

LF

Figure 8: Trends of execution time and cache eviction ratio for MG-W on various cache sizes.

Input Size Cache Size Performance Improvement of Modelrlf

W 4K 0.0002

W 8K 0.0008

W 16K 0.0019

W 32K 0.0031

S 4K 0.0019

S 8K 0.0030

S 16K 0.0100

S 32K 0.0112

5 Related Work

Despite over two decades of research on memory consistency models [29, 24, 17, 22, 28, 26, 9, 10,

21], there does not appear to be a consensus on how memory models should be formalized [7,

35, 34, 8]. The efforts to formalize memory models for mainstream parallel languages such as

the Java memory model [31], the C++ memory model [11], and the OpenMP memory model

[12] all take different approaches.

The authoritative source for the OpenMP memory model can be found in the specifications

for OpenMP 2.5 [6] and OpenMP 3.0 [32], but the memory model definitions therein are pro-

vided in terms of informal prose. To address this limitation, a formalization of the OpenMP

19

memory model was presented in [12]. In this paper, the authors developed a formal, mathemat-

ical language to model the relevant features of OpenMP. They developed an operational model

to verify its conformance to the OpenMP standard. Through these tools, the authors found

that the OpenMP memory model is weaker than the weak consistency model [17]. The authors

also claimed that they found some ambiguities in the informal definition of the OpenMP mem-

ory model presented in the OpenMP specification version 2.5 [6]. Their work demonstrates

the need for the OpenMP community to work towards a formal and complete definition of the

OpenMP memory model.

Some early research on software controlled caches can be found in the NYU Ultracomputer

[25], Cedar [20], and IBM RP3 [33] projects. All three machines have local memories that

can be used as programmable caches, with software taking responsibility for maintaining con-

sistency by inserting explicit synchronization and cache consistency operations. By default,

this responsibility falls on the programmer but compiler techniques have also been developed

in which these operations are inserted by the compiler instead e.g., [16]. Interest in software

caching has been renewed with the advent of multicore processors with local memories such

as the Cell Broadband Engine. There have been a number of reports on more recent software

cache optimization from compiler angle as described in [19, 18, 14].

Examples of recent work on software cache protocol implementation on CELL processors

can be found in [30, 13, 23]. The cache protocol used in [30] uses a centralized directory to

keep tract cache line state information in the implementation - reminds us the Modelgf cache

protocol in this paper. The cache protocols reported in [13, 23] do not appear to use a

centralized directory - hence appear to be more close to the Modellf cache protocol. However,

we do not have access to the detailed information on the implementations of these models, and

cannot make a more definitive comparisons at the time when this paper is written.

OPELL [27] is an open source toolchain / runtime effort to implement OpenMP for the

Cell Broadband Engine. Our cache protocol framework reported here has been developed much

earlier in 2006-2007 frame and embedded in OPELL (see [27])- but the protocols themselves

are not published externally.

6 Conclusion and Future Work

In this paper, we investigate the problem of software cache implementations for the OpenMP

memory model on multicore processors. We first formalize the idealized OpenMP memory

model (Modelideal) that assumes unbounded space for temporary views, and then for-

malize three practical instantiations — Modelgf (based on nondeterministic global flushes),

Modellf (based on nondeterministic local flushes), and Modelrlf (a further refinement of

Modellf ’s flush operations). We observe that, for data-race-free programs, the four models are

equivalent.

We present cache protocols for the three instantiations of the OpenMP memory models

we discussed: Modelgf , Modellf and Modelrlf , and describe their implementation for soft-

20

ware cache of the CELL processor. show the following results: i) the cache protocols based on

Modellf consistently outperforms the protocol based on Modelgf , ii) furthermore this perfor-

mance gap increases as the size of the local memory per core decreases. As the size of available

on chip memory space per core is getting smaller as the number of cores increasing - this is an

important observation favor more decentralized memory models/protocols that does not rely

on centralized directory as the Modelgf .

This provides a useful way that how to formalize (architecture unspecified) OpenMP memory

model in different ways and evaluate the instantiations to produce different performance profiles.

Our conclusion is that OpenMP’s relaxed memory model with temporary views is a good match

for software cache implementations, and that the refinements in Modellf and Modelrlf can lead

to good opportunities for scalable implementations of OpenMP on future multicore processors.

We intend to do the future work as follows:

• Studies of Modelrlf . As we pointed out in Section 4.2, a complete Modelrlf perfor-

mance evaluation should be conducted in conjunction with an efficient implementation of

OpenMP critical sections that can exploit the acquire and release operations of Modelrlf .

We think it is an interesting topic and expect to fully exploit the advantage of Modelrlf .

• Tests on more benchmarks. By testing more benchmarks, we expect to have a com-

plete study of the advantage and condition of applying Modellf rather than Modelgf .

• Evaluations on more many-core architectures. By doing this, we expect to show

that the idea of software-managed cache and our memory models can be widely used on

various many-core architectures to achieve performance and programmability goals.

References

[1] Cell Broadband Engine. http://www-01.ibm.com/chips/techlib/techlib.nsf/products/Cell Broadband Engine.

[2] HPC Challenge Benchmark. http://icl.cs.utk.edu/hpcc/.

[3] NAS Parallel Benchmark. http://www.nas.nasa.gov/Resources/Software/npb.html.

[4] PlayStation3. http://www.us.playstation.com/ps3/features.

[5] Tilera. http://www.tilera.com/.

[6] OpenMP Application Program Interface, 2005. http://www.openmp.org/mp-

documents/spec25.pdf.

[7] S. V. Adve and J. K. Aggarwal. A unified formalization of four shared-memory models.

IEEE Trans. Parallel Distrib. Syst., 4(6):613–624, 1993.

21

[8] Arvind Arvind and Jan-Willem Maessen. Memory model = instruction reordering + store

atomicity. In ISCA ’06: Proceedings of the 33rd annual international symposium on Com-

puter Architecture, pages 29–40, Washington, DC, USA, 2006. IEEE Computer Society.

[9] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The Midway distributed shared

memory system. In Proc. of the 38th IEEE Int’l Computer Conf. (COMPCON Spring’93),

pages 528–537, February 1993.

[10] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson, and Keith H.

Randall. An analysis of dag-consistent distributed shared-memory algorithms. In SPAA

’96: Proceedings of the eighth annual ACM symposium on Parallel algorithms and archi-

tectures, pages 297–308, New York, NY, USA, 1996. ACM.

[11] Hans-J. Boehm and Sarita V. Adve. Foundations of the c++ concurrency memory model.

In PLDI ’08: Proceedings of the 2008 ACM SIGPLAN conference on Programming lan-

guage design and implementation, pages 68–78, New York, NY, USA, 2008. ACM.

[12] Greg Bronevetsky and Bronis R. de Supinski. Complete formal specification of the openmp

memory model. International Journal of Parallel Programming, 35(4):335–392, 2007.

[13] Tong Chen, Haibo Lin, and Tao Zhang. Orchestrating data transfer for the cell/b.e.

processor. In ICS ’08: Proceedings of the 22nd annual international conference on Super-

computing, pages 289–298, New York, NY, USA, 2008. ACM.

[14] Tong Chen, Tao Zhang, Zehra Sura, and Mar Gonzales Tallada. Prefetching irregular ref-

erences for software cache on cell. In CGO ’08: Proceedings of the sixth annual IEEE/ACM

international symposium on Code generation and optimization, pages 155–164, New York,

NY, USA, 2008. ACM.

[15] Juan Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. Gao. Fast: A functionally accurate

simulation toolset for the cyclops-64 cellular architecture. In In: Workshop on Modeling,

Benchmarking, and Simulation (MoBS2005), in conjuction with the 32nd Annual Interna-

tional Symposium on Computer Architecture (ISCA2005, pages 11–20, 2005.

[16] Ron Cytron, Steve Karlovsky, and Kevin P. McAuliffe. Automatic management of pro-

grammable caches. In ICPP’88: Proceedings of the 1988 International Conference on

Parallel Processing, pages 229–238, Augest 1988.

[17] M. Dubois, C. Scheurich, and F. Briggs. Memory access buffering in multiprocessors. In

ISCA ’86: Proceedings of the 13th annual international symposium on Computer architec-

ture, pages 434–442, Los Alamitos, CA, USA, 1986. IEEE Computer Society Press.

[18] A. E. Eichenberger, J. K. O’Brien, K. M. O’Brien, P. Wu, T. Chen, P. H. Oden, D. A.

Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang, P. Zhao, M. K. Gschwind,

R. Archambault, Y. Gao, and R. Koo. Using advanced compiler technology to exploit the

performance of the cell broadband enginetm architecture. IBM Syst. J., 45(1):59–84, 2006.

22

[19] Alexandre E. Eichenberger, Kathryn O’Brien, Kevin O’Brien, Peng Wu, Tong Chen, Pe-

ter H. Oden, Daniel A. Prener, Janice C. Shepherd, Byoungro So, Zehra Sura, Amy Wang,

Tao Zhang, Peng Zhao, and Michael Gschwind. Optimizing compiler for the cell processor.

In PACT ’05: Proceedings of the 14th International Conference on Parallel Architectures

and Compilation Techniques, pages 161–172, Washington, DC, USA, 2005. IEEE Computer

Society.

[20] Daniel Gajski, David Kuck, Duncan Lawrie, and Ahmed Sameh. Cedar: a large scale

multiprocessor. SIGARCH Comput. Archit. News, 11(1):7–11, 1983.

[21] Guang R. Gao and Vivek Sarkar. Location consistency: Stepping beyond the barriers of

memory coherence and serializability. Technical Report 78, December 1994.

[22] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory

consistency and event ordering in scalable shared-memory multiprocessors. In Proceedings

of the 17th ACM International Symposium on Computer Architecture, pages 15–27, May

1990.

[23] Marc Gonzàlez, Nikola Vujic, Xavier Martorell, Eduard Ayguadé, Alexandre E. Eichen-

berger, Tong Chen, Zehra Sura, Tao Zhang, Kevin O’Brien, and Kathryn O’Brien. Hy-

brid access-specific software cache techniques for the cell be architecture. In PACT ’08:

Proceedings of the 17th international conference on Parallel architectures and compilation

techniques, pages 292–302, New York, NY, USA, 2008. ACM.

[24] J. R. Goodman. Cache consistency and sequential consistency. Technical Report 1006,

Wisconsin, Madison, February 1991.

[25] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe, Larry Rudolph,

and Marc Snir. The nyu ultracomputer—designing a mimd, shared-memory parallel ma-

chine (extended abstract). In ISCA ’82: Proceedings of the 9th annual symposium on

Computer Architecture, pages 27–42, Los Alamitos, CA, USA, 1982. IEEE Computer So-

ciety Press.

[26] Liviu Iftode, Jaswinder Pal Singh, and Kai Li. Scope consistency: a bridge between release

consistency and entry consistency. In SPAA ’96: Proceedings of the eighth annual ACM

symposium on Parallel algorithms and architectures, pages 277–287, New York, NY, USA,

1996. ACM.

[27] Joseph Manzano, Ziang Hu, Yi Jiang and Ge Gan. Towards an automatic code lay-

out framework. In IWOMP ’07: Proceedings of the International Workshop on OpenMP

(2007), Beijing, China, 2007.

[28] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release consistency for software dis-

tributed memory. In Proceedings of the 19th ACM International Symposium on Computer

Architecture, pages 13–21, May 1992.

23

[29] L. Lamport. How to make a multiprocessor that correctly executes multiprocess programs.

IEEE Transactions on Computers, 28(9):690–691, September 1979.

[30] Jaejin Lee, Sangmin Seo, Chihun Kim, Junghyun Kim, Posung Chun, Zehra Sura, Jungwon

Kim, and SangYong Han. Comic: a coherent shared memory interface for cell be. In

PACT ’08: Proceedings of the 17th international conference on Parallel architectures and

compilation techniques, pages 303–314, New York, NY, USA, 2008. ACM.

[31] Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory model. In POPL

’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages, pages 378–391, New York, NY, USA, 2005. ACM.

[32] OpenMP Architecture Review Board. OpenMP Application Program Interface Version

3.0, May 2008. http://www.openmp.org/mp-documents/spec30.pdf.

[33] G.F. Pfister, W.C. Brantley, D.A. George, S.L. Harvey, W.J. Kleinfelder, K.P. McAuliffe,

E.A. Melton, V.A. Norton, and J. Weiss. The research parallel processor prototype (rp3):

Introduction and architecture. In ICPP’85: Proceedings of the 1985 International Confer-

ence on Parallel Processing, pages 764–771, 1985.

[34] Vijay A. Saraswat, Radha Jagadeesan, Maged Michael, and Christoph von Praun. A theory

of memory models. In PPoPP ’07: Proceedings of the 12th ACM SIGPLAN symposium

on Principles and practice of parallel programming, pages 161–172, New York, NY, USA,

2007. ACM.

[35] Xiaowei Shen, Arvind, and Larry Rudolph. Commit-reconcile & fences (crf): A new mem-

ory model for architects and compiler writers. In In Proceedings of the 26th International

Symposium on Computer Architecture, pages 150–161, 1999.

[36] Yuan Zhang, Vugranam C. Sreedhar, Weirong Zhu, Vivek Sarkar, and Guang R. Gao.

Minimum lock assignment: A method for exploiting concurrency among critical sections.

In José Nelson Amaral, editor, LCPC, volume 5335 of Lecture Notes in Computer Science,

pages 141–155. Springer, 2008.

24

