
University of Delaware
Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

Analysis and Performance Results of Computing Betweenness

Centrality on IBM Cyclops64

Guangming Tan†, Vugranam Sreedhar††, Guang R. Gao†

CAPSL Technical Memo 090

October 20, 2009

Copyright c© 2009 CAPSL at the University of Delaware

†Email: guangmin@capsl.udel.edu or tgm@ict.ac.cn,ggao@capsl.udel.edu

††Email: vugranam@us.ibm.com

University of Delaware • 140 Evans Hall •Newark, Delaware 19716 • USA

http://www.capsl.udel.edu • ftp://ftp.capsl.udel.edu • capsladm@capsl.udel.edu

Abstract

This paper presents a joint study of application and architecture to improve the performance
and scalability of an irregular application – computing betweenness centrality – on a many-core
architecture IBM Cyclops64. The characteristics of unstructured parallelism, dynamically non-
contiguous memory access and low arithmetic intensity in betweenness centrality pose an obstacle to
an efficient mapping of parallel algorithms on such many-core architectures. By identifying several
key architectural features, we propose and evaluate efficient strategies for achieving scalability on
a massive multi-threading many-core architecture. We demonstrate several optimization strategies
including multi-grain parallelism, just-in-time locality with explicit memory hierarchy and non-
preemptive thread execution, and fine-grain data synchronization. Comparing with a conventional
parallel algorithm, we get 4X-50X improvement in performance and 16X improvement in scalability
on a 128-cores IBM Cyclops64 simulator.

i

Contents

1 Introduction 1

2 BC Algorithm and Its Irregular Characteristics 2
2.1 Brandes Algorithm . 2
2.2 Irregular Characteristics 4

3 IBM Cylops64 Architecture 5

4 Mapping BC Algorithm to IBM Cyclops64 7
4.1 A Fine-grained Parallel Algorithm .. . 8
4.2 Achieving Just-In-Time Locality .. 9
4.3 Using Architectural Support of Fine-grain Data Synchronization 11

5 Evaluation 12
5.1 Methodology . 12
5.2 Results for Mapping Parallel BC Algorithm .. . 14
5.3 Discussion .18

6 Related Work 20

7 Conclusion 21

List of Figures

1 Adjacency array of a graph. 3
2 A demonstration of BC algorithm. 3
3 The execution time distribution of critical sections. An value in x-axis is a critical

section number . 4
4 Memory access pattern in the adjacent array 5
5 The performance of OpenMP implementation – HPCS SSCA2. The number ofvertices

and edges is 1024 and 8192, respectively. 6
6 IBM Cyclops64 chip architecture 6
7 The structure of SSB entry .. 7
8 thread execution graph .. 10
9 A demonstration of the parallel pipelining process for the BFS phase ofthe BC algo-

rithm. For readability, the transformation (linearization/scatter) and data movement are
depicted as two steps. A real implementation finishes them in single step by memory
threads. 10

10 The sequential BFS codes without percolation. 12
11 BFS codes with percolation on IBM C64.SPAWNTASKis implemented as dispatch-

ing a thread from a thread pool.BARRIERWAIT() is a global barrier synchronization
supported by hardware mechanism. .. 13

12 The incremental optimization results (S = 10). baseline: OpenMP versionof HPCS
SSCA2. JITL: SSCA2 with just-in-time locality. JITLSSB: SSCA2 with both just-in-
time and synchronization state buffer. .. 15

13 Scalabilityresults of the parallel betweenness centrality algorithm (higher is better). The
number of verticesn = 2S , E(n) = 8n. 16

14 Time distribution and achieving off-chip memory latency tolerance. 16
15 The comparison of running time using different sizes (bytes) of buffers. 17

ii

16 Overhead of barrier synchronization for scale = 10. The measuredbarriers include the
barriers in both BFS and backtrace phase. 17

17 The comparison of software lock and SSB (BFS phase) 18

List of Tables

1 Simulation parameters of C64. 14
2 The comparison of TEPS on three platforms.scale = 10. 19

iii

1 Introduction

Computer architects are exploring the massive many-core architecture space with the hope of improved
execution of scientific applications. At a high level there are two kinds of applications– regular appli-
cations where data access and control flow follow regular and predictable patterns, and irregular appli-
cations where data access and control flow have statically (and often even dynamically) unpredictable
patterns. Analysis and optimization of such irregular applications are notoriously difficult. Computing
betweenness centrality (BC) [16] used in a network analysis is a good example of such irregular prob-
lems. BC is a popular quantitative index for the analysis of large scale complexnetwork and measures
the control a vertex has over communication in the network. It has been used extensively to build protein
interaction network, identify key actors in terrorist network and study sexual/AIDS network. Brandes’
algorithm [5] is a fast algorithm for computing BC. In this paper, we refer toBC algorithm as the one
proposed by Brandes [5]. BC algorithm calculates the centrality through two steps: BFS (breadth first
search) traversal and backtrace accumulation. Since most of the networks in a real world are repre-
sented as scale-free sparse graphs [1], BC algorithm exhibitsunstructured parallelismanddynamically
non-contiguous memory access. Moreover, especially for this kind of emerging applications in high
performance community, another distinct characteristic islow arithmetic intensity– the ratio between
arithmetic operations and memory operations.

With the advent of many-core architectures, such as IBM Cyclops64 [14] [36] contains hundreds
of on-chip cores, it is extremely challenging to tackle the difficult problem ofoptimizing and scaling
irregular applications. In fact, memory hierarchy with small on-chip memory per core in such an archi-
tecture makes the problem even more difficult. While there is no consensus onmany-core architectures,
it is important to identify not only how programmers will use the mechanisms provided in the emerging
many-core architecture, but the relative usefulness of various mechanisms as evidenced by their impact
on application performance. In this paper, we leverage some key features on a many-core architecture
– IBM Cyclops64 to improve performance of computing betweenness centrality for scale-free sparse
graph. In consideration of unstructured parallelism, dynamically non-contiguous memory access and
low arithmetic intensity exposed by a large class of irregular applications, we identify four key properties
of IBM Cyclops64 to address the challenge of executing irregular programs on such many-core archi-
tectures:massive light-weight hardware thread units, non-preemptive thread execution model, explicit
memory hierarchyandfine-grain data synchronization. The main contribution of this paper includes:

• Being aware of massive light-weight hardware threads, we developed afine-grained parallel algo-
rithm by combining multi-level parallelism. The new algorithm is well-structured for load balance
and locality optimization.

• We found that the properties of non-preemptive thread execution modeland explicit memory
hierarchy are useful to achievejust-in-time locality. We proposed a data-centric strategy to exploit
just-in-time locality [19,20,32] for the fine-grained parallel algorithm.

• The restructured program takes good advantage of the architectural support of fine-grain data syn-
chronization. Comparing with the parallel algorithm described in HPCS SSCA2[2], the imple-

1

mentation on IBM Cyclops64 obtained a performance improvement of 4-50 times and scalability
of 16 times.

To the best of our knowledge, this paper is the first indepth study of implementing a high perfor-
mance BC program on a many-core architecture. The rest of the paper isorganized as follows: In
section 2, we describe betweenness centrality (BC) algorithm and its characteristics. In section 3, we
introduce IBM Cyclops64 (C64) architecture. Section 4 discusses how toleverage the key properties
of IBM C64 to re-structure BC algorithm. Section 5 evaluates the performance and section 6 discusses
related techniques. Finally, section 7 concludes this paper.

2 BC Algorithm and Its Irregular Characteristics

In this section, we briefly describe the best sequential algorithm for calculating BC (for the detailed
algorithm, refer to [5]). Then we examine its irregular characteristics, which identified by experimental
results on commercial multi-core platforms.

2.1 Brandes Algorithm

Given a graphG = (V, E) whereV denotes the set of vertices andE the set of edges inG. Let σst

denote the number of shortest paths froms ∈ V to t ∈ V , whereσss = 1 by convention. Letσst(v)

denote the number of shortest paths froms to t that somev ∈ V lies on. The BC measure of a vertexv

is given by:

bc(v) =
∑

s 6=v 6=t∈V

σst(v)

σst

(1)

Given pairwise distance and shortest paths counts, the pair-dependency δst(v) = σst(v)
σst

of pairs, t ∈ V

denotes the fraction of shortest paths betweens andt that pass through a particular vertexv. The BFS
traversal algorithm calculates all shortest paths. Let’s denotedG(u, v) to be length of the shortest path
betweenu andv, w(u, v) is weight of edge(u, v). In the BFS traversal, the set ofpredecessorsof a
vertexv on a shortest path from source vertexs is generated:

Ps(v) = {u ∈ V : {u, v} ∈ E, dG(s, v) = dG(s, u) + w(u, v)} (2)

To eliminate explicit summation of all pair-dependencies, Brandes’ algorithm introduces a notion of the
dependency of a vertexs ∈ V on a single vertexv ∈ V , defined as:

δs•(v) =
∑

t∈V

δst(v) (3)

The crucial observation is that these partial sums obey a recursive relation as presented in theorem 1.
We omit a formal proof here, a reader refers to [5] for details.

2

Theorem 1 The dependency ofs ∈ V on anyv ∈ V obeys

δs•(v) =
∑

w:v∈Ps(w)

σsv

σsw

(1 + δs•(w)) (4)

In the backtrace accumulation, a partialbc value of a predecessor is accumulated according to its
successors.

bc(v) =
∑

s 6=v∈V

δs•(v) (5)

5

0
0

1

6

3
7

4

12109853

6533032714742 6 6

v0 v1 v2 v3 v4 v5 v6 v7

13 index array

neighbor array

2

Figure 1: Adjacency array of a graph.

A space efficient data structure for sparse graphG is an indexed adjacency array data structure.
Figure 1 shows an example, which is composed of anindex arrayand asuccessor array. In fact, the
predecessor setP recording the trace of BFS tree is stored in another adjacency array. The parameters
d, δ, σ, and the measurebc are implemented in linear array. However, the references to the three linear
arrays are very dependent on that to the adjacency arrays ofG, P .

1.5

v0

v1

v2

v3

v4

v5

v6

v7

1

0

1

0

1

0

0

1

0

1

−1

1

−1

−1

1

−1

0

0

0

0

0

0

0

0

NULL

NULL

NULL

NULL

NULL

v0

v0

v0

NULL

v2

v0

v0

v0

v2

v4

v7

v0

v1

v2

v3

v4

v5

v6

v7

v7

1

1

1

1

1

1

2

1

0

1

1

1

2

2

2

2

0

0

0

0

0

1

1

0

0

0

0

1

1

6.5

1.5

predecessor sigma dist predecessor sigma dist delta delta delta

step 1 step 2 step 3 step 4 step 5

Figure 2: A demonstration of BC algorithm.

Figure 2 demonstrates an instance starting with vertexv0 in Figure 1. Bothstep 1andstep 2generate
a BFS tree (predecessor) and record its information (σ andd). Then according to equation 4, the values
of δ is accumulated along the BFS tree fromstep 3to step 5. At this time, the five steps compute the
partial betweenness centrality values of all vertices. After the algorithm performs similar steps from all
other vertices we get the final accumulated results.

3

2.2 Irregular Characteristics

0 1000 2000 3000 4000 5000 6000 7000
0.000000

0.000005

0.000010

0.000015

0.000020

0.000025

tim
e

(s
ec

on
ds

)

critical section number

 lock
 criticalsection

Figure 3: The execution time distribution of critical sections. An value in x-axis is a critical section
number

Unlike regular applications where the inherent locality and parallelism are apparent and easy to be
exploited, it takes careful understanding of the locality and parallelism behavior of irregular applications
before one can achieve high performance and scalability. We summarize three important features of BC
algorithm, which represent a large class of irregular applications’ computation behaviours.

• Unstructured parallelism.For instance, during the BFS phase, a queue is used to maintain the
current vertices being extended (In the following context, visiting neighbors of a vertex is re-
ferred to as anextensionoperation). The available parallelism within an extension operation is
proportional to degrees of vertices. However, the degrees in a scale free graph obey a power-law
distribution [1], which shows a high variance and means that most of vertices have low degrees.
In the same level of BFS tree multiple extension operations may proceed in parallel if they do not
share neighbor vertices. In Figure 1 the parallel extensions ofv2, v4, v7 require a synchronization
mechanism. A fine-grained mutex lock associated with each vertex is one way toprotect from
conflict. Note that the number of locks scales with the number of vertices, which is often too huge
to be held in memory. For a very fine-grained parallel algorithm on a many-core architecture, an
additional concern is the very small critical section. Figure 3 compares each lock synchronization
overhead to the span of each critical section (only plots about 8000 sections). The critical section
is so small that the synchronization overhead dilates the size of critical section.

• Dynamically non-contiguous memory access.The effectiveness of existing locality optimization
techniques such as prefetching and speculation rely on the continuity of theneighboring vertices
and regular distances of different region of neighboring vertices in adjacency arrays. In a scale-
free sparse graph, the degrees or neighbors of vertices are highly variable. Considering the simple
example shown in Figure 1 again, we observe that not only the neighbor nodes ofv2, v4 andv7

4

are located in different regions in the adjacency array, but also the strides between the different
regions are not constant. Figure 4(a) records the trace of accessesin the adjacency array, and
Figure 4(b) depicts the distance between two consecutive accesses to neighbor regions. Also,
the references to other linear arraysd, δ, σ, bc have the similar behaviors. Such non-contiguous
memory access pattern cannot benefit from current prefetching or speculation techniques.

0 100 200 300 400

0

2000

4000

6000

8000

memory access trace in adjacent array

ad
dr

es
s

time

(a)

0 100 200 300 400

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000 memory access stride

st
rid

e
time

(b)

Figure 4: Memory access pattern in the adjacent array

• Low arithmetic intensity.The profiling of BC program execution reports that BFS traversal is the
most time consuming. Looking at equation 2, 3, an extension of one vertex needs two arithmetic
(float point addition) operations, six memory operations. Thanks to high arithmetic intensity and
parallelism, most of traditional scientific computing programs naturally benefitfrom many-core.
However, in order to improve the performance of a memory bound programlike BC, the key to
a successful parallel program will be an efficient strategy to reduce the memory access overhead
by utilizing the massive parallel thread units.

HPCS benchmark suite SSCA2 [2] specifies an OpenMP implementation of BC algorithm. Figure 5
reports its performance on IBM C64. As the number of threads is increased, the scalability and perfor-
mance degrade. In order to achieve high performance on such many-core architectures, it is important
to identify the characteristics impacting on application performance.

3 IBM Cylops64 Architecture

IBM Cyclops64 (C64) is a many-core architecture designed to serve as adedicated petaflop computing
engine for running high performance applications. In this section we describe its architecture, highlight-
ing some of its core features that we exploit in improving the performance andscalability of irregular
applications.

• Massive light-weight hardware thread units.A C64 chip employs a multiprocessor-on-a-chip
design with 160 hardware thread units, half as many floating point units, embedded memory, an
interface to the off-chip SDRAM memory and bidirectional inter-chip routingports. On-chip

5

2 4 8 16 32
3

4

5

6

7

8

9

tim
e

(s
ec

on
ds

)

#cores

Figure 5: The performance of OpenMP implementation – HPCS SSCA2. The number of vertices and
edges is 1024 and 8192, respectively.

Gigabit
ethernet

FPGA

Control
network

1 2Processor 80 Chip

Node

FP interface

SP SP

GM

TU

SP

TU

HDFP

GM

TU

GM

SP

A−switch

GM

Host

TU

GM

SP SP
3D−mesh

TU TU

GM

FP

Crossbar Network

DDR2 SDRAM
memory
Off−chip

controller

Figure 6: IBM Cyclops64 chip architecture

resources are connected to a 96-port crossbar network, which sustains all the intra-chip traffic
communication. In regard to intra-chip communication bandwidth, each processor within a C64
chip is connected to a crossbar network that can deliver 4GB/s per port,totaling 384GB/s in each
direction. The bandwidth provided by the crossbar supports intra-chipcommunication, i.e. access
to other processor’s on-chip memory.

• Explicit memory hierarchy.C64 chip has no data cache and features a three-level (scratchpad
memory, on-chip SRAM, off-chip DRAM) memory hierarchy. A portion of each thread unit’s
corresponding on-chip SRAM bank is configured as the scratchpad memory (SP). Therefore, the
thread unit can access to its own SP with very low latency through a backdoor. The remaining
sections of all on-chip SRAM banks that together form the on-chip globalmemory (GM) that
is uniformly addressable from all thread units. There are 4 memory controllers connected to 4
off-chip DRAM banks.

6

• Non-preemptive thread execution model.C64 incorporates an efficient support for thread level
execution. For instance, a thread can stop executing instructions for a number of cycles or indef-
initely; and when asleep it can be woken up by another thread through a hardware interrupt. All
the thread units within a chip connect to a 16-bit signal bus, which providesa means to efficiently
implement barriers. C64 provides no resource virtualization mechanisms: thethread execution
is non-preemptiveand there is no hardware virtual memory manager. The former means the OS
will not interrupt the user thread running on a thread unit unless the userexplicitly specifies ter-
mination or an exception occurs. The latter means the three-level memory hierarchy of C64 chip
is visibleto the programmer.

• Fine-grain data synchronization.C64 provides asynchronization state buffer (SSB)to support
fine-grain data synchronization (refer to [36] for details). SSB is a smallbuffer attached to the
memory controller of each memory bank. It records and manages states of active synchronized
data units to support and accelerate word-level fine-grain synchronization. SSB avoids enormous
memory storage cost and high memory access latency. The structure of SSB is shown in Fig-
ure 7. Each SSB entry consists of four parts: 1) address field that is used to determine a unique
location in a memory bank, 2) thread identifier, 3) an 8-bits counter and 4) a4-bits field that sup-
ports 16 different synchronization modes. SSB mechanism uses instructions of ssblock/unlock
to implement fine-grain synchronization.

addressstate (4−bits) counter (8−bits) thread id

Figure 7: The structure of SSB entry

4 Mapping BC Algorithm to IBM Cyclops64

In this section, we discuss betweenness centrality with graph traversal and show how to map it to IBM
C64 by leveraging the architectural features. As noted in section 2, due tohighly variable degrees
and data dependence, first, both low arithmetic intensity and unstructured parallelism lead to the low
utilization of massive hardware units. Second, both high memory storage cost and dynamically non-
contiguous memory access patterns incur high overhead of off-chip memory accesses. Our strategy
combines the algorithmic re-structure with several key architectural properties:

1. Greedy parallelism. Since the underlying many-core architecture provides massive hardware
thread units and efficient fine-grain data synchronization, we try to exploit as much parallelism
as possible in application programs. Therefore, we develop a fine-grained parallel BC algorithm,
which exploits multiple levels of parallelism simultaneously. With the fine-grained parallelism, it
is easier to schedule the parallel tasks for better load balance. Further, it opens a door to achieve
just-in-time locality (In fact, it is an extra source of fine-grained parallelism),which is proven to
be critical to high performance on a C64-like many-core architecture in this work.

7

2. Just-in-time locality.Like a cache-based architecture, it is desirable to schedule most of threads
to access low latency on-chip local storage. Due to dynamically non-contiguous memory access,
traditional prefetching and speculation techniques are hard to take effect. We identify that the
architectural characteristics of explicit memory hierarchy plus non-preemptive thread execution
model make just-in-time locality [19, 20, 32] possible. Although the intrinsic data dependence
(producer-consumer in BC algorithm) can not be eliminated, we may decouplecomputation op-
erations with memory operations so that an additional parallelism between themis exploited.
A more important fact is that the decoupled operations are scheduled to runaccording to data-
centric mechanism. This approach is reasonable because data movement isunder the control of
programmer and threads processing the data are not preemptive, computation threads consume
just-in-time localityproduced by memory threads, that is, data are local to computing cores just
before the cores start to process the data.

Recall that there are two phases in the BC algorithm: BFS traversal and backtrace accumulation (See
section 2). Both phases have similar computing behavior (although the backtrace accumulation is of high
arithmetic intensity, our optimization strategies still work). To simplify presentationwe only describe
the optimization for BFS traversal phase.

4.1 A Fine-grained Parallel Algorithm

BFS traverses a graph to generate a tree (subgraph) level by level. Atcurrent level each vertex is
extended to produce the vertices at the next level. We observe two levels of parallelism: among all
extensions and in an extension (the term of extension is defined in section 2). First, if multiple vertices at
one level do not share the same neighbor vertices, these extension operations can be assigned to multiple
parallel thread units. For example in Figure 1v2, v4, v7 are at the same level, the extensions of these
vertices are finished by three parallel threads. However, if two verticesshare the same neighbor vertices,
a synchronization is forced to keep the shared neighbors being visited for just one time. Second, in an
extension, the explorations on each neighbor vertex can be embarrassingly parallelized. For example
the explorations onv2, v4, v7 of vertexv0 are assigned to three parallel threads. However, there are
two factors hindering the scalability of parallelism. On one hand, the first level of parallelism requires
concurrent memory accesses to their neighbor vertices, the memory size of which may exceed the small
on-chip memory on many-core architectures. Besides, the intensively concurrent memory accesses place
a burden on the limited off-chip bandwidth, which slacks the scalability of parallelism. On the other
hand, the scale-free sparse graph has few vertices with high degrees, which determines the available
parallelism. Therefore, the previous parallel implementations [2–4], which only exploit either one level
of parallelism, can not achieve good performance on massive multi-threading architectures.

Let us denote the set of the extended vertices in current level asVi = {vi1, vi2, ..., vik}. Let Nj =

{uj1, uj2, ..., ujkj
}, 1 ≤ j ≤ k denote the neighbor vertices set of a vertexvij . During execution the

unvisited neighbor vertexu (d[u] = −1) is added to the current queue and the vertices being extended in
the shortest path (d[u] = d[v]+w[u][v]) are added to the set of predecessorP [u]. We logically compact
all their neighbors into one large set:UNi =

⋃
1≤j≤n Nj , then partition it among parallel threads. In the

8

case of ignoring shared neighbor vertices, the compaction achieves at leastp =
|UNi|=

Pk
j=1

|Nj |

maxk
j=1

|Nj |
more

times of parallelism than either one level of parallelism. For example in 1 we compact the neighbor
vertices ofv2, v4, v7 into a larger set ofv1, v6, v7, v3, v5, v6. The tasks of visiting the 6 neighbor vertices
are evenly distributed to multiple threads. Because the working set of an extension operation depends
on the highly variant degrees of vertices, the previous parallel algorithm[2] only schedules multiple
extension operations so that load balance is hard to achieve. Thanks to thesupport of massive fine-
grained parallel thread units, we combine and re-distribute the parallel tasks of fine-granularity.

However, in the initial fine-grained parallel BC algorithm there are two problems to be addressed:

• The parallel algorithm achievesp times of parallelism at the cost of concurrently accessingp

times of memory addresses. On IBM C64 the local storage is too small to hold theentire com-
bined neighbor set, therefore a large number of high latency off-chip memory accesses happen.
Much worse, the memory access patten is dynamically non-contiguous, it is difficult to adopt
either perfetching or speculation automatically. Meanwhile, the concurrent accesses make the
contention of the limited off-chip bandwidth worse.

• Because the operations on one vertex are involved with only two arithmetic operations, the critical
section protected by synchronization operations is so small that the synchronization overhead
dilates the size of critical section. An efficient synchronization mechanismSSB on IBM C64 may
help. However, as noted in [36], SSB performance will degrade if theoverflow of SSB happens
when a synchronization operation is taken over by software. Therefore, we should reduce the
number of conflicts at an instance to avoid SSB overflow.

4.2 Achieving Just-In-Time Locality

In the preliminary version of the fine-grained parallel BC program, we observe amount of off-chip mem-
ory accesses. In fact, the access to on-chip local storage has much higher bandwidth and lower latency
than that to off-chip memory. Therefore, it is reasonable to schedule as many threads as possible only
to access on-chip local memory space. Because both on-chip and off-chip memory are addressed by all
threads in a uniform space with different latency, in a conventional execution model a thread is activated
as soon as its data/control dependencies are satisfied, regardless of where the data are. Such a thread
execution model does well for regular applications, where there is an inherent cache/memory locality.
Unfortunately, irregular applications like BC program often have dynamically non-contiguous memory
access. Note that C64 is configured with explicit memory hierarchy and non-preemptive thread execu-
tion model. Programmers can explicitly state where the data are in explicit memory hierarchy. Non-
preemptive thread execution model forces a thread to finish consuming its data without re-scheduling.
Based on these architectural properties, programmers can specify theexact relationships between a
thread execution and places of its data. Based the features of IBM C64,we propose adata-centric
strategy to achieve just-in-time locality for dynamically non-contiguous memory accesses.

We represent a program as a directed acyclic thread graph, where each node is a thread, and a
direct arc between two nodes represents a precedence relation between threads (See Figure 8). In a

9

(b). A thread exeuction graph with locality dependence

si sj

sk sk

si sj

(a). Generic thread execution graph

locality requirement si’

Figure 8: thread execution graph

thread graph, a nodes (i.e., a thread) is enabled if all its predecessor nodes have completed and the
required data and control dependence have been satisfied. We call a thread that satisfies both data and
control dependence requirements as beinglogically enabled. In order to achieve just-in-time locality
for a thread execution, it is not sufficient for a logically enabled thread to run. We introduce locality
constraint in addition to data and control dependence requirements to overcome the latency gap through
memory hierarchy. Using locality constraint a logically enabled thread often cannot immediately run
since the data may still be in off-chip memory hierarchy or in the local memory ofother cores. All data
referenced by the thread should become local before a thread can begin execution. We call a logically
enabled thread aslocality enabledif it also satisfies locality constraints (See Figure 8). The locality
requirements ensure that the corresponding data of the candidate thread are resident in the same level of
memory hierarchy where it is to be enabled. The stronger constraint on thread execution is data-centric,
that is, the local data enables a thread execution.

Logically transformation

vi vkvj

... ...

Transferring to off−chip

adjacent array other arrays (i.e. d)

off−chip memory

on−chip memory

...

compute

pipleline

...
...

Transferring to on−chip

Figure 9: A demonstration of the parallel pipelining process for the BFS phase of the BC algorithm. For
readability, the transformation (linearization/scatter) and data movement are depicted as two steps. A
real implementation finishes them in single step by memory threads.

10

This strategy results in additional operations for ”creating” locality constraint. Note that the mas-
sive hardware thread units on IBM C64 and low arithmetic intensity of BC program, we separate several
threads to complete locality constraint. Meanwhile, the computation operations and memory operations
are decoupled so that the parallel program is mapped to such a thread execution model. Within mem-
ory hierarchy, the memory operations may involve either collecting the data toward the cores where
the thread is enabled, or sending/migrating the data away from the cores. Since most architectures (in-
cluding many-core architectures) are designed to exploit “linear locality”1, it is important to transform
non-linear locality into linear locality just in time for the computation. For instance, consider the ex-
ample shown in Figure 1, and assume thatv2, v4 andv7 are currently in queue, and assume we extend
(during BFS) nodev2 to bring in nodesv1, v6 andv7. Since these three nodes are contiguous we exploit
the locality among them and arrange them in a linear contiguous memory (in-corememory). However,
neitherd[1], d[6], d[7] nor σ[1], σ[6], σ[7] is contiguous, if we performed linearization to these discrete
memory locations just before they are used to compute, then we achieve the ”created” spatial local-
ity. In an implementation, programs donot explicitly perform such linearization operations in off-chip
memory, but naturally complete them during data movement through memory hierarchy. For example, a
memory thread, which transfers data from off-chip memory to on-chip memory, consists of computing
the start address and the size of the neighbor vertices region in adjacency array of each vertex, and col-
lecting neighbor vertices dispersed in the off-chip memory address (adjacency array) into a contiguous
on-chip memory address. It also collects the corresponding elements ind, σ into a contiguous on-chip
memory address. Notice that there is a producer-consumer relationship between the collection of neigh-
bor vertices and that ofd, σ. Also, the memory references ofd, σ are discrete because the distribution
of the neighboring vertices obeys a law of power in a scale-free graph.Once computing the relevant
information we write them back to off-chip memory using yet another memory thread.

In order to tolerate the overhead of ”creating” locality constraint, we exploit parallelism between
computation threads and memory threads. The multi-grain parallel algorithm partitions union setUNi

into multiple sub-blocks. When computation threads are processing the data inblock i, some memory
threads gather the data in blocki + 1 and other memory threads scatter the results that are generated
using the data in blocki−1. The threads operating multiple sub-blocks form a pipeline, which achieves
just-in-time locality for each sub-block (See Figure 9). Figure 10 and 11 describe a pesudocode example
of BFS with and without percolation, respectively.

4.3 Using Architectural Support of Fine-grain Data Synchronization

Our previous work on IBM C64 [10, 36] indicates that lock-based synchronization is better than lock-
free one for explicit memory hierarchy. In fact, since there is neither priority inversion nor convoying
problem in IBM C64, performance and memory contention are the only factors of a lock-free data
structure. For lock-free synchronization [22] in parallelizing betweenness centrality, due to irregular
memory access pattern, we observed many failures of speculation and rollback. However, with software
lock mechanism, we have to use an additional lock array to assign one lock toeach vertex. The size of

1We use the term linear locality to mean that data access have constant stridesand for contiguous accesses the strides have
one unit value, typically one word length.

11

1 BFS(i n t v) {
2 i n t dv = d [v] ; / / l e n g t h o f t h e s h o r t e s t pa th
3 i n t sigmav = sigma [v] ;/ / t h e number o f t h e s h o r t e s t pa th
4 f o r (i = 0 ; i < NumEdges [v] ; i ++) {
5 w = Ad jacen t [i ndex [v]+ i] ;
6 i f (d [w] < 0) {
7 d [w] = dv + 1 ;
8 sigma [w] = 0 ;
9 }

10 i f (d [w] = dv + 1)
11 sigma [w] = sigmav + 1 ;
12 }
13 }

Figure 10: The sequential BFS codes without percolation.

lock array is the same with the number of vertices, which is usually huge in real world. Thus, a large
scale graph generates amounts of irregular off-chip memory accesses since these accesses are associated
with that of vertices.

There are two advantages of the proposed parallel pipelining algorithm : 1). We explicitly separate
computation threads from memory ones. The computation threads and memory ones access different
memory locations at any instancet implemented by double-buffering. 2). The algorithm accesses the
arrays in a chunking way, that is, in each pipelining stage, only small blocksreside in on-chip memory
at any instancet. Note that the on-chip memory of C64 is organized in multiple banks way where each
process is associated with a memory bank. LetN = M ×B be the number of memory locations, where
M is the size of each memory bank andB is the number of memory bank. At any instancet, letS(t) be
the amount of synchronization by all threads. Since the two features of the algorithm and the number of
active threadsT ≪ N , the program is easily adaptive to satisfy an important constraint:

S(t) ≪ N (6)

Therefore, at any instance only a small fraction of memory locations are actively participating in syn-
chronization. This observation exactly satisfies the condition of no overflow in SSB [36].

5 Evaluation

In this section we report experimental results and show the architectural and algorithmic impact on pro-
gram performance, then summarize several implications on many-core architecture and programming.

5.1 Methodology

We evaluate the performance characteristics of mapping approaches ona cycle-accurate IBM C64 sim-
ulator [11] for the proposed parallel BC program. The architectural parameters used in the experiments

12

1 /∗ t h r e e p i p e l i n e d phase : (1) o f f−ch ip memory read ; (2) compuat ion (a c c e s s i n g on−ch ip memory) ;
2 o f f−ch ip memory w r i t e .∗ / BFS (i n t v) {
3 i n t o f f s e t = 0 ;
4 i n t t u r n = 0 ;
5 i n t dv = d [v] ;
6 i n t sigmav = sigma [v] ;
7 SPAWNTASK{
8 f o r (i = 0 ; i < b u f f s i z e ; i ++)
9 b u f f [t u r n] [i] = Ad jacen t [i ndex [v]+ o f f s e t + i] ;

10 o f f s e t += b u f f s i z e ;
11 t u r n ˆ= 1 ;} ;
12 BARRIERWAIT () ;
13 whi le (o f f s e t < NumEdges [v]) {
14 / / 1 . o f f−ch ip memory read
15 SPAWNTASK{
16 f o r (i = 0 ; i < b u f f s i z e ; i ++)
17 b u f f [t u r n] [i] = Ad jacen t [i ndex [v]+ o f f s e t + i] ;
18 o f f s e t += b u f f s i z e ;
19 t u r n ˆ= 1 ;} ;
20 SPAWNTASK{
21 f o r (i = 0 ; i < b u f f s i z e ; i ++) {
22 w = b u f f 1 [i] ;
23 b u f f 2 [t u r n] [i] = d [w] ;
24 b u f f 3 [t u r n] [i] = sigma [w] ;
25 }
26 t u r n ˆ= 1 ;} ;
27 / / (2) . compuat ion (a c c e s s i n g on−ch ip memory) ;
28 SPAWNTASK{
29 f o r (i = 0 ; i < b u f f s i z e ; i ++) {
30 i f (b u f f 2 [t u r n] [i] < 0) {
31 b u f f 2 [t u r n] [i] = dv +1;
32 b u f f 3 [t u r n] [i] += 0 ;
33 }
34 i f (bu f f 2 [t u r n] [i] == dv +1)
35 b u f f 3 [t u r n] [i] += sigmav ;
36 }
37 t u r n ˆ= 1 ;} ;
38 / / (3) . o f f−ch ip memory w r i t e
39 SPAWNTASK{
40 f o r (i = 0 ; i < b u f f s i z e ; i ++) {
41 w = b u f f [t u r n] [i] ;
42 d [w] = bu f f 2 [i] ;
43 sigma [w] = bu f f 3 [i] ;
44 }
45 t u r n ˆ= 1 ;} ;
46 BARRIERWAIT () ;
47 }
48 }

Figure 11: BFS codes with percolation on IBM C64.SPAWNTASKis implemented as dis-
patching a thread from a thread pool.BARRIERWAIT() is a global barrier synchronization
supported by hardware mechanism.

13

are summarized in Table 1. The toolchain consists of an optimized GCC compiler, athread execution
runtime systems TNT [12] (Pthread-like) and a TNT-based OpenMP [10].By modifying HPCS SSCA2
benchmark [2], the proposed parallel algorithm is implemented using the TNT library. The TNT runtime
always maintains as many threads as the cores.

Table 1: Simulation parameters of C64.
Component # of units Params./unit

Threads 128 single in-order issue, 500MHz
FPUs 64 floating point/MAC, divide/square root
I-cache 16 32KB
SRAM (on-chip) 128 32KB (20 cycles load,10 cycles store)
DRAM (off-chip) 4 256MB (36 cycles load,18 cycles store)

Crossbar 1 96 ports, 4GB/s port

We report experimental results only for small problem sizes. Except forthe limitation of simulator
itself, IBM C64 is devised as an accelerating engine for building a Petaflops supercomputer, and there are
massive IBM C64 nodes in the system. In a massive parallel algorithm the working-set in each node may
be usually small. On traditional supercomptuers, most parallel applications have put emphasis onweak
scaling, where speed is achieved when the number of processors is increasedwhile the problem size per
processor remains constant, effectively increasing the overall problem size. Theweak scalingmeasures
the exploitable parallelism to solve a larger problem. We can achieve betterweak scalingby increasing
the computational power of a single processor. However, on the emerging many-core architectures,
although the number of cores grows rapidly, the speed of individual processing element is reduced
and the shared on-chip memory is still small. Therefore, we should measurethe achieved speed when
the number of processors increased while the overall problem size is kept constant, which effectively
decreases the problem size per processor. That meansstrong scalingis greatly emphasized for the fine-
grain parallel algorithm on many-core architectures. It is also reasonable to evaluate performance of
small size of problems on a simulator.

5.2 Results for Mapping Parallel BC Algorithm

In this section we present our experimental results. The experimental datasets are generated by the
program in HPCS SSCA2 benchmark. We represent the problem size interm ofS, where the number
of vertices isn = 2S . At first glance, we summarize incremental optimization results of the parallel al-
gorithm for just-in-time locality and synchronization using SSB. Figure 12 depicts 4-50 times reduction
of execution time by comparing with the naively ported HPCS SSCA2.

Next we focus on four different performance characteristics. Firstwe focus on performance and
scalability as we increase both the problem (graph) size and the number of threads. Second we focus on
understanding locality and memory latency as we increase the number of threads. Third we focus on the
effect of barrier synchronization on the performance. Lastly, we present the performance improvement
by SSB lock synchronization.

14

4 8 16 32 64
0

2

4

6

8

10

12

14

16

18

20

tim
e

(s
ec

on
ds

)

#cores

 baseline
 JITL
 JITLSSB

Figure 12: The incremental optimization results (S = 10). baseline: OpenMPversion of HPCS SSCA2.
JITL: SSCA2 with just-in-time locality. JITLSSB: SSCA2 with both just-in-time and synchronization
state buffer.

• Figure 13 illustrates the performance and scalability as we increase the number of threads for
three different scales (i.e., the problem size). We refer to the number of traversed edges per second
(TEPS) as a performance metric, i.e.TEPS = n∗E(n)

T (n) , wheren is the problem size. Comparing
the result with the OpenMP implementation, we can see that our optimization strategy shows a
16 times improvements of scalability. Using our approach we achieve almost linear speedups for
all test cases when the number of threads is less than 32. For the test case with a problem size
S = 8, the performance stops increasing when the number of threads reaches128 because the
number of available parallel sub-tasks is less than the number of hardwarethread units. However,
we improve the performance when the problem size is increased, i.e forS = 9 and10. For
BC algorithm the degree of a vertex determines the amount of parallelism that we can exploit.
Although the multi-grained parallel algorithm reduces the number of idle threads, the maximum
degree of a vertex is 64 for problem sizeS = 8. So the available parallelism for this small problem
size still leads to a little improvement on128 threads. ForS = 9 and10, where the maximum
vertex degrees are94 and348, the performance and scalability are further improved.

• Figure 14 shows the effect of memory latency tolerance using the technique for creating just-
in-time locality. Recall that the main purpose for creating just-in-time locality is to transform
non-linear off-chip memory access to linear on-chip memory access in sucha way that the over-
head of the transformation is hidden. The implementation on C64 uses on-chip double buffers
to hide the off-chip memory latency. The memory threads are used to transfer data between two
memory levels. The overlapping of memory operations and computation operations is important
to achieve high performance. In order to figure out the overlapping time, we profiled the execu-
tion time of computation and memory operations. Although the computation only access on-chip
memory, the overall execution time of computation tasks is more than that of the memory tasks
due to synchronization that is required among the computation tasks for computing the shortest

15

4 8 16 32 64 128
0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

20000000

22000000

24000000

26000000

28000000

TE
P

S

#cores

 S8
 S9
 S10

Figure 13: Scalability results of the parallel betweenness centrality algorithm (higher is better).The
number of verticesn = 2S , E(n) = 8n.

4 8 16 32 64
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

tim
e

pr
of

ili
ng

#cores

 computation
 memory
 overlap

Figure 14: Time distribution and achieving off-chip memory latency tolerance.

path information. Next we wanted to understand the effect of increasing buffer size used in the
parallel pipeline on the overall scalability. Interestingly increasing the buffer had little effect on
the scalability. Note that degrees of most of vertices in scale-free graph are low so that we can not
hide more off-chip memory access by increasing the buffer size. Figure 15 shows that increasing
buffer size does not achieve better performance. Our strategy to hide memory access is pipelining
between computation and memory operations. The larger buffer can containmore vertices, then
the length of pipeline becomes so short that the memory operations can not be hidden.

• When implementing the parallel pipelining algorithm, we insert a barrier synchronization opera-
tion at the end of each pipeline. The overhead of a barrier is determined mostly by load balance
and the number of barriers. Recall that the algorithm loads the adjacency array into the on-chip
buffers one block at a time, it is important to note in the BC algorithm that the computation be-

16

4 8 16 32
0.00

0.05

0.10

0.15

0.20

0.25

0.30

tim
e

(s
ec

on
ds

)

#cores

 16
 32
 64
 128
 256
 512
 1024

Figure 15: The comparison of running time using different sizes (bytes) of buffers.

4 8 16 32 64 128

24

26

28

30

32

34

36

38

40

42

ra
tio

 (%
)

#cores

Figure 16: Overhead of barrier synchronization for scale = 10. Themeasured barriers include the
barriers in both BFS and backtrace phase.

havior of each vertex may be different. For example, if a vertex is not one of the predecessors
of a neighbor that is currently loaded into the on-chip memory, we do not have to insert this ver-
tex into the predecessor set of the neighbor (otherwise we unnecessarily incur several additional
memory accesses). Therefore, the execution time of each block may be different and so workload
may not be balanced among multiple threads. Also, we cannot achieve a perfect overlap between
computation and memory tasks at every stage of the pipeline. On the other hand by increasing the
number of tasks, the workload on each thread decreases so that the difference of the workloads is
not so significant, and we achieve more overlapping time. Unfortunately such fine grain partition
may increase the depth of the pipeline and the number of barrier synchronization. Figure 16 il-
lustrates the percent of overhead of barrier synchronization with respect to the overall execution
time.

17

4 8 16 32 64
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

tim
e

(s
ec

on
ds

)

#cores

 SSB
 MCS

Figure 17: The comparison of software lock and SSB (BFS phase)

• Since in our parallel algorithm we only access a small portion of data duringthe computation
phase to create just-in-time locality, only a small portion of memory participate in datasynchro-
nization. Using SSB for data synchronization seems very effective. As areference, we imple-
mented a highly optimized MCS [26] algorithm using in-memory atom operations onC64 [10,14].
As shown in section 3 for C64 architecture, each core accesses his ownSP with very low latency.
Thus, we use it as a ”local memory” in MCS algorithm. Figure 17 compares theperformance of
the parallel programs with MCS lock to that with SSB. SSB further reduces the execution time
and is very effective for the parallel algorithm.

5.3 Discussion

In order to evaluate our joint study of architecture and algorithm, we alsocompare the proposed parallel
BC algorithm with both HPCS SSCA2 [2] on a Intel 4-way dual-cores XeonSMP (8-processors) and a
highly optimized implementation on Cray MTA-2, which is available through a personal communication
with John Feo (previously in Cray Inc.). The MTA-2 is configured with 40-processors. Table 2 reports
the TEPS performance on the three platforms. Although the L2 cache size of the SMP is 2MB, which
can contain the whole graph data structure for the small problem size, the performance still is low
because an efficient lock synchronization is unavailable. The low performance on MTA-2 is caused by
low utilization of thread streams for the small problem size. In fact, we observed a sub-linear scalability
on MTA-2 when the problem size is large enough (i.e.,scale = 22), but the performance on the SMP
is poor [13] (Unfortunately, due to limitation of simulator, we can not run so large test sets for IBM
C64). This comparison indicates that the algorithm on MTA-2 achieves goodweak scalability, but our
algorithm on IBM C64 achieves better strong scalability because we unearthmore additional parallelism
even for small problem sizes.

Although this paper focuses on the performance and scalability of an on-chip many-core archi-
tecture, we also give a prospect of performance and scalability of the proposed algorithm on a multi-

18

Table 2: The comparison of TEPS on three platforms.scale = 10.
#threads C64 MTA-2 SMPs
4 2917082 752256 5369740
8 5513257 619357 2141457
16 9799661 488894 N/A
32 17349325 482681 N/A

chips system connected with high latency network since IBM C64 will serve as a compute engine in a
Petaflops supercomputer. Because a real system or simulator of multi-chips is not available, we present
a qualitative analysis of the parallel algorithm. Note that the just-in-time localitydecouples computa-
tion with memory operations, then the percolation strategy use some helper threads to hide latency to
off-chip memory. This idea can be naturally extended to a multi-chip system withhigh latency network.
Therefore, we expected that scalability of a system with multiple IBM C64 chips is comparable with
that of Cray MTA-2.

In this paper we present the results for one case of computing betweenness centrality, however, it
represents a class of general applications with irregular memory access, low arithmetic intensity and
unstructured parallelism, which are different from traditional scientific computing. The experiments
give some interesting hints on many-core architectural design space and programming:

• A performance critical application with irregular memory access prefers tono-cache mechanism
memory hierarchy. Hardware-managed memory (cache) automatically exploit locality in pro-
grams. The irregular memory access pattern in BC sets an obstacle to the capability of cache
and incurs a large number of cache misses which hurt the memory bandwidth.For many-core
architectures, an increasing gap between the number of cores and bandwidth is a serious obstacle
to scalability of a parallel program. Configured with explicit memory hierarchy, IBM C64 pro-
vides an architectural support to programmer for precisely orchestrating memory movement for
just-in-time locality at algorithmic level using multiple simple hardware thread units.

• Architectural support of fine-grain synchronization is reasonable. In a fine-grain parallel program
on a many-core architecture, the overhead of synchronization is more sensitive since working-set
of each thread is small. Using software synchronization it becomes worse because the memory
access in a irregular program is unpredictable. The SSB on IBM C64 is proven to be favorable.

• A runtime system supporting programmers to utilize just-in-time locality is promising. The ex-
perimental results show that achieving just-in-time locality in programs is an efficient alterna-
tive technique for developing high performance algorithms on many-corearchitectures. In algo-
rithmic level, programmers separate memory from computation and pipeline multiple memory-
computation stages. In parallel programming model, users specify the tasksand their dependence,
a runtime system could parse the task graph and automatically determine the granularity of de-
coupling and a way of pipelining so that the program would be optimally adaptive to memory
hierarchies. Another advantage of the runtime system may be to provide virtualization of non-

19

preemptive execution model, which is one of the conditions to just-in-time locality onIBM C64.
The resource virtualization is important for easy programming.

6 Related Work

Due to the importance of computing betweenness centrality, there have beenseveral works on par-
allelization on conventional parallel architectures [2–4]. These parallel programs exploited inherent
parallelism and solved a large scale graph on several parallel computerswith huge memory storage.
Our work focused on optimizing the irregular memory access using multi-threading many-core archi-
tectures with small on-chip memory, which propose different challenges on parallelizing a performance
critical application. On the other hand, our work paid more attention to a joint study of architecture and
algorithm. It is helpful to give some implications on many-core architecture design in the future.

The main contribution of this work is reflected in successfully mapping an important irregular ap-
plication to an emerging many-core architecture IBM Cyclops64. Although our work focus on a joint
study of algorithm and architecture, not a programming tool, the BC program represents a large class
of irregular applications, thus the optimization techniques here may be applied toother programs on a
many-core architecture. Therefore, we want to clarify the connection between our optimization strategy
and the previous techniques.

• Percolation: Our approach achieving just-in-time locality is data-centric, and it sharesthe same
point with percolation, which was briefly discussed by Gao in the context of HTMT project [19,
20]. In Gao’s work a percolation process was proposed to pack the code and data into a tiny
thread. Since there is no implementation of Gao’s percolation model, it is unclearwhether his
approach was effective in practice for many-core architectures. We have also implemented our
approach in C64 and also used sophisticated fine-grain synchronization (such as SSB) to improve
performance and scalability of irregular applications on a many-core architecture.

• Prefetching & Speculation:In our parallel pipelining algorithm we overlap computation task with
memory task. The concept of overlapping computation with I/O, network, and other long latency
operations is old. Prefetching techniques [7, 23–25, 27, 33, 35] andthread speculation [6, 8, 9,
29, 31, 34] also use such overlapping concept. Most previous work on prefetching also focused
on moving data (mostly contiguous data) from main memory to local memory (either toregister
or cache) prior to execution. Prefetching collects and performs an analysis of information of a
program’s instruction stream. Conceptually it is computation whopulls the data locally using
prefetch instructions. In our method the local data determines which computation is ready to
execute. In other words, data that is local to a core willpull computation to execute on the
core. Burtscher et.al [17, 18] proposed to use extra cores to executeprefetching threads, which
is a shared point with our approach. However, their framework is event-driven helper threading
and future execution with speculation. Our approach for achieving just-in-time locality is data-
driven, which is an efficient for executing irregular program. The underline execution model of
our work is non-preemptive so that we may not bring in more data than what can be consumed. In

20

prefetching there is no control on how much data to prefetch—prefetching too much or too less
data can impact the performance.

A variant of thread level speculation uses dependence by monitoring the reads and writes to mem-
ory locations. In producer-consumer loop iterations, the speculative execution leads to a violation
of dependence, then must roll back. For the irregular memory access in the BC algorithm, in ad-
dition to the random reference to arraysd, σ, andδ, the references in the next iteration depends on
the results in the current iteration. If we speculate the references based on the remaining neighbor
vertices, it can lead to a large number of roll backs.

• Inspector-Executor:In inspector-executor paradigm [28, 30], an inspector translates global in-
dices to local indices, identifies non-local references and generates communication schedules,
an executor prefetches non-local data using schedules and performscomputation. Although it is
similar to our idea of decoupling/pipelining computation with memory, the underline model in
inspector-executor is task-driven, whereas the computation tasks determine the schedule of data
communication/prefetching.

• Streaming programming:In [15, 21] the authors performed a comprehensive study of regular/ir-
regular scientific computing applications on streaming programming model. Both their work and
ours share the streaming programming style of gather-compute-scatter. Theway to gather/scatter
data ahead makes our approach different from theirs. The streaming programming uses a DMA-
style transfer, our approach utilizes the ample hardware thread units, where the way to hide the
overhead of transformation is more flexible and requires less hardwarecost.

7 Conclusion

Emerging future microprocessor chip technology unveils a new generationof many-core chip architec-
tures that may contain 100 to 1,000 processing cores using a shared memoryorganization with large
number of on-chip memory banks. Computer architects, system software designers and application sci-
entists are realizing that they must work closely together to investigate how to exploit the computational
power of such new many-core architecture to improve performance and scalability of large-scale sci-
entific applications. IBM Cyclops64 represents a new class of many-corearchitecture featuring with
shared address space for on-chip memory between cores and explicitaddressing without cache. This
paper presents a study of evaluating the new many-core architectural features and shows how these
features can be effectively exploited when executing challenging irregular applications in practice.

Because of the irregular behavior of BC algorithm, it is difficult to achieve high performance on a
parallel architecture. By leveraging the key properties of explicit memory hierarchy and non-preemptive
execution model, we propose a parallel pipelining algorithm to implement just-in-timelocality for BC
program on IBM Cyclops64. The parallel algorithm makes good use of thearchitectural support of fine-
grain data synchronization. Our experimental results show that our methods are promising to improve
scalability and performance of irregular application on a many-core architecture. Our future work will
focus on implementing a runtime systems for supporting programmability on many-core architectures.

21

We would like to thank many members of the Computer Architecture and Parellel Systems Lab-
oratory (CAPSL) at University of Delaware: Andrew Russo, WeirongZhu and Ge Gan for helpful
discussions.

22

References

[1] David Alderson, John C. Doyle, Lun Li, and Walter Willinger. Towardsa theory of scale-free
graphs: Definition, properties, and implications.Internet Math, 2(4):431–523, 2005.

[2] David A Bader. Hpcs scalable synthetic compact applications 2 graphanalysis.
www.highproductivity.org/SSCABmks.htm, 2006.

[3] David A. Bader and Kamesh Madduri. Designing multithreaded algorithms for breadth-first search
and st-connectivity on the cray mta-2. InThe 35th International Conference on Parallel Processing
(ICPP 2006), 2006.

[4] David A. Bader and Kamesh Madduri. Parallel algorithms for evaluating centrality indices in
real-world networks. InThe 35th International Conference on Parallel Processing (ICPP 2006),
2006.

[5] Ulrik Brandes. A faster algorithm for betweenness centrality.Journal of Mathematical Socialogy,
25(2):163–177, 2001.

[6] nones Carlos Garcı́a Qui Carlos Madriles, Jesús Śanchez, Pedro Marcuello, Antonio González,
and Dean M. Tullsen. Mitosis compiler: an infrastructure for speculativethreading based on
pre-computation slices. InPLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation, pages 269–279, 2005.

[7] Trishul M. Chilimbi and Martin Hirzel. Dynamic hot data stream prefetching for general-purpose
programs. InPLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on Programming
language design and implementation, pages 199–209, New York, NY, USA, 2002. ACM.

[8] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen. Dynamic speculative precomputation. In
the 34th Annual International Symposium on Microarchitecture, 2001.

[9] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, D. Lavery, and J. P. Shen. Speculative precom-
putation: Long-range prefetching of delinquent loads. InThe 28th International Symposium on
Computer Architecture, 2001.

[10] Juan del Cuvillo, Weirong Zhu, and Guang R. Gao. Landing openmpon cyclops-64: An efficient
mapping of openmp to a many-core system-on-a-chip. InThe 3rd ACM International Conference
on Computing Frontiers, Ischia, Italy, 2005.

[11] Juan del Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. Gao. Fast:A functionally accurate sim-
ulation toolset for the cyclops-64 cellular architecture. InWorkshop on Modeling, Benchmarking
and Simulation (MoBS), held in conjunction with the Annual International Symposium on Com-
puter Architecture (ISCA’05), 2005.

[12] Juan del Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. Gao. Tinythreads: a thread virtual ma-
chine for the cyclops-64 cellular architecture. InFifth Workshop on Massively Parallel Processing
(WMPP), held in conjunction with the 19th rnational Parallel and Distributed Processing System,
2005.

23

[13] Guangming Tan Dengbiao Tu. Characterizing betweenness centralityalgorithm on multi-core
architectures. Inthe 2009 IEEE International Symposium on Parallel and Distributed Processing
with Applications (ISPA’09), 2009.

[14] Monty Denneau and Henry S. Warren, Jr. 64-bit Cyclops: Principles of operation. April 2005.

[15] Mattan Erez, Jung Ho Ahn, Jayanth Gummaraju, Mendel Rosenblum, and William J. Dally. Exe-
cuting irregular scientific applications on stream architectures. InICS ’07: Proceedings of the 21st
annual international conference on Supercomputing, pages 93–104, New York, NY, USA, 2007.
ACM.

[16] Linton C. Freeman. A set of measures of centrality based on betweenness.Sociomtry, 40(1):35–41,
1977.

[17] I. Ganusov and M. Burtscher. Future execution: A hardware prefetching technique for chip mul-
tiprocessors. In2005 International Conference on Parallel Architectures and CompilationTech-
niques, pages 350–360, 2005.

[18] I. Ganusov and M. Burtscher. Efficient emulation of hardware prefetchers via event-driven helper
threading. In2006 International Conference on Parallel Architectures and CompilationTech-
niques, pages 144–153, 2006.

[19] Guang Gao, Jose Nelson Amaral, Andres Marquez, and Kevin Theobald. A refinement of the
”htmt” program execution model. Technical report, CAPSL,University of Delaware, 1998.

[20] Guang R. Gao, Konstantin K. Likharev, Paul C. Messina, and Thomas L. Sterling. Hybrid tech-
nology multi-threaded architecture,. InProceedings of Frontiers ’96: The Sixth Symposium on the
Frontiers of Massively Parallel Computation, pages 98–105, 1996.

[21] Michael Gordon, William Thies, and Saman Amarasinghe. Exploiting coarse-grained task, data,
and pipeline parallelism in stream programs. InInternational Conference on Architectural Support
for Programming Languages and Operating Systems, San Jose, CA, October 2006.

[22] Maurice Herlihy. Wait-free synchronization.ACM Transactions on Programming Languages and
Systems, 11(1):124–149, 1991.

[23] Yuan Lin and David Padua. Compiler analysis of irregular memory accesses. InPLDI ’00: Pro-
ceedings of the ACM SIGPLAN 2000 conference on Programming language design and implemen-
tation, pages 157–168, New York, NY, USA, 2000. ACM.

[24] Jiwei Lu, Abhinav Das, Wei-Chung Hsu, Khoa Nguyen, and Santosh G. Abraham. Dynamic helper
threaded prefetching on the sun ultrasparc cmp processor. InMICRO 38: Proceedings of the 38th
annual IEEE/ACM International Symposium on Microarchitecture, pages 93–104, Washington,
DC, USA, 2005. IEEE Computer Society.

[25] Chi-Keung Luk and Todd C. Mowry. Automatic compiler-inserted prefetching for pointer-based
applications.IEEE Transactions on Computers, 48(2), 1999.

24

[26] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalablesynchronization on
shared-memory multiprocessors. InACM Transactions on Computer Systems, volume 9, page 1,
1991.

[27] Todd Mowry and Anoop Gupta. Tolerating latency through software-controlled prefetching in
shared-memory multiprocessors.Journal of Parallel and Distributed Computing, 12(2):87–106,
1991.

[28] Ravi Ponnusamy, Joel Saltz, and Alok Choudhary. Runtime-compilation techniques for data par-
titioning and communication schedule reuse. InSupercomputing’93., 1993.

[29] L. Rauchwerger, Y. Zhan, and J. Torrellas. Hardware for speculative run-time parallelization in
distributed shared memory multiprocessors. InProceedings of the 4th International Symposium
on High-Performance Computer Architecture, page 162, 1998.

[30] Shamik Sharma, Ravi Ponnusamy, Bongki Moon, Yuan Hwang, RajaDas, and Joel Saltz. Run-
time and compile-time support for adaptive irregular problems. InSupercomputing’94, 1994.

[31] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable approach to thread-level spec-
ulation. InProceedings of the 27th Annual International Symposium on Computer Architecture,
2000.

[32] Guangming Tan, Vugranam C. Sreedhar, and Guang R. Gao. Just-in-time locality and percolation
for optimizing irregular applications on a manycore architecture. In21st Annual Languages and
Compilers for Parallel Computing Workshop, 2008.

[33] Youfeng Wu. Efficient discovery of regular stride patterns in irregular programs and its use in
compiler prefetching. InPLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on
Programming language design and implementation, pages 210–221, New York, NY, USA, 2002.
ACM.

[34] W. Zhang and D. M. Tullsen. Accelerating and adapting precomputation threads for efficient
prefetching. In3th International Symposium on High Performance Computer Architecture, 2007.

[35] Zheng Zhang and Josep Torrellas. Speeding up irregular applicaitons in shared-memory multipro-
cessors: Memory binding and group prefetching. In22nd International Symposium on Computer
Architecture, 1995.

[36] Weirong Zhu, Vugranam C. Sreedhar, Ziang Hu, and Guang R. Gao. Synchronization state buffer:
Supporting efficient fine-grain synchronization on many-core architectures. InThe 34th Interna-
tional Symposium on Computer Architecture, 2007.

25

