
University of Delaware
Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

Energy efficient tiling on a Many-Core Architecture

Elkin Garcia
Daniel Orozco
Guang R. Gao

CAPSL Technical Memo 102

October, 2010

Copyright c© 2010 CAPSL at the University of Delaware

University of Delaware • 140 Evans Hall •Newark, Delaware 19716 • USA

http://www.capsl.udel.edu • ftp://ftp.capsl.udel.edu • capsladm@capsl.udel.edu

Contents

1 Introduction 1

2 Energy Consumption Model on a Many-Core Architecture 2
2.1 The IBM Cyclops-64 Architecture . 2
2.2 Energy Consumption model for Cyclops-64 . 4

3 Tiling Techniques for Energy Efficient Applications 5
3.1 Matrix Multiplication . 6
3.2 Finite Difference Time Domain . 7

4 Experimental Evaluation 9
4.1 Evaluation of the Energy Consumption Model . 9
4.2 Evaluation of the Energy Efficient Tiling . 10

5 Related Work 11

6 Conclusions and Future Work 12

i

List of Figures

1 C64 Architecture details . 3
2 FDTD 1D Tiling for minimizing energy consumption 8
3 Ed vs. Γ with 150M Operations per Processor 10
4 Energy consumption (Static Es, Dynamic Ed and Total Et) vs Predicted model

P and Measured M using different tilings for MM and FDTD 12

ii

List of Tables

1 Ed consumed by memory operations for MM . 8
2 Ed consumed by memory operations for FDTD 9
3 Energy Coefficients e and R2 . 11

iii

Abstract

Energy efficiency and power consumption have become an imperative requirement in
Computer Architecture. The rising multi-core and many-core era has been motivated by the
increasing demand of high performance computations restricted to a feasible power require-
ment. How to model the energy consumption of many-core architectures in order to propose
techniques for the design of energy efficient applications is a topic of high interest in the
community.

In this paper, we develop an energy consumption model for many-core architectures with
software-managed memory hierarchy and we propose a general methodology for designing
tiling techniques for energy efficient applications. The energy consumption model developed
and the methodology proposed have the following characteristics: (1) The energy consump-
tion model depends of the number and type of instructions executed and the total execution
time of the application. (2) This model is scalable with the number of hardware thread
units and considers stalls produced by data dependencies or arbitration of shared resources.
(3) The methodology proposed is based on an optimization problem that produces optimal
tiling and sequence of traversing tiles minimizing the energy consumed and parametrized by
the sizes of each level in the memory hierarchy. (4) We show two different techniques for
solving the optimization problem for two different applications: Matrix Multiplication (MM)
and Finite Difference Time Domain (FDTD). Our experimental evaluation on a real IBM
Cyclops-64 chip (C64) proves the accuracy of our energy consumption model and shows that
the techniques proposed reduce the total energy consumption and also increase the power
efficiency.

iv

1 Introduction

The rapid progress of technology has made possible the integration of large number of processing
cores on a single chip. As a consequence, parallel computing design has turned of special interest
to the scientific community. Indeed, many-core and multi-core architectures have risen as the
solution to most of the issues facing the field of high-performance computing. Energy efficiency
and power consumption have become an imperative requirement, the design of new generation
of exa-scale supercomputers is restricted to feasible power requirements [1, 2].

Integration of processors on a chip becomes challenging at different levels. From the point
of view of semiconductor manufacturing process, new technologies and materials are needed for
increasing the number of transistors per area. The integration of hundreds of processors on a
single chip under area constraints and the significant increase on leakage current requires the
redesign of traditional uniprocessor architectures with deep pipelines, complex branch prediction
hardware and a cache-based memory hierarchy.

Particularly, traditional parallel programming methodologies have been focusing on improv-
ing performance and they assume cache-based parallel systems exploiting temporal locality. How-
ever, the data location and replacement in the cache is controlled by hardware making difficult
a fine control and wasting energy [3, 4]. As a result, innovative architectures have arisen; one,
unique on its type, is the IBM Cyclops-64 (C64) many-core-on-a-chip system. C64 contains 160
hardware Thread Units (TU) and it has a software-managed memory hierarchy where the data
movement between different levels of the hierarchy is managed by the programmer. It saves the
die area of hardware cache controllers and over-sized caches. Although this might complicate
programming at their current stage, these systems provide more flexibility and opportunities to
improve not only performance but also energy efficiency.

Several studies focusing on increasing the performance of a broad range of applications have
been done on this architecture (e.g. Matrix Multiplication, LU decomposition, Fast Fourier
Transform, etc) [5–8], but none of these techniques has directly considered the energy efficiency
as a goal. Despite of that, some of them have provided evidence of the power efficiency of
C64 [5, 9].

In this paper, we develop an energy consumption model for many-core architectures with
software-managed memory hierarchy. The energy consumption model depends of the number
and type of instructions executed and the total execution time of the application. We use the
C64 many-core architecture to illustrate that our model is scalable with the number of hardware
thread units and it considers stalls produced by data dependencies or arbitration of shared
resources.

We also propose a general methodology for designing tiling techniques for energy efficient
applications. The methodology proposed is based on an optimization problem that produces
optimal tiling and sequence of traversing tiles minimizing the energy consumed and parameterized
by the sizes of each level in the memory hierarchy. We show two different techniques for solving
the optimization problem for two different applications: Matrix Multiplication (MM) and Finite

1

Difference Time Domain (FDTD). Our experimental evaluation uses a real IBM Cyclops-64 chip
(C64) that proves the accuracy of our energy consumption model and shows that the techniques
proposed reduce the total energy consumption and also increase the power efficiency.

The rest of this paper is organized as follows. In Section 2, we describe the C64 architecture
and explain our energy consumption model. In Section 3, we analyze and propose solutions to
the problem of designing tiling techniques for energy efficiency. In Section 4, we present the
experimental evaluation of our energy consumption model and the tiling techniques proposed.
Section 5 shows a review of related work. Finally, we conclude and present future work in Section
6.

2 Energy Consumption Model on a Many-Core Architecture

In this section we will propose a model for energy consumption on general purpose many-core
architectures with software-managed memory hierarchy. Given our special interest on scalability,
C64 seems the only one that has more than one hundred hardware threads and it has already
been built. First, we will show a general review of the characteristics of C64 on section 2.1, we
will emphasize the ones that concern to power consumption. Second, we will explain our energy
consumption model for C64 on section 2.2.

2.1 The IBM Cyclops-64 Architecture

Cyclops-64 (C64) is an innovative architecture developed by IBM, designed to serve as a dedicated
petaflop computing engine for running high performance applications. A C64 chip is an 80-
processor many-core-on-a-chip design, as can be seen in Figure 1a. Each processor is equipped
with two thread units (TUs), one 64-bit floating point unit (FP) and two on-chip memory banks
of 30kB each. It can issue one double precision floating point “Multiply and Add” instruction
per cycle, for a total performance of 80 GFLOPS per chip when running at 500MHz.

A processing node consist of a C64 chip using a 1.2V regulated power supply, external off-chip
memory (DRAM) connected to a 1.8V regulated power supply and a small amount of external
interface logic. A C64 chip has a 96-port crossbar network with bandwidth of 384GB/s that
connects all TUs and on-chip memory banks [10].

A C64 chip has an explicit three-level memory hierarchy (scratchpad memory, on-chip mem-
ory (SRAM), off-chip memory (DRAM)), 16 instruction caches of 32kB each (not shown in the
figure) and no data cache. The scratchpad memory (SP) is a configured portion of each on-chip
SRAM bank which can be accessed with very low latency and energy by the TU it belongs to.
The remaining sections of all on-chip SRAM banks consist of the on-chip global memory (GM),
which is uniformly addressable from all TUs. As a summary, Figure 1b reflects the current size,
latency (when there is no contention) and bandwidth of each level of the memory hierarchy.

Execution on a C64 chip is non-preemptive and there is no hardware virtual memory manager.
The former means that the C64 micro-kernel will not interrupt the execution of a user application

2

Crossbar Network

SP SP

TU TU

FP

SR
AM

B

an
k

SP SP

TU TU

FP

SP SP

TU TU

FP···

SR
AM

B

an
k

SR
AM

B

an
k

SR
AM

B

an
k

SR
AM

B

an
k

SR
AM

B

an
k

···

Processor 1 Processor 2 Processor 80

Host
Interface

A-Switch

DDR2 SDRAM
Controller

Chip
Node

Off-Chip
Memory

FPGA

Control
Network

Gigabit
Ethernet

HD

3D Mesh

(a) C64 Chip Architecture

Latency
Overall Bandwidth

Load: 2 cycles; Store: 1 cycle

640GB/s

Load: 57 cycles; Store: 28 cycles
16GB/s (Multiple load and Multiple store

instructions); 2GB/s

Load: 31 cycles; Store: 15 cycles

320GB/s

64
Registers

SP
16kB

GM
~2.5MB

Off-Chip
DRAM

1GB

Read: 1 cycle
Write: 1 cycle

1.92 TB/s

(b) Memory Hierarchy of C64

Figure 1: C64 Architecture details

unless an exception occurs. The latter means the three-level memory hierarchy of the C64 chip is
visible to the programmer. In addition, the C64 instruction set architecture incorporates efficient
support for thread level execution, hardware barriers and atomic in-memory operations.

Because C64 is a general purpose many-core architecture it has not been designed for energy
efficiency and it does not have special features for saving power. For example, it is not possible
to turn off cores not used or to slow down the clock rate of a set of cores or for the whole chip.

Despite the fact that the C64 Instruction Set Architecture (ISA) does not include any addi-
tional instructions that help reduce energy consumption we can group the instructions according
to the hardware units they use and the complexity of the operation (reflected indirectly on the
execution time if there is not contention). Furthermore, we can use these groups to build our
energy consumption model. According with that, the taxonomy proposed for the ISA is:

• Logical Operations: And, or, etc.

• Integer Arithmetic Operations:

– Simple: Add, sub.

– Medium: Multiply.

• Floating Point Operations:

– Simple: Add, sub.

– Medium: Multiply, multiply and add.

• Memory Operations:

– On Registers: Move, load immediate.

– On SPM: load, store.

3

– On SRAM: load, store.

– On DRAM: load, store.

Some instructions not mentioned here. For example, branches can be included in the logical
operations category, given the hardware resources and amount of work they require.

2.2 Energy Consumption model for Cyclops-64

Our energy consumption model has two main components. The first one is called static energy
Es, it comes from the leakage currents and other units that work continuously such as the clock.
This component is a function of time t.

The second one is called dynamic energy Ed, it is the energy consumed by each functional
unit in the execution of some instruction without the leakage component. It is related with the
power consumption of transistors on registers and logic during switching, also called dynamic
power.

Based on that, given a program Λ with K instructions Ij , the energy consumed can be
expressed by:

ET (Λ) = Es(t) +
K∑
j=1

Ed (Ij) (1)

Clearly, the model can be detailed even more because the power dissipated by leakage current
is constant (given the absence of mechanism for reducing voltage or turning off functional units
in C64) and also other units are always working at the same frequency (given the absence for
changing this parameter). In other words Es is linear with time.

In a similar way, instructions that use the same resources doing a similar amount of work,
like the hierarchy explained on section 2.1, consume the same amount of energy. This linearity
helps us to express our energy consumption model by:

ET (Λ) = e0 · t +

M∑
i=1

ei ·N (Ci) (2)

Where e0 is the static power dissipated, and ei for i = 1, . . . ,M is the energy consumed by
one instruction of class Ci. The function N(·) counts the number of instructions in the program
Λ that belong to a given class. This class can have only one instruction (e.g. when the kind of
processing and the functional units that it uses are unique like integer multiplication) or multiple
instructions (e.g. when they are similar in terms of amount of work and use the same resources
like all the logical operations)

This model also considers the case of shared resources and overlapping, extremely important
on many-core. First, each instruction represents the use of some resources for some task and

4

it would take similar time. In a scenario of contention (e.g. the crossbar network for accessing
memory), the amount of work made by the functional units will be the same but the time will
increase. This will be reflected on the increase in the term that correspond to static energy. In a
similar way, in the same processor multiple units can work in parallel (e.g. Floating Point Unit
and Integer Unit) taking less time to complete the tasks compared with the sequential execution,
as a result the term for static energy will decrease but the dynamic energy will remain similar.
Even more important, for a chip with more than a hundred of processors, the dynamic energy
terms reflect the energy per instruction regardless of whether it was executed in parallel with
others or serially.

In Addition, it is natural to think than some instructions (or group of them) consumes more
energy than others, some cases are:

• An operation that requires more computations than another of the same type. (e.g. integer
multiplication vs. integer addition).

• An operation that uses a more complex hardware than another one. (e.g. floating point
addition vs integer addition, on-chip memory operations vs integer operations).

• An operation that uses off-chip resources compared with one that only uses on-chip re-
sources (e.g. load from DRAM vs load from SRAM).

3 Tiling Techniques for Energy Efficient Applications

In this section we will analyze the problem of designing tiling techniques for energy efficiency.
Although instruction scheduling techniques are able to hide latency of operations, this kind of
techniques are not useful here because dynamic energy Ed can not be hidden. We propose to
find a feasible tiling that minimizes the total energy cost by minimizing the energy contribution
of the most energy hungry instructions.

The optimization problem proposed is based on two facts: (1) Memory operations on off-
chip memory are the most expensive in terms of energy, followed by on-chip memory operations.
(2) There is not a dependency between different latencies for the same operation (e.g. contention
of memory operations) and the dynamic energy it consumes. These two facts will be proved on
section 4.1.

Our objective is to find the tiling T described by its parameters L and the sequence of
traversing tiles S that minimize the consumed Dynamic Energy Ed on Γ processors by the
subset of most energy hungry instructions IE subject to the data stored DH at each level H
of the memory hierarchy cannot exceed the maximum memory size available MemH max and
the tiling allows parallel computation without communication between tiles. According to our
model described on eq. (2), this Dynamic Energy Ed for a problem Λ is function of the number
of instructions N(Λ, Ij) with Ij ∈ IE and its energy coefficients ej . This can be expressed as the
optimization problem:

5

min
T (L,S)

Ed (IE) =
∑
Ij∈IE

(ej ·N (Ij))

s.t. DH (Λ,Γ, T) ≤ MemH max

T is parallel

(3)

Given the fact that memory operations are the most energy hungry instructions on most
architectures and particularly on the C64 many-core architecture. The particular optimization
problem using the Load LD and Store ST instructions for off-chip memory (DRAM) and on-chip
memory (SRAM) is:

min
T (L,S)

e1N(LDdram) + e2N(STdram) + e3N(LDsram) + e4N(STsram)

s.t. DH (Λ,Γ, T) ≤ MemH max

T is parallel

(4)

Where N(LD) and N(ST) are also function of Λ, Γ, T .

The optimization problem described by 3 and 4 cannot be easily solved. Even more, there
is not guarantee of analytical solution. The following subsections will show two approaches for
solving these kind of optimization problems for two kind of applications: Matrix Multiplication
(MM) and Finite Difference Time Domain (FDTD).

3.1 Matrix Multiplication

Despite Matrix Multiplication (MM) algorithms have been studied extensively, the many-core
architecture design space has not yet been explored in detail. MM is extremely important on
scientific applications that use linear algebra. Our target operation is the multiplication of dense
square matrices A × B = C, each of size m ×m using algorithms of running time O(m3). We
will focus on matrices that fit in on-chip memory SRAM and the memory operations will be load
and store from SRAM to registers. For this case, the optimization problem on 4 becomes:

min
T (L,S)

e3N(LDsram) + e4N(STsram)

s.t. R (Λ,Γ, T) ≤ Rmax

T is parallel

(5)

An optimal partition for a load-balanced distribution between processors P assumes blocks
C ′ ∈ C of size n×n

(
n = m√

Γ

)
. Each block is subdivided in tiles C ′

i,j ∈ C ′ of size L2×L2. Based
on the data dependencies, the required blocks A′ ∈ A and B′ ∈ B of sizes n×m and m× n are

6

subdivided in tiles A′
i,j ∈ A′ and B′

i,j ∈ B′ of sizes L2 × L1 and L1 × L2 respectively. Each tile

can be calculate using C ′
i,j =

∑m/L2

k=1 A′
i,k ·B′

k,j .

The number of loads and stores can be calculated analytically for each one of the 6 alternatives
for traversing tiles that can be summarize on two sequences S1, S2. The specific optimization
problem now becomes:

min
L∈{L1,L2},
S∈{S1,S2}

f (m,Γ, L, S) =

2e3
L2

m3 + e4m
2 if S = S1(

e3+e4
L1

+ e3
L2

)
m3 + e3

(√
Γ− 1

)
m2 if S = S2

s.t. 2L1L2 + L2
2 ≤ Rmax, L1, L2 ∈ Z+

(6)

Analyzing the piecewise function f , it can be easily shown that S1 sequence has an smaller
objective function than S2 under the conditions e4

e3
≤
√

Γ − 1 and L2
L1
≥ e3

e3+e4
. The first one is

easily satisfied if Γ is big enough, the second one can be satisfied when L2 ≥ L1 and it can be
verified with the solution.

We will solve the integer optimization problem using the branch and bound technique. Since
f only depends on L2, we minimize the function f by maximizing L2. Given the constraint, L2

is maximized by minimizing L1. Thus L1 = 1, we solve the optimum L2 in the boundary of the
constraint and round off it. The solution of Eq. (6) is:

L1 = 1, L2 =
⌊√

1 + Rmax − 1
⌋

(7)

The solution satisfies the constraints and also proves the hypothesis L2 ≥ L1, finishing the
branch and bound process. This result is not completely accurate, since we assumed that there
are not remainders when we divide the matrices into blocks and subdivide the blocks in tiles.
Despite this fact, they can be used as a good estimate.

For comparison purposes, C64 has 63 registers and we need to keep one register for the stack
pointer, pointers to A,B,C matrices, m and stride parameters, then Rmax = 63 − 6 = 57 and
the solution of Eq. (7) is L1 = 1 and L2 = 6. Table 1 summarizes the results in terms of
dynamic energy consumed by LDs and ST s for the tiling proposed and other 2 options that
fully utilizes the registers and have been used in practical algorithms: inner product of vectors
(L1 = 28 and L2 = 1) and square tiles (L1 = L2 = 4). As a consequence of using sequence
S1, the dynamic energy of ST s is equal in all tiling strategies. As expected, the tiling proposed
consumes minimum energy: approximately 6 times less than the inner product tiling and 1.5
times less than the square tiling.

3.2 Finite Difference Time Domain

The Finite Difference Time Domain (FDTD) [11] technique is a common algorithm to simulate
the propagation of electromagnetic waves through direct solution of Maxwell’s Equations. FDTD

7

Table 1: Ed consumed by memory operations for MM

Memory Operations Inner Product Square Optimal

Loads 2e3m
3 e3

2
m3 e3

3
m3

Stores e4m
2 e4m

2 e4m
2

(a) DDG for FDTD 1D (b) Diamond Tiling

Figure 2: FDTD 1D Tiling for minimizing energy consumption

was chosen to illustrate the techniques presented here since it is easy to understand, it is widely
used, and it can be easily written for multiple dimensions. Specifically, we will study FDTD in
one dimension i of size m and q time steps. The data is read directly from off-chip memory with
tiles on on-chip memory. For this case, the optimization problem on eq. 4 becomes:

min
T (L,S)

e1N(LDdram) + e2N(STdram)

s.t. Memsram (Λ,Γ, T) ≤ Memmax

T is parallel

(8)

The solution of this problem is based on the analysis of its Data Dependency Graph (DDG)
that can be detailed on Figure 2a. Our solution is inspired by [12] where they find the tiling
that maximize the data reuse. Because the number of useful computations can not be decreased
by the tiling. For a FDTD problem of size fixed size, maximize the data reused is equivalent
to minimize the number of memory operations N(LDdram) + N(STdram). In addition, given
the regularity of the DDG, a tiling that saves energy will not load extra data for doing extra
computations. It means that the number of loads and stores will be the same. In that order the
ideas, the diamond tiling showed on Figure 2b solves the optimization problem given by eq. 8

Table 2 summarizes the results in terms of dynamic energy consumed by LDs and ST s for

8

the tiling proposed and other 3 well-known techniques [13]. The unit for the tile size L is the
node E[i], H[i]. Clearly, Diamond tiling for FDTD has the smallest coefficients.

Table 2: Ed consumed by memory operations for FDTD

Memory Operations Naive Split Overlapped Diamond

Loads e1qm
9e1
2L

qm 9e1
L

qm 2e1
L

qm

Stores e2qm
9e2
2L

qm 3e2
L

qm 2e2
L

qm

4 Experimental Evaluation

This section describes the experimental evaluation of the proposed energy consumption model
given in section 2.2 and the tiling techniques for energy efficiency analyzed in section 3.

4.1 Evaluation of the Energy Consumption Model

The energy coefficients ei where obtained using measurements of current and voltage from the
power supplies in a real chip. The instantaneous power P [t] at time t can be calculated using
P [t] = v1[t] · i1[t] + v2[t] · i2[t], the average power P̄ is estimated by the mean of several samples
of P [t] and the total energy consumed is ET = P̄ · t.

A test bed for the ISA of C64 was created for the estimation of the energy coefficients ei
of (2). The test bed include multiple programs, each one with a known number of instructions
for a subset of the ISA. The estimation of e0 = 63.11W was straight forward calculated only
measuring the consumption of the system on standby. Notice that while e0 is estimated in Watts,
ei for i > 0 is estimated in Joules/Instruction.

The dynamic energy Ed for a program Λ running in parallel on Γ processors with a fixed
number of instructions of class Ij per processor can be estimated by eq. 9

Ed(Λ, Ij ,Γ) =
(
P̄ − e0

)
· t (9)

The results for a representative subset of the ISA are shown on Figure 3. As shown on Figure
3a, load and store on DRAM (ldddram, stddram) are the most energy hungry, followed by load
and store on SRAM (lddsram, stdsram), the difference of energy consumption between DRAM
and SRAM operations is almost 2 orders of magnitude. Figure 3b proves the linearity of energy
consumption with Γ. It details that after memory operations, floating point operations (fmaddd,
fmuld and fmad) and difficult integer operations (mull) consumes similar energy. Integer, log-
ical and register movement operations (add, and, mov, li) are on the bottom of the list. The
instruction that consumes less is no-op as expected.

The remainder energy coefficients e can be extrapolated using a linear regression from the Ed

estimated for each instruction. We used a model with intercept at origin given the assumption

9

2.0E+0

2.0E+1

2.0E+2

2.0E+3

2.0E+4

2.0E+5

2.0E+6

0 20 40 60 80 100 120 140 160

Energy (uJ)

Processors

ldddram stddram lddsram
stdsram faddd fmuld
fmad mull add
and mov li
no-op

(a) Overall comparison of selected ISA

0.0E+0

5.0E+3

1.0E+4

1.5E+4

2.0E+4

2.5E+4

0 20 40 60 80 100 120 140 160

Energy (uJ)

Processors

lddsram stdsram

faddd fmuld

fmad mull

add and

mov li

no-op

(b) Comparison for On-chip Mem. Op., FPU Op.
and Integer/Logical Op.

Figure 3: Ed vs. Γ with 150M Operations per Processor

that no dynamic energy is consumed on standby. The resultant coefficients e for a subset of
the ISA is shown on Table 3. The table also includes the coefficients of determination R2 for
measuring the variability between the data and the model proposed. As expected, a linear
approximation with the number of processors models accurately Ed, its coefficients R2 are really
close to 1, it corroborates that there is not dependency between the latency of the operation and
the dynamic energy consumed. Some additional aspects to highlight are: (1) Instead DRAM
operations consume similar energy, a load from SRAM consumes almost twice the energy of an
store to SRAM. (2) Despite the floating point fused-multiply-add (fmad) consumes a little bit
more energy than a simple floating point multiply (fmuld) or floating point add (faddd), notice
that one fmad executes a multiply and an addition. At the end, an fmad saves around 63% of
energy compare with separates fmuld and faddd. (3) Integer and floating point multiplication
cost similar, the same is true for logical and simple integer operations. The last two observations
confirms the high correlation between the energy consumption of an instruction and the related
hardware and functional units the instruction requires.

4.2 Evaluation of the Energy Efficient Tiling

We will use the two applications explained before (MM and FDTD) for showing the advantages
of the tilings that solve the optimization problems of section 3. First, we will compare the
estimated energy consumption using the coefficients of section 4.1 with the measured energy
based on voltage and current on the real chip. Second, we will compare energy consumption of
the tiling proposed with other well known tiling techniques.

For MM we use a matrix size that fits on SRAM, we compare our approach (OptT) with the
register tiling based on dot product (DPT). Both methods uses assembly for taking advantage
of the complete register file. For FDTD, the tile size is the maximum possible that fits on

10

Table 3: Energy Coefficients e and R2

Instruction e[pJ/Operation] R2

ldddram 48924.10 0.999
stddram 51488.99 0.998
lddsram 964.65 0.997
stdsram 548.31 0.999
fmad 245.27 0.997
faddd 178.30 0.995
fmuld 210.15 0.996
mull 225.43 0.998
add 127.65 0.998
and 126.69 0.998
mov 105.48 0.996
li 86.01 0.997

no-op 39.66 0.936

SPM, we compare our diamond tiling (DmT) with 3 well-known techniques: A rectangular tiling
(naive) (NT), the overlapped tiling (OT) that uses redundant computations in order to tile time
and space dimensions and split tiling (ST) that uses multiple shapes for fully partitioning the
iteration space [13].

Figure 4a compares the energy consumption measured with the energy predicted by our
model for the MM application. We can see how the predictions are highly close to the measured
value for the dynamic and static components. The average error of our model for Ed and ET is
26.6% and 0.82% respectively. We also noticed how the tiling proposed decreases substantially
the dynamic and total energy consumption in 56.52% and 61.21% on average. An interesting
result that can be extrapolated from the measurements of performance and power is that the
power efficiency [MFLOPS/W] increases between 2.62 and 4.13 times for this test example. For
the FDTD application, figure 4b shows the effectiveness of diamond tiling for decreasing the
total and dynamic energy with respects to the other tiling techniques. The total average energy
reduction was 81.26%, 57.27% and 15.69% compared with split tiling, overlapped tiling and naive
tiling respectively. Also our energy consumption model is accurate to the real behavior of the
application, the average error is 7.3% for ET .

5 Related Work

Energy consumption on traditional architectures has been extensively studied [14]. Most of the
research has focused on systems with caches [15]. Accurate but highly complex models and tech-
niques for reducing energy consumption has been proposed for uniprocessor architectures. They
uses precise information about the hardware and are based on elaborated instruction schedul-
ing [14,16]. As a consequence the extrapolation to many-core architectures is highly difficult and
not scalable with the number of hardware threads. Energy efficiency on multiprocessors has been
focused on the hardware design, including hardware features like power saving off-chip memory

11

1E+1

1E+2

1E+3

1E+4

1E+5

0 20 40 60 80 100 120 140

Energy (mJ)

Processors

EsP-DPT EdP-DPT EtP-DPT

EsP-OptT EdP-OptT EtP-OptT

EsM-DPT EdM-DPT EtM-DPT

EsM-OptT EdM-OptT EtM-OptT

(a) MM with m = 300

1E+3

1E+4

1E+5

1E+6

1E+7

0 10 20 30 40

Energy (mJ)

Processors

EtP-NT EtM-NT EdM-NT

EtP-OT EtM-OT EdM-OT

EtP-ST EtM-ST EdM-ST

EtP-DmT EtM-DmT EdM-DmT

(b) FDTD with m = 100k and q = 500

Figure 4: Energy consumption (Static Es, Dynamic Ed and Total Et) vs Predicted model P and
Measured M using different tilings for MM and FDTD

or dynamic voltage selection [17].

Methodologies and techniques for increasing performance on many-core architectures with
software-managed memory hierarchy have been a promising topic of research [5–8]. Some of
them have shown empirical evidence about increasing the power efficiency [5, 9].

6 Conclusions and Future Work

In this paper, we develop an energy consumption model for many-core architectures with software-
managed memory hierarchy. We validate the accuracy of this model with the C64 many-core
architecture and we show the model depends of the number and type of instructions executed
and the total execution time of the application. An advantage is that this model is scalable
with the number of hardware thread units and consider stalls produced by data dependencies or
arbitration of shared resources.

We also propose a general methodology for designing tiling techniques for energy efficient
applications. The methodology proposed is based on an optimization problem that produces
optimal tiling and sequence of traversing tiles minimizing the energy consumed and parametrized
by the sizes of each level in the memory hierarchy. We also show two different techniques for
solving the optimization problem for two different applications: Matrix Multiplication (MM) and
Finite Difference Time Domain (FDTD). Our experimental evaluation shows that the techniques
proposed reduce the total energy consumption effectively, decreasing the static and dynamic
component. The average energy saving for MM is 61.21%, this energy saving is 81.26% for
FDTD compared with the naive tiling.

Future work includes to extend the model and methodology proposed to other algorithms
(e.g. Linpack) and study the impact of dynamic scheduling techniques in the energy consumption.

12

We also are interested on the relation between optimum tiling for increasing performance and
optimum tiling for energy efficiency.

13

References

[1] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon,
W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards, A. Scarpelli,
S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing
study: Technology challenges in achieving exascale systems,” 2008. [Online]. Available:
www.cse.nd.edu/Reports/2008TR-2008-13.pdf

[2] J. Torrellas, “Architectures for extreme-scale computing,” Computer, vol. 42, no. 11, pp. 28
–35, nov. 2009.

[3] D. Callahan and A. Porterfield, “Data cache performance of supercomputer applications,”
in Supercomputing ’90: Proceedings of the 1990 ACM/IEEE conference on Supercomputing.
Los Alamitos, CA, USA: IEEE Computer Society Press, 1990, pp. 564–572.

[4] M. Kondo, H. Okawara, H. Nakamura, T. Boku, and S. Sakai, “Scima: a novel proces-
sor architecture for high performance computing,” in High Performance Computing in the
Asia-Pacific Region, 2000. Proceedings. The Fourth International Conference/Exhibition on,
vol. 1, 2000, pp. 355–360 vol.1.

[5] E. Garcia, I. E. Venetis, R. Khan, and G. Gao, “Optimized Dense Matrix Multiplication
on a Many-Core Architecture,” in Proceedings of the Sixteenth International Conference on
Parallel Computing (Euro-Par 2010), Part II, ser. Lecture Notes in Computer Science, vol.
6272. Ischia, Italy: Springer, 2010, pp. 316–327.

[6] L. Chen, Z. Hu, J. Lin, and G. R. Gao, “Optimizing the Fast Fourier Transform on a
Multi-core Architecture,” in IEEE 2007 International Parallel and Distributed Processing
Symposium (IPDPS ’07), Mar. 2007, pp. 1–8.

[7] Z. Hu, J. del Cuvillo, W. Zhu, and G. R. Gao, “Optimization of Dense Matrix Multiplication
on IBM Cyclops-64: Challenges and Experiences,” in 12th International European Confer-
ence on Parallel Processing (Euro-Par 2006), Dresden, Germany, Aug. 2006, pp. 134–144.

[8] I. E. Venetis and G. R. Gao, “Mapping the LU Decomposition on a Many-Core Architec-
ture: Challenges and Solutions,” in Proceedings of the 6th ACM Conference on Computing
Frontiers (CF ’09), Ischia, Italy, May 2009, pp. 71–80.

[9] E. Garcia, R. Khan, K. Livingston, I. E. Venetis, and G. Gao, “Dynamic percolation -
mapping dense matrix multiplication on a many-core architecture,” CAPSL Technical Memo
98, June 2010. [Online]. Available: ftp://ftp.capsl.udel.edu/pub/doc/memos/memo098.pdf

[10] M. Denneau and H. S. Warren Jr., “64-bit Cyclops: Principles of Operation,” IBM Watson
Research Center, Yorktown Heights, NY, Tech. Rep., April 2005.

[11] K. Yee, “Numerical solution of inital boundary value problems involving maxwell’s equations
in isotropic media,” Antennas and Propagation, IEEE Transactions on, vol. 14, no. 3, pp.
302–307, May 1966.

14

www.cse.nd.edu/Reports/2008TR-2008-13.pdf
ftp://ftp.capsl.udel.edu/pub/doc/memos/memo098.pdf

[12] D. Orozco, E. Garcia, and G. Gao, “Locality optimization of stencil applications using data
dependency graphs,” 2010.

[13] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam, A. Rountev, and P. Sa-
dayappan, “Effective automatic parallelization of stencil computations,” SIGPLAN Not.,
vol. 42, no. 6, pp. 235–244, 2007.

[14] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced cpu energy,” oct. 1995,
pp. 374 –382.

[15] H. Hanson, M. Hrishikesh, V. Agarwal, S. Keckler, and D. Burger, “Static energy reduction
techniques for microprocessor caches,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 11, no. 3, pp. 303 – 313, jun. 2003.

[16] S. Lee, A. Ermedahl, and S. L. Min, “An accurate instruction-level energy consumption
model for embedded risc processors,” in LCTES ’01: Proceedings of the ACM SIGPLAN
workshop on Languages, compilers and tools for embedded systems. New York, NY, USA:
ACM, 2001, pp. 1–10.

[17] A. Andrei, P. Eles, Z. Peng, M. Schmitz, and B. Hashimi, “Energy optimization of multipro-
cessor systems on chip by voltage selection,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 15, no. 3, pp. 262 –275, mar. 2007.

15

	Introduction
	Energy Consumption Model on a Many-Core Architecture
	The IBM Cyclops-64 Architecture
	Energy Consumption model for Cyclops-64

	Tiling Techniques for Energy Efficient Applications
	Matrix Multiplication
	Finite Difference Time Domain

	Experimental Evaluation
	Evaluation of the Energy Consumption Model
	Evaluation of the Energy Efficient Tiling

	Related Work
	Conclusions and Future Work

