University of Delaware
(1]) Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

Analysis and Performance Results of Computing Betweenness
Centrality on IBM Cyclops64

Guangming Tant, Vugranam Sreedhartt, Guang R. Gaot

CAPSL Technical Memo 090
October 20, 2009

Copyright (© 2009 CAPSL at the University of Delaware

tEmail: guangmin@capsl.udel.edu or tgm@ict.ac.cn,ggao@capsl.udel.edu
tTEmail: vugranam@us.ibm.com

University of Delaware e 140 Evans Hall @ Newark, Delaware 19716 ¢ USA
http://www.capsl.udel.edu e ftp://ftp.capsl.udel.edu e capsladm@capsl.udel.edu

Abstract

This paper presents a joint study of application and archite to improve the performance
and scalability of an irregular application — computingvbetnness centrality — on a many-core
architecture IBM Cyclops64. The characteristics of urddtrred parallelism, dynamically non-
contiguous memory access and low arithmetic intensity iveenness centrality pose an obstacle to
an efficient mapping of parallel algorithms on such manyearchitectures. By identifying several
key architectural features, we propose and evaluate effisteategies for achieving scalability on
a massive multi-threading many-core architecture. We destnate several optimization strategies
including multi-grain parallelism, just-in-time localitwith explicit memory hierarchy and non-
preemptive thread execution, and fine-grain data synchatioh. Comparing with a conventional
parallel algorithm, we get 4X-50X improvement in performamnd 16X improvement in scalability
on a 128-cores IBM Cyclops64 simulator.

Contents

1 Introduction 1

2 BC Algorithm and ItsIrregular Characteristics 2
2.1 Brandes Algorithm 2
2.2 lrregular Characteristics e e 4

3 IBM Cylopst4 Architecture 5

4 Mapping BC Algorithm to IBM Cyclopst4 7
4.1 AFine-grained Parallel Algorithm 8
4.2 Achieving Just-In-Time Locality 9
4.3 Using Architectural Support of Fine-grain Data Synchronization 11

5 Evaluation 12
5.1 Methodology 21
5.2 Results for Mapping Parallel BC Algorithm 14
5.3 DISCUSSION o e e e e 18

6 Related Work 20

7 Conclusion 21

List of Figures
1 Adjacencyarrayofagraph. e 3
2 Ademonstration of BC algorithm. 3
3 The execution time distribution of critical sections. An value in x-axis is a atitic

sectionnumber L e e e 4
4 Memory access pattern in the adjacent array . 5
5 The performance of OpenMP implementation — HPCS SSCA2. The humbertizks
and edges is 1024 and 8192, respectively. 6
6 IBM Cyclops64 chip architecture 6
7 Thestructure of SSBentry e 7
8 thread executiongraph 10
9 A demonstration of the parallel pipelining process for the BFS phasieedBC algo-

rithm. For readability, the transformation (linearization/scatter) and datameveare
depicted as two steps. A real implementation finishes them in single step by memory

threads. e 10
10 The sequential BFS codes without percolation. 12
11 BFS codes with percolation on IBM C6&PAWNTASKIs implemented as dispatch-

ing a thread from a thread podBARRIERWAIT()is a global barrier synchronization

supported by hardware mechanism. 13
12 The incremental optimization results (S = 10). baseline: OpenMP veo$ibiiPrCS

SSCA2. JITL: SSCAZ2 with just-in-time locality. JITLSSB: SSCA2 with both just-in

time and synchronization state buffer.00 15
13 Scalabilityresults of the parallel betweenness centrality algorithm (higher is betteg). T

number of vertices = 2%, E(n) =8n. i 16
14 Time distribution and achieving off-chip memory latency tolerance. 16

15 The comparison of running time using different sizes (bytes) of lmuffe 17

16 Overhead of barrier synchronization for scale = 10. The measanmers include the

barriers in both BFS and backtracephase., 17
17 The comparison of software lock and SSB (BFSphase) 18
List of Tables
1 Simulation parameters of C64. 4 1

2 The comparison of TEPS on three platform@ile = 10. 19

1 Introduction

Computer architects are exploring the massive many-core architecage wjith the hope of improved
execution of scientific applications. At a high level there are two kinds pliggtions— regular appli-
cations where data access and control flow follow regular and prettigiatterns, and irregular appli-
cations where data access and control flow have statically (and oftardgmamically) unpredictable
patterns. Analysis and optimization of such irregular applications are no#tyidifficult. Computing
betweenness centrality (BC) [16] used in a network analysis is a goodpdaaf such irregular prob-
lems. BC is a popular quantitative index for the analysis of large scale cometesork and measures
the control a vertex has over communication in the network. It has bedrextensively to build protein
interaction network, identify key actors in terrorist network and studyai&lDS network. Brandes’
algorithm [5] is a fast algorithm for computing BC. In this paper, we refdd@algorithm as the one
proposed by Brandes [5]. BC algorithm calculates the centrality througlsteps: BFS (breadth first
search) traversal and backtrace accumulation. Since most of therketinca real world are repre-
sented as scale-free sparse graphs [1], BC algorithm exhitstsuctured parallelisnanddynamically
non-contiguous memory accesloreover, especially for this kind of emerging applications in high
performance community, another distinct characteristiowsarithmetic intensity- the ratio between
arithmetic operations and memory operations.

With the advent of many-core architectures, such as IBM Cyclops64[364 contains hundreds
of on-chip cores, it is extremely challenging to tackle the difficult probleropifmizing and scaling
irregular applications. In fact, memory hierarchy with small on-chip memorgges in such an archi-
tecture makes the problem even more difficult. While there is no consensuoargicore architectures,
it is important to identify not only how programmers will use the mechanisms pedvidthe emerging
many-core architecture, but the relative usefulness of various misamaas evidenced by their impact
on application performance. In this paper, we leverage some keydsataura many-core architecture
— IBM Cyclops64 to improve performance of computing betweenness tignfa scale-free sparse
graph. In consideration of unstructured parallelism, dynamically notigroyus memory access and
low arithmetic intensity exposed by a large class of irregular applications eméfigfour key properties
of IBM Cyclops64 to address the challenge of executing irregularrarog on such many-core archi-
tectures:massive light-weight hardware thread unit®n-preemptive thread execution model, explicit
memory hierarchyandfine-grain data synchronizatiorThe main contribution of this paper includes:

e Being aware of massive light-weight hardware threads, we develofieetgrained parallel algo-
rithm by combining multi-level parallelism. The new algorithm is well-structureddad balance
and locality optimization.

e We found that the properties of non-preemptive thread execution namkekxplicit memory
hierarchy are useful to achiejest-in-time locality We proposed a data-centric strategy to exploit
just-in-time locality [19, 20, 32] for the fine-grained parallel algorithm.

e The restructured program takes good advantage of the architeatppars of fine-grain data syn-
chronization. Comparing with the parallel algorithm described in HPCS SYEJAthe imple-

mentation on IBM Cyclops64 obtained a performance improvement of 4-5@ tume scalability
of 16 times.

To the best of our knowledge, this paper is the first indepth study ofeimgnting a high perfor-
mance BC program on a many-core architecture. The rest of the papegaisized as follows: In
section 2, we describe betweenness centrality (BC) algorithm and itaatbastics. In section 3, we
introduce IBM Cyclops64 (C64) architecture. Section 4 discusses hdosweéoage the key properties
of IBM C64 to re-structure BC algorithm. Section 5 evaluates the perforenand section 6 discusses
related techniques. Finally, section 7 concludes this paper.

2 BC Algorithm and ItsIrregular Characteristics

In this section, we briefly describe the best sequential algorithm for ledileg BC (for the detailed
algorithm, refer to [5]). Then we examine its irregular characteristics, midientified by experimental
results on commercial multi-core platforms.

2.1 BrandesAlgorithm

Given a graphG = (V, E) whereV denotes the set of vertices aftlthe set of edges itr. Letoy
denote the number of shortest paths frera V tot € V, whereos; = 1 by convention. Leb g (v)
denote the number of shortest paths freto ¢ that somey € V' lies on. The BC measure of a vertex
is given by:

be(v) = Z 7 (v) 1)

g
stvAtey St

Given pairwise distance and shortest paths counts, the pair-dempgrdgv) = "(;—(j’) of pairs,t € V
denotes the fraction of shortest paths betweandt that pass through a particular vertexThe BFS
traversal algorithm calculates all shortest paths. Let's defigte, v) to be length of the shortest path
betweenu andv, w(u,v) is weight of edggu, v). In the BFS traversal, the set pfedecessorsf a
vertexv on a shortest path from source vertels generated:

Pi(v) ={u eV :{u,v} € E,dg(s,v) = dg(s,u) + w(u,v)} 2

To eliminate explicit summation of all pair-dependencies, Brandes’ algorittrodinces a notion of the
dependency of a vertexc V' on a single vertex € V, defined as:

550(”) = Z 531&(7)) (3)

teV

The crucial observation is that these partial sums obey a recursiviomeds presented in theorem 1.
We omit a formal proof here, a reader refers to [5] for details.

2

Theorem 1 The dependency efe V on anyv € V obeys

b)) = Y TE(1+ bua(w)) @)

g
ww€ Pg(w) sw

In the backtrace accumulation, a partialvalue of a predecessor is accumulated according to its
sSuccessors.

be(v) = Y Gse(v) (5)

s#veV

VO vl v2 v3 v4 V5 V6 V7
[o]3s]s]s]9]ad 17 13 index array

_——

\
[2]a]7]a]e]a]e6][7]2]3]0][3]3][5]6] neighboramra

Figure 1: Adjacency array of a graph.

A space efficient data structure for sparse grépfs an indexed adjacency array data structure.
Figure 1 shows an example, which is composed oihalex arrayand asuccessor arrayIn fact, the
predecessor sdt recording the trace of BFS tree is stored in another adjacency arrayparameters
d, ¢, 0, and the measurig are implemented in linear array. However, the references to the three linear
arrays are very dependent on that to the adjacency arraysiof

B step2 .. _ step3 _step4 step!
JYONULL) 1 i ([VO=NULL L1 o) S N B T I
|| vi—=NULL o [-1]' i|vif=v2 1 | ool ol
vz R I oI N Y C1 RN T R ET:
|| v3—=NULL o [-1]! i|v3fF=v4 1 | Clol i ol ol
Laelvo] 1] Lol vl I T I TR
|| vB—=NULL ol [-1]! i|vsfF={v7 1 | ool ol
| VS| | O |1 AIma il | 1] L O 0F] O

[ver=nue [[t [vel=lvel=vr] [2] [z i [o) i [o] i[o]
v 1 Lo ek Clol i))
N T ____ B | e — N\ N TN T ’
predecessor sigma dist predecessor sigma dist delta delta (

Figure 2: A demonstration of BC algorithm.

Figure 2 demonstrates an instance starting with vergéx Figure 1. Bothstep landstep 2generate
a BFS treefredecessqrand record its informations(andd). Then according to equation 4, the values
of ¢ is accumulated along the BFS tree fratep 3to step 5 At this time, the five steps compute the
partial betweenness centrality values of all vertices. After the algorithifonpes similar steps from all
other vertices we get the final accumulated results.

3

2.2 Irregular Characteristics

I lock
0.000025 — criticalsection ‘

|
0.000020 — |
0.000015
0.000010

0.000000

time (seconds)

T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000
critical section number

Figure 3: The execution time distribution of critical sections. An value in is-&a critical section
number

Unlike regular applications where the inherent locality and parallelism grarapt and easy to be
exploited, it takes careful understanding of the locality and parallelismviehof irregular applications
before one can achieve high performance and scalability. We summagednfportant features of BC
algorithm, which represent a large class of irregular applications’ cortipaitachaviours.

e Unstructured parallelism.For instance, during the BFS phase, a queue is used to maintain the
current vertices being extended (In the following context, visiting neighbb a vertex is re-
ferred to as amxtensioroperation). The available parallelism within an extension operation is
proportional to degrees of vertices. However, the degrees in a sealgifaph obey a power-law
distribution [1], which shows a high variance and means that most of velieee low degrees.

In the same level of BFS tree multiple extension operations may proceed Ilepiéthey do not
share neighbor vertices. In Figure 1 the parallel extensions,of,, v; require a synchronization
mechanism. A fine-grained mutex lock associated with each vertex is one vpagtézt from
conflict. Note that the number of locks scales with the number of vertideishvis often too huge
to be held in memory. For a very fine-grained parallel algorithm on a marg-architecture, an
additional concern is the very small critical section. Figure 3 compa@sleck synchronization
overhead to the span of each critical section (only plots about 8000 s&)ctithe critical section
is so small that the synchronization overhead dilates the size of critidarsec

¢ Dynamically non-contiguous memory accethe effectiveness of existing locality optimization
techniques such as prefetching and speculation rely on the continuity oéidieboring vertices
and regular distances of different region of neighboring verticesljacancy arrays. In a scale-
free sparse graph, the degrees or neighbors of vertices are haghdple. Considering the simple
example shown in Figure 1 again, we observe that not only the neighbesmdd:, v4 andvy;

4

address

are located in different regions in the adjacency array, but alsottickes between the different
regions are not constant. Figure 4(a) records the trace of acdasttesadjacency array, and
Figure 4(b) depicts the distance between two consecutive accesseglibaneregions. Also,
the references to other linear arra¥/s), o, bc have the similar behaviors. Such non-contiguous
memory access pattern cannot benefit from current prefetchinmeoukation techniques.

memory access trace in adjacent array
8000 . - .‘. o

l“ ” " ‘nu

I f M ”w" ’mw

e

T T T T T T T T T
0 100 200 300 400 4 100 200 300 400
time time

8000 4 memory access stride
6000 -

- Gl
‘”’ 'I‘IMN’[‘”]P ‘ ll ﬂ ’lﬂ‘ l‘ } il
\ h|ﬂ ! \1” il

6000 4

L
M |u

o
!

4000 -

stride

N”Jﬂl

I
W
J -2000 -
2000

, n
iji]
U
u -4000 4

F

-6000 -

-8000

(@ (b)

Figure 4: Memory access pattern in the adjacent array

e Low arithmetic intensityThe profiling of BC program execution reports that BFS traversal is the
most time consuming. Looking at equation 2, 3, an extension of one veréels @0 arithmetic
(float point addition) operations, six memory operations. Thanks to higinatic intensity and
parallelism, most of traditional scientific computing programs naturally befinefit many-core.
However, in order to improve the performance of a memory bound protikerBC, the key to
a successful parallel program will be an efficient strategy to reducentimory access overhead
by utilizing the massive parallel thread units.

HPCS benchmark suite SSCAZ2 [2] specifies an OpenMP implementation dfjBfitlam. Figure 5

reports its performance on IBM C64. As the number of threads is inatettse scalability and perfor-
mance degrade. In order to achieve high performance on such mengchitectures, it is important
to identify the characteristics impacting on application performance.

IBM Cylops64 Architecture

IBM Cyclops64 (C64) is a many-core architecture designed to serveledieated petaflop computing
engine for running high performance applications. In this section weitlests architecture, highlight-
ing some of its core features that we exploit in improving the performanceeaidbility of irregular
applications.

e Massive light-weight hardware thread unit®A C64 chip employs a multiprocessor-on-a-chip
design with 160 hardware thread units, half as many floating point units,detedanemory, an
interface to the off-chip SDRAM memory and bidirectional inter-chip roufiogts. On-chip

5

time (seconds)

#cores

Figure 5: The performance of OpenMP implementation — HPCS SSCA2. Thberwf vertices and
edges is 1024 and 8192, respectively.

Node

Processor 1 2 80 Chip

TU TU ||._. TU A-switch chaeeh —
ethernet

tacie [o o0
Crossbar Network r::e?\rl‘vtgr)li

I 1
GM || GM GM || GM GM || GM ! !
DDR2 SDRAM Off-chip
controller memory

Figure 6: IBM Cyclops64 chip architecture

resources are connected to a 96-port crossbar network, whitdirsuall the intra-chip traffic
communication. In regard to intra-chip communication bandwidth, each Eoicesthin a C64
chip is connected to a crossbar network that can deliver 4GB/s petqtaling 384GB/s in each
direction. The bandwidth provided by the crossbar supports intraeciipnunication, i.e. access
to other processor’s on-chip memory.

e Explicit memory hierarchy.C64 chip has no data cache and features a three-level (scratchpad
memory, on-chip SRAM, off-chip DRAM) memory hierarchy. A portion oichahread unit’s
corresponding on-chip SRAM bank is configured as the scratchpad még8i®). Therefore, the
thread unit can access to its own SP with very low latency through a back@be remaining
sections of all on-chip SRAM banks that together form the on-chip glotshory (GM) that
is uniformly addressable from all thread units. There are 4 memory comgraiianected to 4
off-chip DRAM banks.

e Non-preemptive thread execution mod€64 incorporates an efficient support for thread level
execution. For instance, a thread can stop executing instructions fonlenwf cycles or indef-
initely; and when asleep it can be woken up by another thread throughdavare interrupt. All
the thread units within a chip connect to a 16-bit signal bus, which proadesans to efficiently
implement barriers. C64 provides no resource virtualization mechanismsghréee execution
is non-preemptivand there is no hardware virtual memory manager. The former means the OS
will not interrupt the user thread running on a thread unit unless theeupdicitly specifies ter-
mination or an exception occurs. The latter means the three-level memaaychigiof C64 chip
is visibleto the programmer.

e Fine-grain data synchronizationC64 provides aynchronization state buffer (SS®) support
fine-grain data synchronization (refer to [36] for details). SSB is a smdlér attached to the
memory controller of each memory bank. It records and manages sfategve synchronized
data units to support and accelerate word-level fine-grain synidatton. SSB avoids enormous
memory storage cost and high memory access latency. The structur&adg SBown in Fig-
ure 7. Each SSB entry consists of four parts: 1) address field thag¢dstagletermine a unique
location in a memory bank, 2) thread identifier, 3) an 8-bits counter andi4)its field that sup-
ports 16 different synchronization modes. SSB mechanism uses imstisiof sshlock/unlock
to implement fine-grain synchronization.

state (4-bits)

counter (8—bits% thread id ‘ address ‘

Figure 7: The structure of SSB entry

4 Mapping BC Algorithm to IBM Cyclops64

In this section, we discuss betweenness centrality with graph travedsahaw how to map it to IBM
C64 by leveraging the architectural features. As noted in section 2, dhiglity variable degrees
and data dependence, first, both low arithmetic intensity and unstructurgteliem lead to the low
utilization of massive hardware units. Second, both high memory storag@mdslynamically non-
contiguous memory access patterns incur high overhead of off-chip rgeamoesses. Our strategy
combines the algorithmic re-structure with several key architectural grepe

1. Greedy parallelism. Since the underlying many-core architecture provides massive hadwar
thread units and efficient fine-grain data synchronization, we try to #&xgdanuch parallelism
as possible in application programs. Therefore, we develop a faieegt parallel BC algorithm,
which exploits multiple levels of parallelism simultaneously. With the fine-grairzedlielism, it
is easier to schedule the parallel tasks for better load balance. Furthmeni a door to achieve
just-in-time locality (In fact, it is an extra source of fine-grained parallelismmjch is proven to
be critical to high performance on a C64-like many-core architecture in thrik.w

7

2. Just-in-time locality.Like a cache-based architecture, it is desirable to schedule most atithre
to access low latency on-chip local storage. Due to dynamically non-contgunemory access,
traditional prefetching and speculation techniques are hard to take. effécidentify that the
architectural characteristics of explicit memory hierarchy plus nonnpppéiee thread execution
model make just-in-time locality [19, 20, 32] possible. Although the intrinsia deependence
(producer-consumer in BC algorithm) can not be eliminated, we may decooiputation op-
erations with memory operations so that an additional parallelism betweenishexploited.

A more important fact is that the decoupled operations are scheduled sxconding to data-
centric mechanism. This approach is reasonable because data moveuoretgrishe control of
programmer and threads processing the data are not preemptive, ctiomptiteeads consume
just-in-time localityproduced by memory threads, that is, data are local to computing cates ju
before the cores start to process the data.

Recall that there are two phases in the BC algorithm: BFS traversal akttdmxaccumulation (See
section 2). Both phases have similar computing behavior (although the&eekircumulation is of high
arithmetic intensity, our optimization strategies still work). To simplify presentatieronly describe
the optimization for BFS traversal phase.

4.1 A Fine-grained Parallel Algorithm

BFS traverses a graph to generate a tree (subgraph) level by levadursint level each vertex is
extended to produce the vertices at the next level. We observe two Idvetsatlelism: among all
extensions and in an extension (the term of extension is defined in segtieins?, if multiple vertices at
one level do not share the same neighbor vertices, these extensiatiaecan be assigned to multiple
parallel thread units. For example in Figuredl v4, v7 are at the same level, the extensions of these
vertices are finished by three parallel threads. However, if two veslta® the same neighbor vertices,
a synchronization is forced to keep the shared neighbors being visitgakt one time. Second, in an
extension, the explorations on each neighbor vertex can be embagiagsanallelized. For example
the explorations on,, vy, v7 Of vertexwvy are assigned to three parallel threads. However, there are
two factors hindering the scalability of parallelism. On one hand, the firet tE#vwparallelism requires
concurrent memory accesses to their neighbor vertices, the memory gihecb may exceed the small
on-chip memory on many-core architectures. Besides, the intensivetycent memory accesses place
a burden on the limited off-chip bandwidth, which slacks the scalability ofljeéisan. On the other
hand, the scale-free sparse graph has few vertices with high degreies determines the available
parallelism. Therefore, the previous parallel implementations [2—4], wmbhexploit either one level

of parallelism, can not achieve good performance on massive multi-thgeadtihitectures.

Let us denote the set of the extended vertices in current eVl as{v;1, vio, ..., vi }. Let N; =
{uji, ujo, . uj, 1,1 < j < k denote the neighbor vertices set of a vertgx During execution the
unvisited neighbor vertex (d[u] = —1) is added to the current queue and the vertices being extended in
the shortest pathi(u] = d[v] + w[u][v]) are added to the set of predecesBgi|. We logically compact
all their neighbors into one large séf:N; = U1gjgn N;, then partition it among parallel threads. In the

8

case of ignoring shared neighbor vertices, the compaction achievesshi le % more
times of parallelism than either one level of parallelism. For example in 1 we cﬁrlmémeighbor
vertices ofvo, v4, v7 iNto a larger set of , vg, v7, v3, V5, v6. The tasks of visiting the 6 neighbor vertices
are evenly distributed to multiple threads. Because the working set of amsexteoperation depends
on the highly variant degrees of vertices, the previous parallel algofi2hmnly schedules multiple
extension operations so that load balance is hard to achieve. Thanksdopipert of massive fine-

grained parallel thread units, we combine and re-distribute the paraksldafine-granularity.

However, in the initial fine-grained parallel BC algorithm there are two lgrob to be addressed:

e The parallel algorithm achievestimes of parallelism at the cost of concurrently accessing
times of memory addresses. On IBM C64 the local storage is too small to hotohtine com-
bined neighbor set, therefore a large number of high latency off-chip meatzesses happen.
Much worse, the memory access patten is dynamically non-contiguous, ificulifo adopt
either perfetching or speculation automatically. Meanwhile, the conduacmesses make the
contention of the limited off-chip bandwidth worse.

e Because the operations on one vertex are involved with only two arithmetiatapes, the critical
section protected by synchronization operations is so small that the repiidtion overhead
dilates the size of critical section. An efficient synchronization mecha8iSBion IBM C64 may
help. However, as noted in [36], SSB performance will degrade ibtleflow of SSB happens
when a synchronization operation is taken over by software. Therefer should reduce the
number of conflicts at an instance to avoid SSB overflow.

4.2 Achieving Just-In-Time L ocality

In the preliminary version of the fine-grained parallel BC program, weeole amount of off-chip mem-
ory accesses. In fact, the access to on-chip local storage has mbaen beqndwidth and lower latency
than that to off-chip memory. Therefore, it is reasonable to schedule ag tma@ads as possible only
to access on-chip local memory space. Because both on-chip antipfiaemory are addressed by all
threads in a uniform space with different latency, in a conventionalutiecmodel a thread is activated
as soon as its data/control dependencies are satisfied, regardlessreftie data are. Such a thread
execution model does well for regular applications, where there is @amanhcache/memory locality.
Unfortunately, irregular applications like BC program often have dynaliyinon-contiguous memory
access. Note that C64 is configured with explicit memory hierarchy angbremmptive thread execu-
tion model. Programmers can explicitly state where the data are in explicit merneoaydiny. Non-
preemptive thread execution model forces a thread to finish consumingatsvidhout re-scheduling.
Based on these architectural properties, programmers can speciéxdberelationships between a
thread execution and places of its data. Based the features of IBMv@6g#ropose alata-centric
strategy to achieve just-in-time locality for dynamically non-contiguous menuugsses.

We represent a program as a directed acyclic thread graph, wherenede is a thread, and a
direct arc between two nodes represents a precedence relation hehsesds (See Figure 8). In a

9

o © @
—> /”
locality requirement v
©

(a). Generic thread execution graph (b). A thread exeuction graph with locality dependenct

Figure 8: thread execution graph

thread graph, a node(i.e., a thread) is enabled if all its predecessor nodes have completedeand th
required data and control dependence have been satisfied. We a&lad that satisfies both data and
control dependence requirements as bédagically enabled In order to achieve just-in-time locality
for a thread execution, it is not sufficient for a logically enabled threadin. We introduce locality
constraint in addition to data and control dependence requirements twowethe latency gap through
memory hierarchy. Using locality constraint a logically enabled thread otienat immediately run
since the data may still be in off-chip memory hierarchy or in the local memooyhelr cores. All data
referenced by the thread should become local before a thread cianelsegution. We call a logically
enabled thread dscality enabledif it also satisfies locality constraints (See Figure 8). The locality
requirements ensure that the corresponding data of the candidatt @nee@sident in the same level of
memory hierarchy where it is to be enabled. The stronger constrainteexctiexecution is data-centric,
that is, the local data enables a thread execution.

|
I

; I

/ adjacent array other arrays (i.e. d) |

I

I

e I

* |

I

I

4

i
off-chip memory |
i

Transferring to on—chip o " Transferring to off-chip
B S AL
|
! '
- I
|
: T B | pipleline
| T . I
|
|
|

Figure 9: A demonstration of the parallel pipelining process for the BFSebfthe BC algorithm. For
readability, the transformation (linearization/scatter) and data movemenepiaat as two steps. A
real implementation finishes them in single step by memory threads.

10

This strategy results in additional operations for "creating” locality coivgtrdNote that the mas-
sive hardware thread units on IBM C64 and low arithmetic intensity of B@namm, we separate several
threads to complete locality constraint. Meanwhile, the computation operatidma@mory operations
are decoupled so that the parallel program is mapped to such a thieadies model. Within mem-
ory hierarchy, the memory operations may involve either collecting the datardotve cores where
the thread is enabled, or sending/migrating the data away from the cores. st architectures (in-
cluding many-core architectures) are designed to exploit “linear locdljtig’ls important to transform
non-linear locality into linear locality just in time for the computation. For instanoasicler the ex-
ample shown in Figure 1, and assume thatv, andwv; are currently in queue, and assume we extend
(during BFS) node, to bring in nodes), vg andvy;. Since these three nodes are contiguous we exploit
the locality among them and arrange them in a linear contiguous memory (imeonery). However,
neitherd[1], d[6], d[7] nor o[1],c[6], o[7] is contiguous, if we performed linearization to these discrete
memory locations just before they are used to compute, then we achieveréatet” spatial local-
ity. In an implementation, programs aat explicitly perform such linearization operations in off-chip
memory, but naturally complete them during data movement through memorychigr&or example, a
memory thread, which transfers data from off-chip memory to on-chip mgroonsists of computing
the start address and the size of the neighbor vertices region in adjaaresg of each vertex, and col-
lecting neighbor vertices dispersed in the off-chip memory addresscéatjg array) into a contiguous
on-chip memory address. It also collects the corresponding elemedits into a contiguous on-chip
memory address. Notice that there is a producer-consumer relationshigeipethe collection of neigh-
bor vertices and that af, . Also, the memory references @fo are discrete because the distribution
of the neighboring vertices obeys a law of power in a scale-free gr@pice computing the relevant
information we write them back to off-chip memory using yet another memoegathr

In order to tolerate the overhead of "creating” locality constraint, we éxpbrallelism between
computation threads and memory threads. The multi-grain parallel algorittitiqoes union set/ V;
into multiple sub-blocks. When computation threads are processing the ddteki, some memory
threads gather the data in blotk- 1 and other memory threads scatter the results that are generated
using the data in block— 1. The threads operating multiple sub-blocks form a pipeline, which achieve
just-in-time locality for each sub-block (See Figure 9). Figure 10 dndekcribe a pesudocode example
of BFS with and without percolation, respectively.

4.3 Using Architectural Support of Fine-grain Data Synchronization

Our previous work on IBM C64 [10, 36] indicates that lock-based bymmization is better than lock-
free one for explicit memory hierarchy. In fact, since there is neithieripr inversion nor convoying
problem in IBM C64, performance and memory contention are the onlyractba lock-free data
structure. For lock-free synchronization [22] in parallelizing betwess centrality, due to irregular
memory access pattern, we observed many failures of speculationlbuadko However, with software
lock mechanism, we have to use an additional lock array to assign one leeklovertex. The size of

We use the term linear locality to mean that data access have constantatides contiguous accesses the strides have
one unit value, typically one word length.

11

1 |BFS(int v) {

2 int dv = d[v];//length of the shortest path
3 int sigmav = sigma[v];//the number of the shortest path
4 for (i = 0; i < NumEdges[v]; i++){

5 w = Adjacent[index[v]+i];

6 if (diw] < 0) {

7 diw] = dv + 1;

8 sigma[w] = O;

9 }

10 if (d{w] = dv + 1)

11 sigma[w] = sigmav + 1;

12 }

13 |}

Figure 10: The sequential BFS codes without percolation.

lock array is the same with the number of vertices, which is usually huge linvoeld. Thus, a large
scale graph generates amounts of irregular off-chip memory accésseshese accesses are associated
with that of vertices.

There are two advantages of the proposed parallel pipelining algorithmA/eLexplicitly separate
computation threads from memory ones. The computation threads and menesraacess different
memory locations at any instaneémplemented by double-buffering. 2). The algorithm accesses the
arrays in a chunking way, that is, in each pipelining stage, only small bieside in on-chip memory
at any instance. Note that the on-chip memory of C64 is organized in multiple banks way wiaete e
process is associated with a memory bank. Net M x B be the number of memory locations, where
M is the size of each memory bank aBds the number of memory bank. At any instarcket S(¢) be
the amount of synchronization by all threads. Since the two features alfgrithm and the number of
active thread§” < N, the program is easily adaptive to satisfy an important constraint:

S(t) < N (6)
Therefore, at any instance only a small fraction of memory locations &ikelgcparticipating in syn-

chronization. This observation exactly satisfies the condition of no oveirfl&SB [36].

5 Evaluation

In this section we report experimental results and show the architectralgorithmic impact on pro-
gram performance, then summarize several implications on many-corgeatete and programming.

5.1 Methodology

We evaluate the performance characteristics of mapping approachesyole-accurate IBM C64 sim-
ulator [11] for the proposed parallel BC program. The architectunamaters used in the experiments

12

O~NO O~ WNPRE

/«three pipelined phase: (1) offchip memory read;
off —chip memory write «/ BFS(int v) {

int offset = O;
int turn = 0;

int dv = d[v];

int sigmav = sigma[v];
SPAWNTASK({

for (i = 0; i < buffsize; i++)

buff[turn][i] = Adjacent[index[v]+offset+i];
offset += buffsize;
turn "= 1;};
BARRIERWAIT ();
while (offset < NumEdges[v]) {
/11, off-chip memory read
SPAWNTASK{
for (i = 0; i < buffsize; i++)
buff[turn][i] = Adjacent[index[v]+offset+i];
offset += buffsize;

turn "= 13};

SPAWNTASK{

for (i = 0; i < buffsize; i++) {
w = buffl[i];
buff2[turn][i] = d[w];
buff3[turn][i] = sigma[w];

}

turn "= 1;};

/1 (2). compuation (accessing emhip memory);

SPAWNTASK{

for (i = 0; i < buffsize; i++) {

if (buff2[turn][i] < 0) {
buff2[turn][i] = dv+1;
buff3[turn][i] += O;

}
if (buff2[turn][i] == dv+1)
buff3[turn][i] += sigmav;

}

turn "= 13};

[/ (3). off-chip memory write
SPAWNTASK{

for (i = 0; i < buffsize; i++) {

w = buff[turn][i];
d[w] = buff2[i];
sigma[w] = buff3[i];

}

turn "= 13};

BARRIERWAIT () ;
}

(2)

compuation (access

ng—ahip memory)

Figure 11: BFS codes with percolation on IBM C68PAWNTASKIs implemented as dis-
patching a thread from a thread po®ARRIERWAIT() is a global barrier synchronization
supported by hardware mechanism.

13

are summarized in Table 1. The toolchain consists of an optimized GCC compieeaa execution
runtime systems TNT [12] (Pthread-like) and a TNT-based OpenMP Byoinodifying HPCS SSCA2
benchmark [2], the proposed parallel algorithm is implemented using the TNaRibThe TNT runtime
always maintains as many threads as the cores.

Table 1: Simulation parameters of C64.

Component # of units | Params./unit

Threads 128 single in-order issue, 500MHz

FPUs 64 floating point/MAC, divide/square root
I-cache 16 32KB

SRAM (on-chip) 128 32KB (20 cycles load,10 cycles store
DRAM (off-chip) 4 256MB (36 cycles load,18 cycles storg)
Crossbar 1 96 ports, 4GB/s port

We report experimental results only for small problem sizes. Exceph&limitation of simulator
itself, IBM C64 is devised as an accelerating engine for building a Begflupercomputer, and there are
massive IBM C64 nodes in the system. In a massive parallel algorithm ttkingeset in each node may
be usually small. On traditional supercomptuers, most parallel applicatamesput emphasis omeak
scaling where speed is achieved when the number of processors is increlaiteethe problem size per
processor remains constant, effectively increasing the overall pnaditee. Theveak scalingneasures
the exploitable parallelism to solve a larger problem. We can achieve batsdrscalindpy increasing
the computational power of a single processor. However, on the ergemgmy-core architectures,
although the number of cores grows rapidly, the speed of individuaegging element is reduced
and the shared on-chip memory is still small. Therefore, we should methsuaehieved speed when
the number of processors increased while the overall problem sizetigdegtant, which effectively
decreases the problem size per processor. That nsétang scalings greatly emphasized for the fine-
grain parallel algorithm on many-core architectures. It is also reagotalevaluate performance of
small size of problems on a simulator.

5.2 Resultsfor Mapping Parallel BC Algorithm

In this section we present our experimental results. The experimentaselastare generated by the
program in HPCS SSCA2 benchmark. We represent the problem sigemrnof S, where the number
of vertices isn = 2. At first glance, we summarize incremental optimization results of the parkllel a
gorithm for just-in-time locality and synchronization using SSB. Figured@as 4-50 times reduction
of execution time by comparing with the naively ported HPCS SSCAZ2.

Next we focus on four different performance characteristics. Miesfocus on performance and
scalability as we increase both the problem (graph) size and the numbeszadsh Second we focus on
understanding locality and memory latency as we increase the number afghfidard we focus on the
effect of barrier synchronization on the performance. Lastly, resgnt the performance improvement
by SSB lock synchronization.

14

—u— baseline
18+ —e— JITL a
JITLSSB

time (seconds)

#cores

Figure 12: The incremental optimization results (S = 10). baseline: Opem&fon of HPCS SSCAZ2.
JITL: SSCA2 with just-in-time locality. JITLSSB: SSCAZ2 with both just-in-time agdchronization
state buffer.

e Figure 13 illustrates the performance and scalability as we increase the maofitheeads for
three different scales (i.e., the problem size). We refer to the numbewefted edges per second
(TEPS) as a performance metric, iIBEPS = ”}?g‘) wheren is the problem size. Comparing

the result with the OpenMP implementation, we can see that our optimizatiorggtsitews a

16 times improvements of scalability. Using our approach we achieve almaoat $ipeedups for

all test cases when the number of threads is less than 32. For the tstitags problem size

S = 8, the performance stops increasing when the number of threads réa@shkescause the

number of available parallel sub-tasks is less than the number of hartweae units. However,

we improve the performance when the problem size is increased, i€ for9 and 10. For

BC algorithm the degree of a vertex determines the amount of parallelism ¢éhearmvexploit.

Although the multi-grained parallel algorithm reduces the number of idle dsrgbhe maximum

degree of a vertex is 64 for problem siZe= 8. So the available parallelism for this small problem

size still leads to a little improvement drz8 threads. FoiS = 9 and10, where the maximum
vertex degrees af®l and348, the performance and scalability are further improved.

e Figure 14 shows the effect of memory latency tolerance using the te@fogicreating just-
in-time locality. Recall that the main purpose for creating just-in-time locality isansfiorm
non-linear off-chip memory access to linear on-chip memory access ineswely that the over-
head of the transformation is hidden. The implementation on C64 usesipamible buffers
to hide the off-chip memory latency. The memory threads are used to traldéebetween two
memory levels. The overlapping of memory operations and computationtimmaras important
to achieve high performance. In order to figure out the overlapping tiragrafiled the execu-
tion time of computation and memory operations. Although the computation ordégs.on-chip
memory, the overall execution time of computation tasks is more than that of thersntanks
due to synchronization that is required among the computation tasks for tamphe shortest

15

28000000 S——
26000000 - e 59
24000000 - S10
22000000 4 e
20000000 -
18000000 -

16000000 /
14000000 - .

12000000 - .

10000000 /

_ o
8000000 ~ '
6000000 " /

4000000 =
l/

2000000
0 T

TEPS

Figure 13: Scalabilityresults of the parallel betweenness centrality algorithm (higher is befteg.
number of vertices, = 2°, E(n) = 8n.

V772 computation
memory
erlap

time profiling
N
o
1

#cores

Figure 14: Time distribution and achieving off-chip memory latency tolerance

path information. Next we wanted to understand the effect of incrgdsiffer size used in the
parallel pipeline on the overall scalability. Interestingly increasing theebinéd little effect on

the scalability. Note that degrees of most of vertices in scale-free graptvaso that we can not
hide more off-chip memory access by increasing the buffer size. Figusddws that increasing
buffer size does not achieve better performance. Our strategy to hidempaccess is pipelining
between computation and memory operations. The larger buffer can comadnvertices, then
the length of pipeline becomes so short that the memory operations cae higiden.

e When implementing the parallel pipelining algorithm, we insert a barrier synctation opera-
tion at the end of each pipeline. The overhead of a barrier is determingty/ropdoad balance
and the number of barriers. Recall that the algorithm loads the adjaceagyiato the on-chip
buffers one block at a time, it is important to note in the BC algorithm that the ctatipu be-

16

0.30

0.25

o

N}

S
1

0.15 4

time (seconds)

o
=)
1

0.05

#cores

Figure 15: The comparison of running time using different sizes (byfda)fters.

42
40
38
36
34

324

ratio (%)

30
|
28 —

26 /

24

T
4 8 16 32 64 128
#cores

Figure 16: Overhead of barrier synchronization for scale = 10. Mkasured barriers include the
barriers in both BFS and backtrace phase.

havior of each vertex may be different. For example, if a vertex is netajrthe predecessors
of a neighbor that is currently loaded into the on-chip memory, we do net ttawmsert this ver-
tex into the predecessor set of the neighbor (otherwise we unnebtessaur several additional
memory accesses). Therefore, the execution time of each block maydrentifand so workload
may not be balanced among multiple threads. Also, we cannot achieveeatp®rérlap between
computation and memory tasks at every stage of the pipeline. On the othibyharcreasing the
number of tasks, the workload on each thread decreases so thafénerdié of the workloads is
not so significant, and we achieve more overlapping time. Unfortunatelyfsuwe grain partition
may increase the depth of the pipeline and the number of barrier synchtionizFigure 16 il-

lustrates the percent of overhead of barrier synchronization witlkece$p the overall execution
time.

17

4.5+ SSB
4.0
3.5
3.0
2.5

2.0

time (seconds)

1.5

1.0

0.5

0.0+

#cores

Figure 17: The comparison of software lock and SSB (BFS phase)

e Since in our parallel algorithm we only access a small portion of data dthmgomputation
phase to create just-in-time locality, only a small portion of memory participate irsglatdnro-
nization. Using SSB for data synchronization seems very effective. re$egence, we imple-
mented a highly optimized MCS [26] algorithm using in-memory atom operatio@$dri10,14].
As shown in section 3 for C64 architecture, each core accesses hiSPwith very low latency.
Thus, we use it as a "local memory” in MCS algorithm. Figure 17 comparepdatfermance of
the parallel programs with MCS lock to that with SSB. SSB further reducegxbcution time
and is very effective for the parallel algorithm.

5.3 Discussion

In order to evaluate our joint study of architecture and algorithm, wecastpare the proposed parallel
BC algorithm with both HPCS SSCA2 [2] on a Intel 4-way dual-cores X8btP (8-processors) and a
highly optimized implementation on Cray MTA-2, which is available through a pedssommunication
with John Feo (previously in Cray Inc.). The MTA-2 is configured withpt@eessors. Table 2 reports
the TEPS performance on the three platforms. Although the L2 cachefdize 8MP is 2MB, which
can contain the whole graph data structure for the small problem size, tfognpance still is low
because an efficient lock synchronization is unavailable. The lovopeance on MTA-2 is caused by
low utilization of thread streams for the small problem size. In fact, we obdeax sub-linear scalability
on MTA-2 when the problem size is large enough (iseale = 22), but the performance on the SMP
is poor [13] (Unfortunately, due to limitation of simulator, we can not run sgddest sets for IBM
C64). This comparison indicates that the algorithm on MTA-2 achieves gaadt scalability, but our
algorithm on IBM C64 achieves better strong scalability because we umearéhadditional parallelism
even for small problem sizes.

Although this paper focuses on the performance and scalability of athipnmany-core archi-
tecture, we also give a prospect of performance and scalability of tpoged algorithm on a multi-

18

Table 2: The comparison of TEPS on three platforgagle = 10.

#threads| C64 MTA-2 | SMPs
4 2917082 | 752256| 5369740
8 5513257 | 619357 | 2141457
16 9799661 | 488894 | N/A

32 17349325| 482681| N/A

chips system connected with high latency network since IBM C64 will ses\e@mpute engine in a
Petaflops supercomputer. Because a real system or simulator of multiisiipt available, we present
a qualitative analysis of the parallel algorithm. Note that the just-in-time locadditpuples computa-
tion with memory operations, then the percolation strategy use some helpmighcehide latency to
off-chip memory. This idea can be naturally extended to a multi-chip systenhigithatency network.
Therefore, we expected that scalability of a system with multiple IBM Cégscis comparable with
that of Cray MTA-2.

In this paper we present the results for one case of computing betvesecaetrality, however, it
represents a class of general applications with irregular memory adoesarithmetic intensity and
unstructured parallelism, which are different from traditional scientifim@oting. The experiments
give some interesting hints on many-core architectural design spaceagrdimpming:

¢ A performance critical application with irregular memory access prefems{oache mechanism
memory hierarchy. Hardware-managed memory (cache) automaticallyitebqgiality in pro-
grams. The irregular memory access pattern in BC sets an obstacle to thditgaptcache
and incurs a large number of cache misses which hurt the memory bandwigittmany-core
architectures, an increasing gap between the number of cores ahdibiimis a serious obstacle
to scalability of a parallel program. Configured with explicit memory hierartBiyl C64 pro-
vides an architectural support to programmer for precisely orchesgfnamory movement for
just-in-time locality at algorithmic level using multiple simple hardware thread units.

e Architectural support of fine-grain synchronization is reasonahla.fine-grain parallel program
on a many-core architecture, the overhead of synchronization is muskige since working-set
of each thread is small. Using software synchronization it becomes wecseige the memory
access in a irregular program is unpredictable. The SSB on IBM C64v&ptto be favorable.

e A runtime system supporting programmers to utilize just-in-time locality is promisitng. ex-
perimental results show that achieving just-in-time locality in programs is arneeffialterna-
tive technique for developing high performance algorithms on manyamtgtectures. In algo-
rithmic level, programmers separate memory from computation and pipeline multiplergpremo
computation stages. In parallel programming model, users specify theatadskiseir dependence,
a runtime system could parse the task graph and automatically determineitagity of de-
coupling and a way of pipelining so that the program would be optimally tagafo memory
hierarchies. Another advantage of the runtime system may be to providelwation of non-

19

preemptive execution model, which is one of the conditions to just-in-time localitpEhC64.
The resource virtualization is important for easy programming.

6 Related Work

Due to the importance of computing betweenness centrality, there havesbeeral works on par-
allelization on conventional parallel architectures [2—-4]. These pamibgrams exploited inherent
parallelism and solved a large scale graph on several parallel commiterauge memory storage.
Our work focused on optimizing the irregular memory access using multi-timgadany-core archi-
tectures with small on-chip memory, which propose different challeng@amallelizing a performance
critical application. On the other hand, our work paid more attention to a jhidy®f architecture and
algorithm. It is helpful to give some implications on many-core architecturigdés the future.

The main contribution of this work is reflected in successfully mapping an itapbirregular ap-
plication to an emerging many-core architecture IBM Cyclops64. Althoughwouk focus on a joint
study of algorithm and architecture, not a programming tool, the B@rpro represents a large class
of irregular applications, thus the optimization techniques here may be applitkdeioprograms on a
many-core architecture. Therefore, we want to clarify the connecgbmden our optimization strategy
and the previous techniques.

e Percolation: Our approach achieving just-in-time locality is data-centric, and it stheesame
point with percolation, which was briefly discussed by Gao in the confedTdT project [19,
20]. In Gao’s work a percolation process was proposed to pack tte aod data into a tiny
thread. Since there is no implementation of Gao’s percolation model, it is unelegther his
approach was effective in practice for many-core architectures. ale &lso implemented our
approach in C64 and also used sophisticated fine-grain synchronigstich as SSB) to improve
performance and scalability of irregular applications on a many-catetacture.

e Prefetching & Speculationn our parallel pipelining algorithm we overlap computation task with
memory task. The concept of overlapping computation with 1/0, networkpéimer long latency
operations is old. Prefetching techniques [7, 23-25, 27, 33, 35}taedd speculation [6, 8, 9,
29, 31, 34] also use such overlapping concept. Most previous wopkefetching also focused
on moving data (mostly contiguous data) from main memory to local memory (eithegister
or cache) prior to execution. Prefetching collects and performs ansasallyinformation of a
program’s instruction stream. Conceptually it is computation whlbs the data locally using
prefetch instructions. In our method the local data determines which compuistieady to
execute. In other words, data that is local to a core piilll computation to execute on the
core. Burtscher et.al [17, 18] proposed to use extra cores to exa@fttching threads, which
is a shared point with our approach. However, their framework istedéven helper threading
and future execution with speculation. Our approach for achieving jetataim locality is data-
driven, which is an efficient for executing irregular program. Theeaulde execution model of
our work is non-preemptive so that we may not bring in more data than \@hdieeconsumed. In

20

prefetching there is no control on how much data to prefetch—prefegdbo much or too less
data can impact the performance.

A variant of thread level speculation uses dependence by monitoringdts and writes to mem-
ory locations. In producer-consumer loop iterations, the speculate@uérn leads to a violation

of dependence, then must roll back. For the irregular memory access BQttalgorithm, in ad-
dition to the random reference to array%, andd, the references in the next iteration depends on
the results in the current iteration. If we speculate the references loasthe remaining neighbor
vertices, it can lead to a large number of roll backs.

e Inspector-Executor:n inspector-executor paradigm [28, 30], an inspector translatesigiob
dices to local indices, identifies non-local references and generamesignication schedules,
an executor prefetches non-local data using schedules and pedompsitation. Although it is
similar to our idea of decoupling/pipelining computation with memory, the underlingefria
inspector-executor is task-driven, whereas the computation tassrdee the schedule of data
communication/prefetching.

e Streaming programmingin [15, 21] the authors performed a comprehensive study of regular/ir
regular scientific computing applications on streaming programming model. Bathvitré and
ours share the streaming programming style of gather-compute-scattevayhe gather/scatter
data ahead makes our approach different from theirs. The streamtiggamming uses a DMA-
style transfer, our approach utilizes the ample hardware thread unitse Wieeway to hide the
overhead of transformation is more flexible and requires less harawate

7 Conclusion

Emerging future microprocessor chip technology unveils a new generatimany-core chip architec-
tures that may contain 100 to 1,000 processing cores using a shared mangamization with large
number of on-chip memory banks. Computer architects, system softwsigndes and application sci-
entists are realizing that they must work closely together to investigate howlmitdhe computational
power of such new many-core architecture to improve performancecatabdity of large-scale sci-
entific applications. IBM Cyclops64 represents a new class of manyasohatecture featuring with
shared address space for on-chip memory between cores and eagidicétssing without cache. This
paper presents a study of evaluating the new many-core architecatatds and shows how these
features can be effectively exploited when executing challenginguilaegpplications in practice.

Because of the irregular behavior of BC algorithm, it is difficult to achiagh Iperformance on a
parallel architecture. By leveraging the key properties of explicit memienairchy and non-preemptive
execution model, we propose a parallel pipelining algorithm to implement just-inkbicadity for BC
program on IBM Cyclops64. The parallel algorithm makes good use @frtttetectural support of fine-
grain data synchronization. Our experimental results show that our dge#lte promising to improve
scalability and performance of irregular application on a many-coretaothre. Our future work will
focus on implementing a runtime systems for supporting programmability on ntaeyacchitectures.

21

We would like to thank many members of the Computer Architecture and Pargiedr8s Lab-
oratory (CAPSL) at University of Delaware: Andrew Russo, Weirdiy and Ge Gan for helpful
discussions.

22

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

David Alderson, John C. Doyle, Lun Li, and Walter Willinger. Towamsheory of scale-free
graphs: Definition, properties, and implicatiomsternet Math 2(4):431-523, 2005.

David A Bader. Hpcs scalable synthetic compact applications 2 graphlysis.
www.highproductivity.org/SSCABmks.htm, 2006.

David A. Bader and Kamesh Madduri. Designing multithreaded algoritiomisrEadth-first search
and st-connectivity on the cray mta-2.The 35th International Conference on Parallel Processing
(ICPP 2006) 2006.

David A. Bader and Kamesh Madduri. Parallel algorithms for evalgatientrality indices in
real-world networks. ImThe 35th International Conference on Parallel Processing (ICPP 2006
2006.

Ulrik Brandes. A faster algorithm for betweenness centrallpurnal of Mathematical Socialogy
25(2):163-177, 2001.

nones Carlos Gara Qui Carlos Madriles, Jas Snchez, Pedro Marcuello, Antonio Gatez,
and Dean M. Tullsen. Mitosis compiler: an infrastructure for speculdtiveading based on
pre-computation slices. IRLDI '05: Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementatjmages 269-279, 2005.

Trishul M. Chilimbi and Martin Hirzel. Dynamic hot data stream pref@tghfor general-purpose
programs. InPLDI '02: Proceedings of the ACM SIGPLAN 2002 Conference omgRrmming
language design and implementatigrages 199-209, New York, NY, USA, 2002. ACM.

J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen. Dynamic sjagive precomputation. In
the 34th Annual International Symposium on Microarchitegt@@o1.

J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, D. Lavery, anB.Jhen. Speculative precom-
putation: Long-range prefetching of delinquent loads.The 28th International Symposium on
Computer Architecture2001.

Juan del Cuvillo, Weirong Zhu, and Guang R. Gao. Landing opemmngyclops-64: An efficient
mapping of openmp to a many-core system-on-a-chif:hl@ 3rd ACM International Conference
on Computing Frontiersischia, Italy, 2005.

Juan del Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. Gao. Fastnctionally accurate sim-
ulation toolset for the cyclops-64 cellular architecture Warkshop on Modeling, Benchmarking
and Simulation (MoBS), held in conjunction with the Annual Internationalg@gimm on Com-
puter Architecture (ISCA’05R005.

Juan del Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. Gao. Thimgads: a thread virtual ma-
chine for the cyclops-64 cellular architecture.Hifth Workshop on Massively Parallel Processing
(WMPP), held in conjunction with the 19th rnational Parallel and Distributedd&ssing System
2005.

23

[13] Guangming Tan Dengbiao Tu. Characterizing betweenness centbgityithm on multi-core
architectures. Inhe 2009 IEEE International Symposium on Parallel and Distributed Fsiog
with Applications (ISPA'09)2009.

[14] Monty Denneau and Henry S. Warren, Jr. 64-bit Cyclops: Rrles of operation. April 2005.

[15] Mattan Erez, Jung Ho Ahn, Jayanth Gummaraju, Mendel Rosenbhuoipéliam J. Dally. Exe-
cuting irregular scientific applications on stream architecturekC8707: Proceedings of the 21st
annual international conference on Supercomputipages 93-104, New York, NY, USA, 2007.
ACM.

[16] Linton C. Freeman. A set of measures of centrality based on behessSociomtry40(1):35-41,
1977.

[17] 1. Ganusov and M. Burtscher. Future execution: A hardwaegepching technique for chip mul-
tiprocessors. 112005 International Conference on Parallel Architectures and Compilatiech-
niques pages 350-360, 2005.

[18] I. Ganusov and M. Burtscher. Efficient emulation of hardwardgichers via event-driven helper
threading. In2006 International Conference on Parallel Architectures and Compilafiech-
niques pages 144-153, 2006.

[19] Guang Gao, Jose Nelson Amaral, Andres Marquez, and Keviobiié. A refinement of the
"htmt” program execution model. Technical report, CAPSL,University efdware, 1998.

[20] Guang R. Gao, Konstantin K. Likharev, Paul C. Messina, andhvidwL. Sterling. Hybrid tech-
nology multi-threaded architecture,. Rioceedings of Frontiers '96: The Sixth Symposium on the
Frontiers of Massively Parallel Computatippages 98-105, 1996.

[21] Michael Gordon, William Thies, and Saman Amarasinghe. Exploitiraygegrained task, data,
and pipeline parallelism in stream programslrternational Conference on Architectural Support
for Programming Languages and Operating Syste®as Jose, CA, October 2006.

[22] Maurice Herlihy. Wait-free synchronizatioACM Transactions on Programming Languages and
Systemsl1(1):124-149, 1991.

[23] Yuan Lin and David Padua. Compiler analysis of irregular memoryssase IrPLDI '00: Pro-
ceedings of the ACM SIGPLAN 2000 conference on Programming lgegiesign and implemen-
tation, pages 157-168, New York, NY, USA, 2000. ACM.

[24] Jiwei Lu, Abhinav Das, Wei-Chung Hsu, Khoa Nguyen, and Sgin@®. Abraham. Dynamic helper
threaded prefetching on the sun ultrasparc cmp processbGRO 38: Proceedings of the 38th
annual IEEE/ACM International Symposium on Microarchitectyrages 93-104, Washington,
DC, USA, 2005. IEEE Computer Society.

[25] Chi-Keung Luk and Todd C. Mowry. Automatic compiler-inserted pteffiing for pointer-based
applicationsIEEE Transactions on Computer8(2), 1999.

24

[26] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalagy@chronization on
shared-memory multiprocessors. ACM Transactions on Computer Systemdume 9, page 1,
1991.

[27] Todd Mowry and Anoop Gupta. Tolerating latency through softwametrolled prefetching in
shared-memory multiprocessordournal of Parallel and Distributed Computing2(2):87-106,
1991.

[28] Ravi Ponnusamy, Joel Saltz, and Alok Choudhary. Runtime-cotiguiléechniques for data par-
titioning and communication schedule reuseSlipercomputing’931993.

[29] L. Rauchwerger, Y. Zhan, and J. Torrellas. Hardware facstative run-time parallelization in
distributed shared memory multiprocessors.Phoceedings of the 4th International Symposium
on High-Performance Computer Architectupage 162, 1998.

[30] Shamik Sharma, Ravi Ponnusamy, Bongki Moon, Yuan Hwang, Bafa and Joel Saltz. Run-
time and compile-time support for adaptive irregular problemsSupercomputing’941994.

[31] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A sbédaapproach to thread-level spec-
ulation. InProceedings of the 27th Annual International Symposium on Computhitécture
2000.

[32] Guangming Tan, Vugranam C. Sreedhar, and Guang R. Gabindtisie locality and percolation
for optimizing irregular applications on a manycore architecture2llst Annual Languages and
Compilers for Parallel Computing Workshop008.

[33] Youfeng Wu. Efficient discovery of regular stride patterns ingtidar programs and its use in
compiler prefetching. IfPLDI '02: Proceedings of the ACM SIGPLAN 2002 Conference on
Programming language design and implementatipages 210-221, New York, NY, USA, 2002.
ACM.

[34] W. Zhang and D. M. Tullsen. Accelerating and adapting precomputaticeads for efficient
prefetching. In3th International Symposium on High Performance Computer Archite 207 .

[35] Zheng Zhang and Josep Torrellas. Speeding up irregular ajiphs in shared-memory multipro-
cessors: Memory binding and group prefetching22md International Symposium on Computer
Architecture 1995.

[36] Weirong Zhu, Vugranam C. Sreedhar, Ziang Hu, and Guangd®. Gynchronization state buffer:
Supporting efficient fine-grain synchronization on many-core arduoites. InThe 34th Interna-
tional Symposium on Computer Architectu2607.

25

