
University of Delaware
Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

Formalizing Causality as a Desideratum for Memory Models

and Transformations of Parallel Programs

Chen Chen

Wenguang Chen

Vugranam Sreedhar

Rajkishore Barik

Vivek Sarkar

Guang Gao

CAPSL Technical Memo 089

July, 2009

Copyright c© 2009 CAPSL at the University of Delaware

University of Delaware • 140 Evans Hall • Newark, Delaware 19716 • USA

http://www.capsl.udel.edu • ftp://ftp.capsl.udel.edu • capsladm@capsl.udel.edu

Abstract

It has been observed in previous work that it is desirable to avoid causal violations in any

execution or transformation of a parallel program. In this paper, we formalize the notion of

causality in memory consistency models and code transformations. For memory models, we

introduce a framework of causality graph that can be used to analyze if a particular memory

model violates causality. We show that a popular memory model as the Java memory model

(JMM) [16], can lead to program executions that exhibit causality violations with respect to

our definition of causality. The same analysis appears to also apply to a recent proposal of

C++ specification [7] where the underline memory model may also lead to similar problems.

For code transformations, we identify transformations that are causality-preserving and

those that are potentially causality-violating. We found that 10 of the 13 code transformation

examples that were identified as causality-preserving with respect to the Java Memory

Model fail our causality graph test and thus represent causality violations in our framework.

Likewise, we also present examples to illustrate how the recently proposed C++ Memory

Model can lead to potential causality violations.

Using our formalization, we establish causality as a desideratum for memory models and

code transformations of parallel programs and define a Causal Memory Model (CMM) as the

weakest memory model that preserves causality. We identify specific code transformations

that are guaranteed to be causality-preserving. Finally, we present preliminary experimental

results for a load elimination optimization to motivate the performance benefit of using the

CMM model relative to the Sequential Consistency (SC) model. For the benchmark program

studied, the number of getfield operations performed was reduced by 37.9% by using the

CMM model instead of the SC model, and the execution time on a 16-core processor was

reduced by 46.2%.

1 Introduction

A memory consistency model (or, memory model) is a contract between an application and a

system that specifies the semantics of permissible values that a read operation of a memory

location may return to a process or a thread of computation. Modern multiprocessor systems

contain several levels of (nonuniform) memory that may cache the value of a memory location.

There are fundamental challenges in specifying the memory model for a shared memory mul-

tiprocessor system which include the fact that several threads of computation may access the

same memory location in parallel, and the fact that values corresponding to the same memory

location may be resident in multiple physical locations in the memory hierarchy. It is desir-

able for the memory model to be intuitive for a programmer to understand, for compilers and

software tools to work with, and to be portable across a wide-range of parallel systems. One

of the most popular memory models is the Sequential Consistency (SC) model [13] in which

memory operations must appear to execute as though they were performed one at a time in

a serial order. SC is very easy for programmers to understand because it is a nature exten-

sion of uniprocessor memory consistency. However, it is well known that the requirement of

serializability in SC limits performance optimizations that can be performed on applications

in software and hardware. Modern day multi-core multiprocessor systems contain two major

i

sources of performance improvement: (1) multiple cores per processor for improving parallel

processing, and (2) memory hierarchy for improving the latency of memory operations. Unfor-

tunately, a strong memory model like SC can result in a performance bottleneck on both fronts.

Several weaker memory models have been proposed to address these issues in the SC model,

such as Weak Ordering model [5], Release Consistency model [11], and Location Consistency

model [10].

For race-free programs, most of the weaker memory models guarantee the same result of an

execution as if the execution was performed under the sequential consistency memory model.

However, for programs with races it is still important to ensure some form of consistency. For

instance the result of a read operation should be due to a prior write operation performed by

some thread, and not be constructed “out of thin air”. Ruling out such “out of thin air” reads

is necessary but not sufficient for defining a useful memory model. The position taken by this

paper is that it is desirable to ensure that the value of a read operation returned to a thread be

the “effect” of some write that “caused” that value to be written to the location and not due

to some “out of thin air” write, such as some write that may happen in the future.

In this paper, we introduce a causal memory model (CMM) that ensures that no reads

are created out of thin air, and also ensures that a read value is the effect of some observable

write that caused the value to be created. For race-free programs the causal memory model

(CMM) also guarantees sequential consistency. For programs with race conditions, it guaran-

tees a “cause-and-effect consistency”. From the programmer’s or hardware designer’s point of

view, CMM allows aggressive optimization without violating the underlying cause-and-effect

consistency model. In this paper, we formalize the notion of causality in memory consistency

models and code transformations. For memory models, we introduce a framework of causality

graph that can be used to analyze if a particular memory model violates causality. We show

that a popular memory model as the Java memory model (JMM [16]), can lead to program

executions that exhibit causality violations with respect to our definition of causality. The same

analysis appears to also apply to a recent proposal of C++ specification [7] where the underline

memory model may also lead to similar problems.

For code transformations, we identify transformations that are causality-preserving and those

that are potentially causality-violating. We found that 10 of the 13 code transformation examples

that were identified as causality-preserving with respect to the Java Memory Model fail our

causality graph test and thus represent causality violations in our notion. Likewise, we also

present examples to illustrate how the recently proposed C++ Memory Model can lead to

potential causality violations.

Using our formalization, we establish causality as a desideratum for memory models and

code transformations of parallel programs and define the Causal Memory Model (CMM) as

the weakest memory model that preserves causality. We identify specific code transformations

that are guaranteed to be causality-preserving. Finally, we present preliminary experimental

results for a load elimination optimization to motivate the performance benefit of using the

CMM model relative to the Sequential Consistency (SC) model. For the benchmark program

studied, the number of getfield operations performed was reduced by 37.9% by using the CMM

ii

model instead of the SC model, and the execution time on a 16-core processor was reduced by

46.2%.

The rest of the paper is organized as follows: Section 2 introduces the motivating examples

of CMM and causality graph. Section 3 introduces causality graph model and formally defines

CMM. Section 4 demonstrates our analyses on the JMM and a recent proposal of the C++

memory model in our notion of causality. Section 5 discusses causality preserving transforma-

tions. Section 6 introduces the experimental results of load elimination. Section 7 introduces

the related work. Finally, section 8 makes the conclusion.

2 Motivation

In this section we present two examples to motivate CMM. We will use a graph model, called

the causality graph (CG). A CG consists of nodes representing operations and edges represent-

ing causality relation. Given a particular execution on a multiprocessor system supporting a

particular memory model, and the corresponding output from the execution, we can use the CG

to check if the execution and the corresponding output violates cause-and-effect consistency.

The first example illustrates cause-and-effect inconsistencies that arise in the JMM and the

second example illustrates a case that violates write atomicity while preserving causality.

2.1 Motivating Example 1

Consider the Java causality example from [16] shown in Figure 1. For this example, The question

to address is whether a result of r1 = r2 = r3 = 2 violates cause-and-effect consistency. To

construct the causality graph, we first create nodes corresponding to statements that produce

the result set. For each result, we trace back to determine which statements caused the values

in the result set. For instance, we insert a causality relation edge from node 1 to the result node

r1=2. Similarly we also insert other causality relation edges, as illustrated in Figure 2. Notice

that the resulting causality graph contains a cycle indicating that the an execution with output

r1 = r2 = r3 = 2 is not cause-and-effect consistent. Let us further analyze why the behavior is

not cause-and-effect consistent.

Initially, a = 0, b = 1

Thread 1 Thread 2

1: r1 = a; 5: r3 = b;

2: r2 = a; 6: a = r3;

3: if (r1 == r2)

4: b = 2;

result: r1 == r2 == r3 == 2

Figure 1: Example: A result violates cause-and-effect consistency.

The steps in the cycle are as follows:

iii

6: a=r3

1 1 2 2

3: r1 r2?

1: r1=a 2: r2=a

3: r1==r2?

b4: b=2

5: r3=b

r1=2 r2=2 r3=2

Figure 2: The causality graph corresponding to the example in Figure 1

1. Since in the result r1 equals 2, statement 6 must be finished before statement 1. Otherwise,

r1 will get value 0.

2. For a similar reason, statement 6 must be finished before statement 2 too.

3. For a similar reason, statement 4 must be finished before statement 5.

4. Statements 1 and 2 must be finished before statement 3 because of the read-after-write

data dependences on local variables r1 and r2 in Thread 1.

5. Statement 5 must be finished before statement 6 because of a read-after-write data de-

pendence on local variable r3 in Thread 2.

6. Statement 3 must be finished before statement 4 because of local control dependence.

According to steps 1 and 2, statement 6 must be finished before statements 1 and 2. How-

ever, according to steps 3, 4, 5 and 6, statements 1 and 2 must be finished before statement 6.

Hence, we establish a causality violation.

2.2 Motivating Example 2

Initially, X=Y=0;

Thread 1 Thread 2 Thread 3Thread 1 Thread 2 Thread 3

1: X=1; 2:r1=X; 4:r2=Y;

fence; fence;

3:Y=1; 5:r3=X;3:Y=1; 5:r3=X;

result: r1==r2==1, r3=0

Figure 3: Example: A result violates write atomicity but preserves cause-and-effect consistency.

iv

1: X=1
Initially,

X=Y=0

3: Y=1 4: r2=Y2: r1=X

X=Y=0

5: r3=X5: r3=X

r1 1 r2 1 r3 0r1=1 r2=1 r3=0

Figure 4: The causality graph corresponding to the example in Figure 3

Now, consider the second example shown in Figure 3 which was proposed as a counter-

example in the recent proposal of the C++ memory model [7]. In the example, each fence

ensures that the memory operation sequenced-before the fence will appear to execute before

the memory operation sequenced after the fence. For this example, is it possible to obtain the

result r1 = r2 = 1 and r3 = 0 at the end of the program’s execution? One observation is

that the result violates write atomicity 1 because statement 1 will overwrite the initial value

of X if write atomicity is preserved. Therefore, if both r1 and r2 read value 1, r3 should also

read value 1 under write atomicity. However, violation of write atomicity does not imply the

violation of causality. Again, we first build CG (see Figure 4). From the CG we can see that

there is no cycle in the graph. Therefore, it is possible to generate the result r1 = r2 = 1

and r3 = 0 along a time-line which goes through all of the statements without violating the

causality relation. For example, it is possible that thread 3 owns a private cache which may

not always be coherent with the shared memory. So it is possible that statement 1 overwrites

the value of X in the shared memory but does not update the value in thread 3’s cache. Thus

statement 5 reads value 0 of X from thread 3’s cache and writes it to r3. The following steps

explain the details of constructing the CG.

1. Statement 1 must be finished before statement 2 because r1 gets value 1 in the final result.

For a similar reason, statement 3 must be finished before statement 4, and initialization

must be finished before statement 5.

2. Statement 2 must be finished before statement 3 due to the fence operation between them.

For a similar reason, statement 4 must be finished before statement 5.

3. Initialization must be finished before any other statements. Because causality relation is

transitive, we do not show the edges which can be derived from the transitivity. However,

we keep the edge from the initialization to statement 5 to emphasize the causality relation

for r3 to get value 0.

1The term “write atomicity” may have different meanings in different literature. In this paper, the meaning

of “write atomicity” is the same as that in [4], i.e., writes to the same location should be serialized and a read

cannot get the newly written value until the corresponding write becomes visible to all processors (threads). In

some other literature such as [10], the term “coherence” has the same meaning as that of ”write atomicity” in

this paper.

v

3 Causality and Causal Memory Model

In this section, we introduce the notion of causality in memory models.

3.1 Background and Notation

In this section we present relevant background and notation that are needed to understand the

rest of the paper. For simplicity we assume that a program P is made of a set of threads T ,

and each thread t contains a set of actions At. The program order for an execution is a partial

order on the actions of the execution imposed by the program text [3, 19]. If a ∈ At is executed

before a′ ∈ At in t, then we say that a and a′ are related by the program order relation (denoted

as a
po
→ a′). We assume that each action is atomic. For simplicity we also assume that each

action can access no more than one shared variable.

In discussing memory models it is often desirable to classify actions into different classes,

such as memory read and write actions, synchronization actions, and control flow actions.

Without loss of generality, in this paper we assume that the synchronization actions are paired

acquire and release synchronization operations as defined in [3] where acquire represents the

semantic of entering a critical section and release represents an exit from a critical section.

The synchronization order (
so
→) over synchronization actions specifies the order to complete the

synchronization actions in an execution. We also define the happens-before relation
hb
→ as the

reflexive transitive closure of
po
→ and

so
→.

Given a classification of actions, we can then define an execution E of a program P as an

ensemble of a set of actions within a set of threads of P . Formally, an execution e of program

P (denoted as e ∈ E(P) where E(P) is a set of all executions that P can generate) is defined

as a tuple e =< A,
po
→,

so
→,W, V > in which

• A is the set of all the actions that are executed in this execution. If an action is executed

multiple times (e.g. an action in loop) – say n times, the action should be considered as

n different actions in A where each one corresponds to an instance.

•
po
→ is the program order over all of the actions in A.

•
so
→ is the synchronization order over synchronization actions in A.

• W is a write-seen function. For each action r in A which reads a shared variable x, W (r)

is the write action in A which writes x and is seen by r. We require that happens-before

consistency [16] is satisfied, that is, only the following two cases are prohibited in W : (1)

r
hb
→ W (r); (2) ∃w′(w′ writes x ∧ W (r)

hb
→ w′

hb
→ r).

• V is a value-written function. For each action w in A which writes a shared variable,

V (w) is the value written by w.

vi

An execution should be consistent with the program, that is, W and V must be consistent

with the control flow actions (statements) of the program, and A must be consistent with the

intention of the program text, i.e., A does not miss any action that must be executed according

to the program text and does not contain any action that must not be executed.

Next we introduce the notion of causal order. For a given execution, and for all the real

machines which can generate the execution, if all these machines have to finish an action a1

before finishing another action a2 to generate the execution, we say that a1 is causally ordered

before a2, and is denoted as a1

co
→ a2 in the execution.

To simplify the presentation we focus on the following kinds of causal order:

• a1 writes a value to a variable and a2 reads that value from the same variable. Any real

machine has to finish a1 before a2 because in the reverse order a2 cannot read the value

which will be written by a1 in the future. Note that even a machine which is able to do

value speculation cannot violate this order. The reason is that a2 cannot be committed

before a1 is committed.

• a2 is control dependent on a1. It includes uniprocessor control dependence such as con-

ditional branch as well as interprocessor control dependence such as fork and join. Note

that a machine which is able to do control speculation may start a2 before starting a1.

However, a2 cannot be committed before the commitment of a1.

• a1

so
−→ a2.

• There exists an action a3 where a1

co
−→ a3 and a3

co
−→ a2. This is the transitivity property

of the causal order.

Next we discuss observable behavior of an execution. An output action is an action which

outputs an observable result (e.g. a printf function in the C language). Without loss of gen-

erality, we assume that one output action only outputs the value of one local variable. The

observable behavior of the execution is a multiset of the values that all of the output actions

output, together with the output order over the values. Formally, the observable behavior of

an execution e is a tuple ob(e) =< V,
vo
−→> where V is the multiset of the values that all of the

output actions output and
vo
−→ is the value order. The value order is defined as follows: Let

a1 and a2 be two output actions, v1 and v2 be the outputted values of a1 and a2, respectively.

v1

vo
−→ v2 if and only if a1

po
−→ a2. Note: it is possible that another output action outputs the

same value as v1 or v2. But the value orders of that value are not affected by the value orders of

v1 or v2. For example, suppose a3 outputs v3 where v3 = v2, since v2 and v3 are distinguishable

in the multiset V even if v2 and v3 are equal, v1

vo
−→ v2 does not imply v1

vo
−→ v3.

Sometimes, the observable behavior of an execution is simply represented as the final values

of some local variables. For example, as it is shown in Figure 1, the observable behavior of the

execution is represented as r1 = r2 = r3 = 2. To handle this kind of simple representation, we

view it as adding output actions of the local variables to the end of the threads. If multiple

vii

output actions are added to the same thread, they are arranged in the alphabetical order of the

variable symbols.

3.2 Definitions of Causality Preserving Execution and Memory Model

With the given notions in the last section, now we can define causality preserving executions

and memory models in this section.

We say an execution e =< A,
po
→,

so
→,W, V > violates causality when a part of its causal

order is cyclic. Formally, e violates causality if and only if ∃a1∃a2(a1 ∈ A ∧ a2 ∈ A ∧ a1

co
−→

a2 ∧ a2

co
−→ a1). If an execution does not violate causality, we say that the execution preserves

causality.

If an execution violates causality, it cannot be generated by hardware because it is impossible

for hardware to finish two actions a1 and a2 where a1 must be finished before a2 and also a2

must be finished before a1.

A memory model M violates causality if and only if it allows some observable behavior

which can only be outputted by the executions that violate causality. The formal definition is

as follows: M violates causality if and only if ∃e∃P (e ∈ E(P) ∧M allows ob(e) on P ∧ ∀e′(e′ ∈

E(P) ∧ ob(e′) = ob(e) → e′ violates causality)). If a memory model does not violate causality,

we say that the memory model preserves causality.

If a memory model violates causality, it cannot be implemented exactly by hardware because

the memory model allows the observable behavior which can only be outputted by causality

violating executions, where no hardware can output the observable behavior. Note, although

a compile time or runtime transformation may transform a causality violating execution to

a causality preserving execution, such a transformation violates the intention of causality of

the program and should be considered as unreasonable. The details of causality preserving

and causality violating transformations (mainly from the compiler angle) will be discussed in

Section 5.

3.3 Causality Graph Analysis

As we defined in Section 3.2, an execution violates causality when a part of its causal order

is cyclic. Therefore, we can construct a graph in which the nodes represent the actions and

the directed edges represent the causal order of the nodes. Because of the transitivity property

of causal order, if the execution violates causality, the graph will contain a cycle. We call the

graph “causality graph” and the process “causality graph analysis”. Formally, the causality

graph of an execution e is a directed graph CG(e) =< V,E > where V = A of e and E =
co
→.

The causality graph analysis consists of two steps as follows:

1. To construct CG(e) for the given execution e.

viii

2. To check if CG(e) contains a cycle. If so, e violates causality. Otherwise, e preserves

causality.

In Section 4, by using the causality graph analysis, we will illustrate that the Java memory

model and the recently proposed C++ memory model violate our notion of causality.

3.4 Definition of Causal Memory Model

In this section, we formalize the definition of causal memory model (CMM) which is the weakest

memory model that still preserves causality. Our formalization follows the approach used by

Lamport to formalize sequential consistency [13] and Adve et al. to formalize weak ordering

and data-race-free-1 [5, 3]. The main idea includes the following formalizations:

• The definition of executions.

• The properties that the executions must obey under the memory model.

• The memory model only allows the observable behaviors of the executions that obey

the properties. Formally, a memory model is a function M : set of programs 7→ set of

observable behaviors. ∀P (M(P) = {ob(e)|e ∈ E(P) ∧ e obeys the defined properties }).

In Section 3.2, we have formalized causality preserving executions. Now we define CMM as

follows:

Definition 3-1: The causal memory model is a function M : set of programs 7→ set of

observable behaviors. ∀P (M(P) = {ob(e)|e ∈ E(P) ∧ e preserves causality }).

Definition 3-2: Hardware obeys CMM if and only if the observable behavior of every

execution on the hardware can be obtained by an execution of the program which preserves

causality.

We say an execution has data race if there exists two actions which access on a same location,

at least one writes the location, and they are not ordered by the happens-before relation. We

say a program is data-race-free with respect to CMM if all of its causality preserving executions

has no data race. The formal definition is as follows:

Definition 3-3: A program P is data-race-free with respect to CMM if and only if ∀e(e ∈

E(P) ∧ e preserves causality → e has no data race.)

CMM guarantees sequential consistency for the programs which are data-race-free with

respect to CMM because for such a program each read action can only see one write action in

an given execution which preserves causality. (Otherwise, the execution has data race.) Since

we also require that an execution must be happens-before consistent, the execution should

looks as if executed in some total order (which is consistent to the happens-before relation of

the execution) where each individual thread is executed in its program order.

ix

4 Causality Analysis of Memory Models

In this section, we discuss the causality analysis of the Java memory model (JMM) [16] and

the recent proposal of C++ memory model (C++MM) [7]. JMM community has proposed a

suite of 20 causality test cases [17] that can help compiler writers and JVM implementers to

use to verify the consistency of their implementation with respect to JMM. Although these 20

test cases are not complete JMM compliance test suite, they provide valuable insight into the

working JMM, especially for Java programs with data races. In this section we will show that

ten of the JMM causality test cases which preserve the JMM notion of causality do indeed

violate our notion of causality. In one case (i.e., case 12), it is suggested that the test case

violates JMM notion of causality, but interestingly the same test case does not violate our

notion of causality. We will also demonstrate that the recently proposed C++MM appears to

violate our notion of causality.

4.1 Analyses of the Java Memory Model

YY10

NY9

NY8

NN7

NY6

YY5

YY4

NY3

NY2

NY1

Forbidden

under JMM

Violation of

causality

of

case

NY20

NY19

NY18

NY17

NN16

YY15

YY14

YY13

YN12

NN11

Forbidden

under JMM

Violation of

causality

of

case

Figure 5: Summary of analyses on Java causality test cases

In this section, we introduce the result of using causality graph to analyze the Java Causality

Test Cases. The summary of our analysis is shown in Figure 5. In the table, the label “# of

case” represents the number of the cases. The label “Violation of causality” represents the

result of using causality graph analysis on the case. Finally, the label “Forbidden under JMM”

means whether JMM forbids the execution. For example, the second row of the left table means

that for the Java causality test case-1, our causality graph analysis shows the execution violates

causality. However, the Java memory model does not prohibit the execution of case-1.

The table shows that 10 of the 13 positive examples violate our notion of causality. In the

following section, we analyze the Java causality test case 1 and show that the Java memory

model violates our notion of causality. The analyses of the other cases are quite similar to the

analysis of case1, thus we omit them due to space limitations.

x

Initially, x = y = 0 Initially x = y = 0

Init !x Init !y Init !x Init !y

y, y

Thread 1 Thread 2

1: r1 = x 4: r2 = y

2: if r1 >= 0 5: x = r2

3 1

Initially, x = y = 0

Thread 1 Thread 2

1: y = 1 3: r2 = y

2: r1 = x 4: x = r2

a1

a2

a4

a5

a1

a2

a3

a4
3: y = 1

Result: r1 == r2 == 1
Result: r1 == r2 == 1

a2

a3

a5 a2 a4

(a) (b) (c) (d)(a) (b) (c) (d)

Figure 6: Analysis on Java causality test case-1. (a) The original program with an observable

behavior. (b) Causality graph of the execution that generates the observable behavior in (a).

(c) A possible transformed program with the same observable behavior. (d) Causality graph

corresponds to (c).

4.1.1 Java Causality Test Case 1

The program and the observable behavior of case-1 are shown in Figure 6 (a), in which r1

and r2 are local variables and x and y are shared variables. Figure 6 (c) shows a possible

transformation of the program which removes statement 2 because the condition is always

true and then reorders statement 3 to the beginning of thread 1. The observable behavior

{r1==r2==1} satisfies sequential consistency in (c). Since the JMM allows the transformation

from the program of Figure 6 (a) to (c), JMM allows the observable behavior {r1==r2==1}

in (a). It implies a strong connection between the concept of causality preserving executions

and memory models and the concept of causality preserving transformations. In this section,

we focus on the concept of causality preserving executions and memory models. The details

about transformations will be discussed in Section 5.

Let e =< A,
po
→,

so
−→,W, V > be a execution with the observable behavior {r1==r2==1}.

In the following analysis, we will show that such an execution is unique.

• The initial statements are two actions. One initializing x and the other initializing y.

They are labeled as init − x and init − y, respectively. The statements from 1 to 5 are

five actions (labeled as a1 to a5), respectively.

• All of the actions except a3 must be in A because they do not control dependent on any

action. a3 is also in A because it supplies the value “1” where all the other actions cannot.

Therefore, A is unique because it must contain all of the actions.

• Since A is unique,
po
→ is also unique.

•
so
−→ is unique because it must be empty.

• Now we discuss the write-seen function W . a4 may see a3 or ainit−y. However, W (a4) = a3

because the value of r2 must be “1” finally. For a similar reason, W (a1) = a5. So W is

fixed and unique.

xi

• V defines the value-written function. Since W is unique, V is also unique in which

V (ainit−x) = 0, V (ainit−y) = 0, V (a3) = 1, and V (a5) = 1.

CG(e) is shown in Figure 6 (b) with transitive reduction, i.e., any an edge that can be

deduced by transitive property is not shown in the figure. It is clear that CG(e) contains a

cycle a1

co
−→ a2

co
−→ a3

co
−→ a4

co
−→ a5

co
−→ a1. So e violates causality. As we analyzed above, e is

the unique execution of which the observable behavior is {r1==r2==1}. So the Java memory

model violates causality.

4.2 Analysis of the C++ Memory Model

In this section, we demonstrate that the recent proposal of C++ memory model [7] violates

causality. First, we will analyze the data-race-free-0 model [5] and show that the data-race-free-0

model violates our notion of causality. Then we will demonstrate the strong connection between

the data-race-free-0 model and the recently proposed C++MM, thus the recent proposal of

C++MM appears to also violate our notion of causality.

Adve and Hill defined the data-race-free-0 model in [5]. The data-race-free-0 model requires

the programs to be data-race-free. For the programs that contain data races, the semantics

of the programs are undefined in data-race-free-0 model. Therefore, for a given program that

contains data race, data-race-free-0 model allows any observable behavior of the program. Now

let P be the program in Figure 6 (a). P contains data race because actions 1 and 5 can be

executed concurrently where action 1 reads x and action 5 writes x. So data-race-free-0 should

allow the result {r1==r2==1}. According to our analysis in Section 4.1.1, data-race-free-0

violates causality.

A simple way to view the recently proposed C++MM is as addressed in [7]: “The model

chosen for C++ is an adaptation of data-race-free-0; i.e., it guarantees sequential consistency

for programs without data races and has undefined semantics in the presence of a data race.”

Therefore, it appears that the recently proposed C++MM also violates our notion of causality.

5 Causality and Program Transformations

In previous section, we showed how to use causality analysis to study memory models and

detect executions that violate causality. In this section, we continue to show that causality

analysis can also be productively applied to compiler optimization. We show that, under the

causal memory model (CMM) defined in Section 3.4, the (seemingly static and local in the

uniprocessor sense) causality preserving property of a family of useful program transformations

will not create causality violation in the global sense (of a parallel program as a whole) - a very

desirable feature of our causality analysis framework. We also show that certain such causal-

ity preserving program transformations under CMM may not be permitted under sequential

consistency model. Further experimental evidence of the usefulness of such findings will be

provided in the next section (Section 6).

xii

5.1 Legal Transformation in a Memory Model

In this section, we introduce the concept of legal transformation under a given memory model.

For convenience, in the rest of Section 5, T denotes a transformation, P denotes the original

program of T , and Q denotes the transformed program of T where Q = T (P).

We say T is a legal transformation under a memory model M if and only if the set of possible

observable behaviors of Q is a subset of the set of possible observable behaviors of P in M .

This is known as the “subset correctness” criteria in [14], and we will use this criteria as the

basis for understanding causality preserving transformations in the following section.

5.2 Causality Preserving Transformations

In this section, we introduce causality preserving transformation (CT). Informally, CTs are

transformations which are safe with respect to causality for memory models, i.e., the permission

of CTs will not cause a memory model to violate causality. We will also demonstrate that a CT is

always a legal transformation under CMM, which helps the verification of legal transformations

under CMM.

The intuition of CT is shown in Figure 6. In the figure, consider the transformation which

transforms the program P in (a) to the program Q in (c). The causality graph in (d) shows

that a causality preserving execution of Q can generate the observable behavior {r1==r2==1}.

However, as we analyzed in Section 4.1, the execution of P which can generate the same

observable behavior violates causality. The example of transformation illustrates a potential

violation of causality. If the memory model allows the transformation and the observable

behavior corresponds to the the causality preserving execution in Q, the memory model must

also allow the observable behavior in P due to subset correctness. However, all of the executions

in P that can generate the observable behavior violate causality. So the memory model violates

causality.

A CT is a transformation which guarantees that any causality preserving executions in the

transformed program is also causality preserving in the original program. The formal definition

is as follows:

Definition 5-1: T is a CT if and only if ∀eQ(eQ ∈ E(Q)∧eQ preserves causality → ∃eP (eP ∈

E(P) ∧ eP preserves causality ∧ob(eP) = ob(eQ))).

Note that in our definition, CT does not rely on a definition of memory model. (However,

the definition of subset correctness does.) So the study of CT does not require the knowledge

of memory model either. We have the following two claims on the properties of CT. The first

claim implies that CT is safe with respect to causality for memory models. The second claim

connects the study of CT to the study of legal transformation under CMM. The proof sketches

can be found in Appendix.

Claim 5-1: If a memory model M only allows CTs, M preserves causality.

Claim 5-2: If T is a CT, T is a legal transformation under CMM.

xiii

5.3 Subgraph Analysis

In this section, we propose the subgraph analysis which can be used to verify causality pre-

serving transformations. As we will see in Section 5.4 and 5.5, in many cases of compiler

transformations, subgraph analysis is a local analysis because it only requires the analysis on

the fragment of code which is involved in the transformation. It is significantly different from

previous work on delay-set analysis [19, 14] in sequential consistency model as delay-set analysis

normally requires a global analysis over the whole program.

Our subgraph analysis is based on two theorems. Informally, the first theorem can be

explained as follows: Given an original program P and a transformed program Q, the corre-

sponding transformation T is a causality preserving transformation (CT) if the following two

conditions are satisfied: (1) For any execution eQ in Q, we can always find a corresponding

execution eP in P which has the same observable behavior, and (2) The causality graph (CG)

of eP is a subgraph of the CG of eQ. The formal theorem is as follows:

Theorem 5-1: If ∀eQ(eQ ∈ E(Q) → ∃eP (eP ∈ E(P) ∧ ob(eP) = ob(eQ) ∧ CG(eP) is a

subgraph of CG(eQ))), then T is a CT.

Proof sketch: Because CG(eP) is a subgraph of CG(eQ), if CG(eQ) has no cycle, CG(eP) has

no cycle either. So if eQ preserves causality, eP preserves causality too. Therefore, T satisfies

the definition of CT. �

In practice, when we are applying theorem 5-1, we may hope to reduce the complexity of

the causality graph without changing the cyclic property of the graph, where cyclic property

means the assertion that whether the graph has a cycle. For example, if a node in CG has zero

indegree (or outdegree), removing such a node and the edges which are connected to it will not

change the cyclic property. Therefore, we have the following theorem to address this case:

Theorem 5-2: Let F (CG(eP)) denote a graph which removes one zero indegree (or outdegree)

node and the edges that are connected to CG(eP). If ∀eQ(eQ ∈ E(Q) → ∃eP (eP ∈ E(P) ∧

ob(eP) = ob(eQ) ∧ F (CG(eP)) is a subgraph of CG(eQ))) then T is a CT.

Proof sketch: Because F (CG(eP)) is a subgraph of CG(eQ), if CG(eQ) has no cycle, both

F (CG(eP)) and CG(eP) have no cycle. So if eQ preserves causality, eP preserves causality.

Therefore, T satisfies the definition of CT. �

5.4 Load elimination

Load elimination is a classical compiler transformation that replaces a memory access by a read

of a compiler generated temporary. This transformation is also known as Scalar replacement

in past work [12]. Figure 7 depicts the two cases of load elimination transformation. In this

section, we demonstrate that the load elimination transformations in Figure 7 are CTs. For the

code fragments, x is shared, r, r1 and r2 are local, and temp is a compiler generated temporary

local variable. For convenience, we label the statements as 1 (or 1a and 1b in the transformed

code in (a)), 2, and 3. For both the cases in Figure 7 (a) and (b), before the transformation

xiv

Original code:

Ti

Transformed code:

TiTi

1: x = ...;

2: ...

3: r = x;

Ti

1a: temp = ...;

1b: x = temp;

2 :3: r = x;

(a)

2 : ...

3 : r = temp;

Original code:

Ti

1: r1 = x;

Transformed code:

Ti

1: r1 = x;;

2: ...

3: r2 = x;

()

;

2: ...

3: r2 = r1;

(b)

Figure 7: Load eliminations

is applied, statement 3 loads the value of a shared variable. After the transformation, the load

of the shared variable is eliminated and replaced by a read of a local variable. Note that, it is

possible that there are some statements program ordered before statement 1 in thread Ti.

Now assume that statement 2 (in both (a) and (b)) satisfies the following constraints:

• No action in statement 2 changes the value of x.

• No action jumps into statement 2 without going through statement 1.

• Statement 2 may introduce synchronization order using either acquire or release, but not

both.

• Statement 2 may introduce side-effects for shared variables other than x.

If statement 2 satisfies the above constraints, the read in statement 3 can see the write

in statement 1 without violating the happens-before consistency. Now we claim that the load

elimination in Figure 7 (a) preserves causality. The reason is as follows: For any execution

eQ ∈ E(Q), let eP be an execution of which the only difference from eQ is that r sees the

write of x in statement 1 instead of temp and in statement 1 x gets value from “...” directly.

Therefore, eP ∈ E(P). The different parts of CG(eP) and CG(eQ) is shown in Figure 8. Because

of transitive property of causal order, for each edge from node a1b to a node c in CG(EQ), there

is also an edge from node a1a to c. Therefore, CG(eP) is a subgraph of CG(eQ) because we

can rename node a1a by a1 in CG(eQ). According to theorem 5-1, the transformation preserves

causality and thus it is legal under CMM. For a similar reason, the load elimination in Figure 7

(b) preserves causality too.

Although the above load eliminations preserve causality, they may not be permitted by

all of the causality preserving memory models. For example, the load eliminations shown in

Figure 9 match the load eliminations in Figure 7. However, they are prohibited by the sequential

consistency because the transformations are not subset correct under SC.

xv

Edges from “…” to a1 Edges from “…” to a1a

a1aa1

Edges to the reads which see a1

a1b

Edges to the reads which see a1b

a3a3

(a) (b)

Figure 8: Causality Graphs (with transitive reduction) of Program P (a) and Q (b). Only

different parts are shown.

5.5 Other Transformations

In this section, we discuss a number of transformations that include reordering, constant propa-

gation, redundant store elimination and partially redundant store elimination. We will demon-

strate that all of them are legal (subset correct) under CMM.

Original code:

Initially r = x = y = 0;

T1

1 : x = 1

Transformed code:

Initially r = x = y = 0;

T1

1a: temp = 11 : x 1

2 : if (y == 0)

3: goto 5;

4 : r = x;

5 : ...

1a: temp 1

1a: x = temp

2: if (y == 0)

3: goto 5;

4 : r = temp;5 : ...

T2

6 : x = 2

7 : y = 1;

4 : r temp;

5 : ...

T2

6 : x = 2

7 : y = 1;

The result r == 1 is disallowed under SC.

7 : y 1;

The result r == 1 is allowed under SC.

(a)

Original code:

Assume compiler does not know p==q

Initially p.x = q.x = 0

T1

Transformed code:

Assume compiler does not know p==q

Initially p.x = q.x = 0

T1

1 : r1 = p.x

2 : r2 = q.x

3 : r3 = p.x

T2

1 : r1 = p.x

2 : r2 = q.x

3 : r3 = r1

T2

4 : p.x = 1

T3

5: q.x = 2;

4 : p.x = 1

T3

5: q.x = 2;

The result r1 == 1, r2 == 2, r3 == 1 is

disallowed under SC.

The result r1 == 1, r2 == 2, r3 == 1 is

allowed under SC.

(b)

Figure 9: The load eliminations are prohibited by sequential consistency because the transfor-

mations introduce new results.

xvi

Reordering

We discuss the most common case of reordering, i.e., two actions (statements) that do not have

uniprocessor data dependency, uniprocessor control dependency, and neither is a synchroniza-

tion action. We also assume that the two actions are next to each other. The more general case

is discussed in the end of Section 5.5. In the above case, the reordering is a CT. The reason

is as follows: Let a1, a2 be the two actions that are reordered in the transformation. Before

transformation, a1

po
−→ a2; after transformation, a2

po
−→ a1. Now for a given execution eQ of

the transformed program, let eP be an execution of the original program of which the only

difference from eQ is that a1 and a2 have no causal order in eP . Such eP always exists because

a1 and a2 have neither dependency nor synchronization order in original program. CG(eP) is

a subgraph of CG(eQ) because CG(eP) has less (or the same) edges in comparison to CG(eQ).

According to theorem 5-1, the reordering is a CT and thus it is legal under CMM.

Constant propagation

We show that constant propagation in Figure 10 is a CT. Again, the more general case is

discussed in the end of Section 5.5.

Assuming r is local, x is shared.

Before transformation:

Ti

...

After transformation:

Ti

...

k : x = 1;

k+1: r = x;

...

k : x = 1;

k+1: r = 1;

...

Figure 10: Constant propagation

For a given execution eQ of the transformed program, let eP be the execution of the original

program of which the only difference from eQ is that action ak+1 gets value from ak in eP . Let

F be a function which removes node ak in CG(eP). F (CG(eP)) is equivalent to CG(eQ). So

F (CG(eP)) is a subgraph of CG(eQ) because a graph is a subgraph of itself. Note that the

indegree of node ak in CG(eP) is zero. According to theorem 5-2, the transformation is a CT

and thus it is legal under CMM.

Redundant store elimination

We show that the redundant store elimination in Figure 11 is a CT.

We only discuss the case that the two actions (or statements) are next to each other. The

case that the two actions do not next to each other is discussed in the end of Section 5.5.

For a given execution eQ of the transformed program, let eP be an execution of the original

program of which the only difference from eQ is that it has one more action ak which does not

be read by any other read actions. So the only difference between CG(eQ) and CG(eP) is that

xvii

Assuming r1 and r2 are local, x is shared.Assuming r1 and r2 are local, x is shared.

Before transformation:

Ti

After transformation:

Ti

...

k : x = r1;

k+1: x = r2;

...

k+1: x = r2;

...

...

Figure 11: Redundant store elimination

CG(eP) has one more node ak in eP and some edges connected to it. Let F be a function which

removes node ak in CG(eP). F (CG(eP)) is equivalent to CG(eQ). So F (CG(eP)) is a subgraph

of CG(eQ). Note that the outdegree of node ak in CG(eP) is zero. According to theorem 5-2,

the transformation is a CT and thus it is legal under CMM.

Partially redundant store elimination

In this section, we will show that partially redundant store elimination in Figure 12 can be

applied under CMM. The more general case is discussed in the end of Section 5.5.

Assuming r1 and r2 are local, x is shared.Assuming r1 and r2 are local, x is shared.

Before transformation:

Ti

After transformation:

Ti

...

x = r1;

if (cond.) //‘‘x = r1’’ and

//‘‘cond ’’ have no dependency

...

if (cond.)

x = r2;

else// cond. have no dependency.

x = r2;

else

{...}

else

{x = r1; ...}

{ }

Figure 12: Partially redundant store elimination

Ti

Intermediate program

...

if (cond.) {

x = r1;

2
Original Transformed

(a) (b)

x = r2;

}

else

{ x r1; }

program program

{ x = r1; ...}

Figure 13: The two steps of partially redundant store elimination. (a) Reordering. (b) Redun-

dant store elimination.

The partially redundant store elimination can be done by applying two transformations in

sequence. As it is shown in Figure 13 (a), the first transformation moves the statement x = r1

into both paths of the conditional branch. No matter which path the conditional branch will

xviii

getfield # getfield after # getfield after No load SC load CMM load

(original) SC CMM elim. exec. elim. exec. elim. exec.

load elim. load elim. time in time in time in

sec sec sec

1.19E10 7.91E09 4.91E09 22.3 18.38 12.68

Table 1: Moldyn Benchmark: reduction in dynamic counts of GETFIELD operations and

execution time on a 16-core system.

go, the transformation matches the reordering as we discussed earlier in this section because

x = r1 and the computation of the condition have no dependency in the original code. So it is

legal under CMM. Figure 13 (b) shows the second transformation which is a redundant store

elimination in one path of the conditional branch. As we discussed earlier in this section, this

redundant store elimination is also legal under CMM.

Transformations in More General Cases

In the above of Section 5.5, we only discuss about the transformations on the actions that are

next to each other. For the more general cases that the actions which will be transformed are

far apart, we can firstly apply reorderings to move the actions next to each other (of course, the

reorderings must be legal transformations) and then apply the transformation on the actions

that are next to each other. Finally, it may be necessary to apply reorderings to move the

transformed actions back to satisfy the original program order of the actions.

6 Preliminary Experimental Results

While the major contribution of our paper lies in the formalization of causality as a desirable

property for memory models and program transformations, we present some preliminary ex-

perimental results for the JGF Moldyn benchmark [1] in this section to illustrate the potential

performance benefits of using the Causality Memory Model (CMM) instead of the Sequential

Consistency (SC) model. For the CMM version, the transformation is summarized in Sec-

tion 5.4. For the SC version, the transformation was performed by using delay set analysis [19]

to restrict opportunities for load elimination. Note that, the load elimination transformation

under CMM model preserves all the constraints described in Section 5.4.

The JGF Moldyn benchmark was written using a subset of the X10 language that includes

of the async, finish and isolated parallel constructs [9]. The construct async S is used for

creating a light-weight asynchronous task that executes S; the finish S construct causes the

executing task to wait for the termination of all tasks created within S; and finally isolated

S is intended to be executed by a task as if in a single step during which all other concurrent

tasks are suspended.

xix

The performance results were obtained using Jikes RVM [2] version 3.0.0 on a 16-core system

that has four 2.40GHz quad-core Intel Xeon processors running Red Hat Linux (RHEL 5), with

30GB of main memory. For our experimental evaluation, we use the production configuration of

Jikes RVM with the following options:-X : aos : initial compiler=opt -X : irc : O0.

By default, Jikes RVM does not enable SSA based HIR optimizations like load elimination at

optimization level O0. We modified Jikes RVM to enable the SSA and load elimination phases at

O0. However, since the focus of this paper is on optimizing application classes, the boot image

was built with load elimination turned off and the same boot image was used for all execution

runs reported in this paper. Load elimination transformation was extended to perform load

elimination for CMM and SC memory models.

All results were obtained using the -Xmx2000M JVM option to limit the heap size to 2GB,

thereby ensuring that the memory requirement for our experiments was well below the available

memory on the 16-core Intel Xeon SMP. The PLOS FRAC variable in Plan.java was set to 0.4f

for all runs, to ensure that the Large Object Size (LOS) was large enough to accommodate all

benchmarks.

The summary of the results for the Moldyn benchmark are summarized in Table 1. We

observe that the load elimination algorithm using the CMM memory model results in a 37.94%

reduction of getfield operations compared to the SC memory model. The execution time re-

duction on a 16-core processor is 46.2%, confirming the importance of this transformation for

scalable parallelism. The final version of the paper will include performance comparisons for

additional benchmarks.

7 Discussion and Related Work

In this paper we introduced a new notion of causality in which the value returned by a read from

a memory location is due to some causal write to the same location. We also introduced a graph

model, called the causality graph, for analyzing the causality of an execution. We showed that

if the causality graph contains a cycle the corresponding execution is causally inconsistent. In-

terestingly, existing literature contains many different notions of causality. Lamport presented

a very simple consistency model, the sequential consistency (SC) model, that is causally con-

sistent, even according to our notion of causality [13]. One drawback that is very well known in

the literature is that the SC model restricts many useful compiler and hardware optimizations.

Subsequently weak models were proposed that allowed certain kinds of compiler and hardware

optimizations. The weaker models guaranteed SC for data race free programs, but had very few

guarantees for programs with races. There are several other work on memory and consistency

model. Due to limited space we will not dwell into each one of them. In this section we focus

on those models that focus on the causality aspects of memory model.

In [19], Shasha and Snir proposed a delay-set analysis that computes the minimal ordering

between shared variable accesses that is required to guarantee sequential consistency. The

delay-set analysis is based on the construction of a conflict graph and (minimal) cycle detection

xx

in the graph. Delay set analysis was probably one of the earliest work that paved way for other

works in understanding the kind of code transformations that are possible and do not violate

SC. Our causality analysis, especially for determining causality preserving transformation is

influenced by delay-set analysis.

Ahamad et al. defined causal memory in [6]. In their work, causal order is defined as

the transitive closure of write-in order and program order. Due to the need to fully respect

program order when performing optimization, their causal memory model may restrict on the

kinds of optimizations that can be performed under our causal memory model. In [15], Linder

and Harden defined the “access graph” graph model which represents the causal relationships

between load, store, and synchronization events. In their notion of causality, program order

should also be respected. Therefore, their causality model hinders many compiler and runtime

optimizations either.

Manson et al. defined the Java memory model that also uses some notion of causality [16].

The main purpose of their definition of causality is to allow as many compiler transformations as

possible and still prevent out-of-thin-air behavior for data race programs. However, under their

definition of causality, a hardware may execute one operation more times than programmer

desired. For example, for the program in Figure 6 (a), statement 1 must be executed exactly

once according to programmer’s desire. However, to achieve the result {r1==r2==1} under

JMM, statement 1 must be executed multiple times in the JMM commit process as defined in

Section 5.4 of [16]. This might violate the programmers’ intention of the program thus we feel

that the semantic of their causality is not very intuitive from programmers’ perspective.

In [18], Saraswat et al. proposed a family of memory models (Relaxed Atomic + Ordering

family) which preserves sequential consistency for data-race-free programs. They discussed the

Java causality test cases and showed that their family of memory models satisfies the cases.

For example, it allows the observable behavior of the Java causality test case 1. It implies that

their family of memory models violates our notion of causality.

Boehm and Adve discussed causality by using three examples (Figure 5,6, and 7 in [7])

which they claim to be violating causality. We used one of them as a motivating example in

Figure 3. However, they do not explicitly define the notion of causality in their work. Since

all of the three examples violate write atomicity. A reasonable conjecture is that their idea of

causality requires that write atomicity must be satisfied. It seems that it is too expensive to

implement write atomicity in large scale multi-core or many-core architectures.

The CMM defined in this paper is not a unique memory model that does not satisfy write

atomicity. A typical memory model in the previous work that does not satisfy write atomicity

is the location consistency memory model which is proposed by Gao and Sarkar [10], in which

each memory location is viewed as a partially ordered multiset (pomset). A read operation

may arbitrarily get one of the values in the pomset of the memory location. The OpenMP

memory model as defined in [8] by Bronevetsky and de Supinski is another example because

the OpenMP memory model is strictly weaker than the location consistency memory model.

xxi

8 Conclusion

In this paper, we introduced the notion of causality in memory consistency models and code

transformations of parallel programs. A reasonable memory consistency model should not

violate causality. This paper showed that the state-of-the-art memory models as the JMM and

the recent proposal of the C++MM, violate causality. We also defined using the notion of

causality, a Causal Memory Model (CMM) that is the weakest memory model that preserves

causality. We identified specific code transformations that are causality preserving and those

that are not. Our preliminary evaluation of load elimination transformation (which is shown

to be a causality preserving transformation) in Jikes RVM results in a 37.94% reduction in

dynamic memory load operations by using CMM as opposed to SC memory model and the

execution time on a 16-core processor was reduced by 46.2%.

References

[1] Java Grande. http://www.epcc.ed.ac.uk/research/activities/java-grande/.

[2] Jikes RVM. http://jikesrvm.org/.

[3] Sarita Adve and Mark D. Hill. A unified formalization of four shared-memory models.

IEEE Transactions on Parallel and Distributed Systems, 4:613–624, 1993.

[4] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: A tutorial.

Computer, 29(12):66–76, 1996.

[5] Sarita V. Adve and Mark D. Hill. Weak ordering—a new definition. In ISCA ’90: Proceed-

ings of the 17th annual international symposium on Computer Architecture, pages 2–14,

New York, NY, USA, 1990. ACM.

[6] Mustaque Ahamad, Phillip W. Hutto, Gil Neiger, James E. Burns, and Prince Kohli.

Causal memory: Definitions, implementation and programming. Technical Report GIT-

CC-93/55, Georgia Institute of Technology, 1994.

[7] Hans-J. Boehm and Sarita V. Adve. Foundations of the c++ concurrency memory model.

In PLDI ’08: Proceedings of the 2008 ACM SIGPLAN conference on Programming lan-

guage design and implementation, pages 68–78, New York, NY, USA, 2008. ACM.

[8] Greg Bronevetsky and Bronis R. de Supinski. Complete formal specification of the openmp

memory model. Int. J. Parallel Program., 35(4):335–392, 2007.

[9] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kiel-

stra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented

approach to non-uniform cluster computing. In OOPSLA ’05: Proceedings of the 20th

annual ACM SIGPLAN conference on Object-oriented programming, systems, languages,

and applications, pages 519–538, New York, NY, USA, 2005. ACM.

xxii

[10] Guang R. Gao and Vivek Sarkar. Location consistency-a new memory model and cache

consistency protocol. IEEE Transactions on Computers, 49(8):798–813, 2000.

[11] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta,

and John Hennessy. Memory consistency and event ordering in scalable shared-memory

multiprocessors. In ISCA ’90: Proceedings of the 17th annual international symposium on

Computer Architecture, pages 15–26, New York, NY, USA, 1990. ACM.

[12] K. Kennedy and J. R. Allen. Optimizing compilers for modern architectures: a dependence-

based approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[13] L. Lamport. How to make a multiprocessor that correctly executes multiprocess programs.

IEEE Trans. on Computers, C-28(9):690–691, September 1979.

[14] Jaejin Lee, David A. Padua, and Samuel P. Midkiff. Basic compiler algorithms for parallel

programs. SIGPLAN Not., 34(8):1–12, 1999.

[15] D. H. Linder and J. C. Harden. Access graphs: A model for investigating memory consis-

tency. IEEE Trans. Parallel Distrib. Syst., 5(1):39–52, 1994.

[16] Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory model. In POPL

’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages, pages 378–391, New York, NY, USA, 2005. ACM.

[17] W. Pugh. Java Memory Model Causality Test Cases. Technical Report, University of

Maryland, 2004. http://www.cs.umd.edu/ pugh/java/memoryModel.

[18] Vijay A. Saraswat, Radha Jagadeesan, Maged Michael, and Christoph von Praun. A theory

of memory models. In PPoPP ’07: Proceedings of the 12th ACM SIGPLAN symposium

on Principles and practice of parallel programming, pages 161–172, New York, NY, USA,

2007. ACM.

[19] Dennis Shasha and Marc Snir. Efficient and correct execution of parallel programs that

share memory. ACM Trans. Program. Lang. Syst., 10(2):282–312, 1988.

A Proof Sketch of Claim 5-1

Firstly we need to define single execution program (SEP) as follows: For a given execution

e, suppose ob(e) =< V,
vo
−→>, the single execution program P = SEP (e) is a program which

only contains output actions where each action outputs a constant. Moreover, let A be the set

of actions in P . A is defined as follows: A = {output(value)|value ∈ V } and ∀output(value1)

∀output(value2) (output(value1)
po
−→ output(value2) ↔ value1

vo
−→ value2).

For example, suppose ob(e) =< {1, 2}, {1
vo
−→ 2} > , SEP (e) =< {a1 = output(1), a2 =

output(2)}, {a1

po
−→ a2} >. A single execution program SEP (e) has two important properties:

xxiii

(1) E(SEP (e)) only contains one execution and the execution preserves causality. The reason is

that all actions in SPE(e) do not access any variable. (2) Let e′ be the execution in E(SEP (e)),

then ob(e′) = ob(e).

Now we prove the claim 5-1. Note that it is equivalent to prove that if M violates causality,

M allows at least one transformation which is not a CT. Let b denote observable behavior.

When M violates causality, ∃P∃b(b ∈ M(P) ∧ ∀e(e ∈ E(P) ∧ ob(e) = b → e violates causality

)). Now let Q = SEP (e) and let T be a transformation that Q = T (P). T is subset correct

under M because M(Q) = {b} ⊆ M(P). However, T is not a CT for the following reason: For

the execution eQ ∈ E(Q), ob(eQ) = b ∧ eQ preserves causality, but ∀eP (eP ∈ E(P) ∧ ob(eP) =

b → eP violates causality). So T does not satisfy the definition of CT. Therefore, M allows

transformation T which is not a CT. �

B Proof Sketch of Claim 5-2

The causality graph of any legal execution under CMM must have no cycle. So if T is a CT,

any possible observable behavior of Q is also a possible observable behavior of P . Therefore, T

is subset correct. �

xxiv

