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Power consumption and energy efficiency have become a major bottleneck in the design of
new systems for high performance computing. The path to exa-scale computing requires new
strategies that decrease the energy consumption of modern many-core architectures without
sacrificing scalability or performance. The development of these strategies demands the use
of scalable models for energy consumption and the reorientation of optimization techniques to
focus on energy efficiency, evaluating their trade-offs with respect to performance.

In this paper, we investigate several optimization techniques to reduce the energy consump-
tion on many-core architectures with a software-managed memory hierarchy. We study the
impact of these techniques on the Static Energy and the Dynamic Energy of the LU factor-
ization benchmark using a scalable energy consumption model. The main contributions of this
paper are: (1) The modeling and analysis of energy consumption and energy efficiency for LU
factorization; (2) the study and design of instruction-level and task-level optimizations for the
reduction of the Static and Dynamic Energy; (3) the design and implementation of an energy
aware tiling that decreases the Dynamic Energy of power hungry instructions in the LU factor-
ization benchmark; and (4) the experimental evaluation of the scalability and improvement in
terms of energy consumption and power efficiency of the proposed optimizations using the IBM
Cyclops-64 many-core architecture. We study the trade-offs between performance and power
efficiency for the proposed optimizations. Our results for the LU factorization benchmark, using
156 hardware thread units, show an improvement in power efficiency between 1.68X and 4.87X
for different matrix sizes. In addition, we point out examples of optimizations that scale in
performance but not necessarily in power efficiency.
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1 Introduction

The many-core revolution brought forward by recent advances in computer architecture has
made feasible the integration of hundreds of processing elements on a single chip. With these
new architectures, several challenges have arisen. Major efforts and progress have been made
in order to achieve high performance on these many-core chips. In particular, optimizations
have been developed to improve the number of Floating Point Operations per Second. However,
recent developments have shifted the focus to other constraints [1]. The design of the new
generation of exa-scale supercomputers is restricted by power requirements [2, 3]. As a result,
Energy efficiency and power consumption have become an imperative.

Energy efficiency is limited by many factors. From the point of view of semiconductor manu-
facturing processes, the integration of hundreds of independent processors on a single chip within
a given area results in an increase in temperature and leakage current. This, in turn, results
in more energy and transistors dedicated toward cooling and a deep rethinking of traditional
architectures. A feasible alternative is a many-core with a software-managed memory hierarchy
where the programmer controls data movement. This can free area previously used for cache
controllers and over-sized caches while providing more opportunities to improve performance
and energy efficiency at the cost of a higher complexity with respect to programmability.

An interesting case study is the IBM Cyclops-64 many-core architecture [4] with 160 Thread
Units able to run independent pieces of code and a software managed memory hierarchy. Exten-
sive studies on performance for the Cyclops-64 have been performed in the past [5–7], energy
efficiency has only recently been studied with early efforts resulting in a scalable energy con-
sumption model for Cyclops-64 [8]. A deep understanding of this model can allow for the design
of specific optimizations to decrease energy consumption.

In this paper, we study and implement several techniques to target energy efficiency on
many-core architectures with software managed memory hierarchies. We study the impact of
these techniques on the Static Energy and the Dynamic Energy of LU factorization using a
scalable energy consumption model described by Garcia et. al. [8]. The main contributions of
this paper are: First, the modeling and analysis of energy consumption and energy efficiency for
LU factorization; second, the study and design of instruction-level and task-level optimizations
for the reduction of Static and Dynamic energy; third, the design and implementation of an
energy aware tiling for the LU factorization benchmark; and fourth, the experimental evalu-
ation of the scalability and improvement in energy consumption and energy efficiency of the
proposed optimizations using the IBM Cyclops-64 many-core. The proposed optimizations for
energy efficiency increase the power efficiency of the LU factorization benchmark by 1.68X to
4.87X, depending on the problem size, with respect to a highly optimized version designed for
performance.

The rest of this paper is organized as follows. In Section 2, we discuss the Cyclops-64
architecture, the energy consumption model used and the basics of a parallel LU factorization
algorithm. In Section 3, we study the impact of several optimizations in the Static and Dynamic
Energy. In Section 4, we present the experimental evaluation of the proposed optimizations.
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Figure 1: C64 Architecture details

Section 5 examines related work. Finally, we conclude and present future work in Section 6.

2 Background

2.1 A many-core Architecture: The IBM Cyclops-64

The IBM Cyclops-64 (C64) is a homogeneous many-core architecture designed by IBM for High
Performance Computing. A C64 chip consists of 160 single-issue Thread Units (TUs) running
at 500 MHz (see Figure 1a). A pair of TUs share a single 64-bit Floating-Point Unit (FPU).
An FPU can execute a floating-point Multiply and Add instruction in one cycle, for a total
performance of 80 GFLOPS. C64 features a three-level software-managed memory hierarchy
(completely visible to the programmer) instead of a hardware and automatic data cache. This
hierarchy consists of an On-Chip Scratch-Pad Memory Level (SP), an On-Chip Global SRAM
Memory Level (GM), and an External DRAM Memory Level. Each TU has a 32KB memory
bank, with half of that assigned, by default, as its SP. The SP can be accessed with low latency
by the TU that owns it. The remaining halves of all 160 TUs banks form the GM with an
approximate size of 2.5MB that is available to all the TUs. The External DRAM Memory has
a size of 1GB divided into 4 memory banks and connected to the C64 chip through a crossbar
network. Figure 1b presents the sizes, latencies, and bandwidth of each level of the Memory
Hierarchy.

A C64 processing node needs a 1.2V regulated power supply for the C64 chip and a 1.8V
regulated power supply for the external DRAM and other glue logic.

2.2 Energy Consumption model

The model proposed by Garcia et al. is a conceptually simple model that allows scalability with
high accuracy for the estimation of energy consumption [8]. This is accomplished by dividing
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Table 1: Energy Coefficients e

Instruction e[pJ/Operation] Instruction e[pJ/Operation]
load dram 48924.10 store dram 51488.99
load sram 964.65 store sram 548.31

double mult. and add 245.27 double add 178.30
double mult. 210.15 integer mult. 225.43
integer add 127.65 and 126.69

move 105.48 load inmediate 86.01

energy consumption into two components: Static Energy and Dynamic Energy. The total energy
consumed by a program, Λ, with K different types of instructions, I, can be expressed as:

ET (Λ) = Es(t) +

K∑
j=1

Ed (Ij) (1)

Static Energy, Es, is the sum total of energy lost due to leakage currents in addition to the
energy consumed by hardware units that operate continuously and consume energy even when
the system as a whole is idle (e.g. the clock). Es is proportional to the execution time t, and an
architecture dependent coefficient e0.

Dynamic Energy, Ed, is the energy consumed during the execution of an instruction, minus
the leakage component. This is related to the power consumption of all active transistors,
registers, and logic. Ed is a function of the number of executed instructions of each type Ij and
its energy coefficient associated ej .

This model has been successfully tested on the Cyclops-64 chip. For this particular archi-
tecture, the static coefficient is e0 = 63.11W and a representative subset of Dynamic Energy
coefficients can be found in Table 1. A more detailed explanation of the model can be found in
Garcia et al. publication [8].

2.3 LU Factorization

The LU factorization is a matrix factorization which represents the product of two matrices; a
lower triangular matrix, L, and an upper triangular matrix, U. This algorithm is often used in
linear systems in order to solve linear equations. Assuming A to be a square matrix, it can be
represented as A = L × U . This type of LU factorization is called without pivoting and is the
one presented in this document. An LU factorization with pivoting performs a permutation of
the rows or columns of the matrix A using one of several strategies such as Partial Pivoting,
Partial Scaled Pivoting, Total Pivoting, or Total Scaled Pivoting. A comprehensive study of
different pivoting strategies for LU factorization can be found in [9].

Because the LU factorization is a well studied algorithm, there are many variations such as
the Linpack benchmark [10], High Performance Linpack (a parallel version of Linpack) [11], and
the SPLASH-2 suite [12].
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Figure 2: Progress in each step of LU Factorization

The classical approach for parallel LU factorization in cache-based systems uses fixed-size
blocks that fit into cache to distribute the workload among threads. As shown in Figure 2, in the
first step of the algorithm the matrix A is divided into one Diagonal block and several Column,
Row, and Inner blocks. Each block is assigned to one processing element, which further divides
the block into tiles in order to improve data reuse and locality. At this point, the Diagonal block
is computed individually by one processing element, followed by a concurrent computation of
the Column and Row blocks. Once all the Column and Row blocks have been computed, the
Inner blocks are processed. In the second step of the algorithm, the Inner blocks of the previous
step are grouped again into one Diagonal block and several Column, Row, and Inner blocks,
which are computed following the rules previously mentioned. This is repeated until there is
only one Inner block, which is processed as a Diagonal block in the last step. The progression
of steps following this classical approach is illustrated at the top of Figure 2. As can be seen, the
number of blocks (i.e. the number of tasks assigned to the processing elements) decreases as the
algorithm moves forward. This is translated into an increasing number of processing elements
becoming idle, which lowers the performance of the application.

The Dynamic Repartitioning technique proposed by Venetis and Gao [13] uses varying-
size blocks in each step of the algorithm in order to optimize the distribution of work among
processing elements. As shown at the bottom of Figure 2, the size of the blocks is calculated at
the beginning of each iteration of the LU factorization. This size is calculated as a function of
the number of processing elements, so each processing element has at least one assigned task (i.e.
one block to process). This optimization has been proved to increase the overall performance
up to 2.8X in systems with a software managed memory hierarchy [13].

3 Energy Optimizations

In this section we will study the impact of several optimizations on the energy consumption of
the LU factorization algorithm targeting systems with software managed memory hierarchy such
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as C64. The impact of these optimizations can affect the two sources of energy consumption
described in Section 2.2: Static Energy Es and Dynamic Energy Ed. Our baseline implementa-
tion is the LU factorization without pivoting by Venetis and Gao [13]. They used the Dynamic
Repartitioning technique described in Section 2.3 and implemented a carefully designed register
tiling. All their optimizations were targeting high performance.

While the increase in performance obtained by Venetis and Gao is reflected in savings of
Static Energy, this high performance LU implementation has some drawbacks from the Energy
consumption point of view: First, its register tiling focuses on increasing locality and it is not
aware of the energy consumption of each instruction. Second, the static distribution of work does
not consider the variance in completion time of processing similar tasks in presence of shared
resources such as memory, crossbar interconnections, and FPUs. And finally, the hierarchical
division into blocks and further into tiles, produces an increasing amount of smaller tiles in the
borders of each block, which can hurt not just the performance but also the energy consumption.

3.1 Energy Aware Tiling design

To reduce the Dynamic Energy consumption of the LU factorization, we will focus on the in-
structions that contribute the most to it. Using the Energy consumption model described in
Section 2.2, we characterized the Dynamic Energy of the LU Factorization implementation opti-
mized for performance by Venetis and Gao [13] using the traces generated during the simulation
of the application on a C64 architecture and a matrix of 840×840 allocated in on-chip memory.

Figure 3 shows how the Dynamic Energy of the LU factorization increases with the number
of processors. As can be seen, Loads and Stores on the on-chip memory (SRAM) are the
instructions with the largest contribution to the Dynamic Energy; this contribution also increases

10



with the number of processors. On the other hand, the Energy of Floating point operations
remains constant and the contribution of integer, logical, and other memory operations is not
significant.

In order to minimize the Dynamic Energy Ed for a particular algorithm Λ, we propose to
minimize the energy contribution of the most power hungry operations, in this case Loads LD
and Stores ST with energy coefficients e1 and e2. The minimization is done on a set of possible
tilings T with parameters S and L (e.g. shape and tile size). The optimization problem is shown
in Eq.(2).

min
T (L,S)

Ed (Λ, T ) ≈ e1 |LD|+ e2 |ST|

subject to R (Λ, T ) ≤ Rmax, T is parallel
(2)

There are two constraints in the optimization problem: The registers used by the tiling
(R(Λ, T )) need to fit in the available registers Rmax and the tiling has to allow parallel execution.
The former avoids unnecessary energy consumption produced by register spilling and the later
prevents solutions with low performance due to increasing execution time produced by inability
to exploit task parallelism.

In order to solve this problem for LU factorization, we analyze the energy consumption of
each type of block (Diagonal, Row, Column and Inner) with sizes M0×M0, M0×M1, M2×M0

and M2 ×M1 respectively. Each block is assigned to a processor and further divided into tiles.
There are 3 cases of sequences to traverse the tiles (e.g. S0, S1 and S2) for each type of block.
A detailed explanation of the procedure to find the optimum tiling for the Inner block and a
summary of the results for the other type of blocks are presented in the next paragraphs.

Inner Blocks: For the computation of an Inner block, a Row block and a Column block
are required. Row, Column and Inner blocks are divided into tiles of L0 × L1, L2 × L0 and
L2 × L1 respectively. The three possible sequences of traversing tiles reuse tiles on a different
operand: The Row block (case S0), the Column block (case S1) and the Inner block (case S2).
The problem formulation for the Dynamic Energy is shown in Eq. 3.

min
L∈{L0,L1,L2},
S∈{S0,S1,S2}

f (L, S) =


e1M0M1

(
M2
L0

+ M2
L1

+ 1
)

+ e2M0M1M2
L0

if S = S0

e1M0M2

(
M1
L0

+ M1
L2

+ 1
)

+ e2M0M1M2
L0

if S = S1

e1M1M2

(
M0
L1

+ M0
L2

+ 1
)

+ e2M1M2 if S = S2

s.t. L0L1 + L0L2 + L1L2 ≤ Rmax, L0, L1, L2 ∈ Z+

(3)

The the non-linear optimization problem was solved using the Karush Kuhn Tucker condi-
tions. We assumed all the variables being positive and M0, M1 and M2 being bigger or equal
than L0, L1 and L2. In addition, we used the fact that M1 and M2 are equal to M0 or M0 + 1.
We found that the best solution was to reuse the Inner tile (case S2) with parameters L0 = 1,
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L1 = N and L2 = N , with N2 + 2N ≤ Rmax. In this case, an Inner block is computed by
dividing it into tiles of N ×N elements and loading each Inner tile into the registers, which act
as accumulators for the partial results. Each partial result is calculated from a pair composed of
one tile of N × 1 elements of the corresponding Column block and one tile of 1×N elements of
the corresponding Row block. The registers used as accumulators are stored back into memory
only when there are no more pairs of Column and Row tiles to process. An example of this
process is shown in Figure 4

Row Blocks: To compute a Row block, this is divided into tiles of N ×N elements (with
N being the same as for the Inner block). The process followed to compute each Row tile is
similar to the one used for an Inner tile. The main difference is that the computation of a Row
tile requires tiles of N × 1 elements of the corresponding Diagonal block and tiles of 1 × N

elements that have been previously processed in the current Row block. Each Row tile to be
processed is loaded into the registers, which are used as accumulators for the partial results of
the computation of each pair of Diagonal and Row tiles. These registers are stored back into
memory when there are no more pairs to process.

Column Blocks: To compute a Column block, this is also divided into tiles of N × N

elements. Each Column tile is computed using tiles of 1 × N elements of the corresponding
Diagonal block and tiles of N × 1 elements that have been previously processed in the current
Column block. In order to minimize the Dynamic Energy of loads and stores, each Column tile
to be processed is firstly loaded into registers. Then, these registers are used as accumulators
for the partial results computed for each pair of Diagonal and Column tiles. When there are
no more pairs to process, the content of the registers used as accumulators is stored back into
memory.

Diagonal Block: A Diagonal block can be seen as another matrix A′ that needs to be
LU-factorized. Consequently, the Diagonal block can be divided into tiles of N ×N elements,
labeled as Diagonal, Column, Row, and Inner tiles. They can be latter processed following the
same rules used in the computation of the matrix A and the same traversing of tiles previously
described for the Column, Row, and Inner blocks.
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3.2 Minimizing Static Energy using Pipelining

The design of specific tilings for energy consumption already targets Dynamic Energy. However,
the long latency of memory operations with respect to the latency of arithmetic operations can
produce stalls, where each processor is waiting for data required for computation. This scenario
becomes worse if hundreds of threads, starvation of shared resources and bandwidth limitations
are considered. This behavior can increase the Static Energy consumption due to increasing
latency produced by contention.

In order to successfully minimize the impact of Static Energy, further optimizations were
done to the implementation of the tilings described in Section 3.1. Each for loop was software-
pipelined and unrolled twice, using different registers for each unrolled iteration if possible and
sharing registers when necessary.

Following Figure 4, a for loop iteration computes a partial result for an Inner tile of N ×N

elements using a Row tile of 1 × N elements and a Column tile of N × 1 elements; the next
iteration uses a different Row tile and a different Column tile to compute the next cumulative
partial result of the same Inner tile. Consequently, a for loop that has been unrolled twice
requires at least N2 + 4N registers. Since additional registers are required in the loop iterations
for loop control and pointers (a pointer for the Row tiles and a pointer for the Column tiles;
no pointer is necessary inside the loop for the Inner tile since this tile is the same for all the
iterations), some registers were shared between iterations in order to decrease the requirement
in the number of registers.

To diminish the impact of this register-sharing, the instructions of the loop were later prop-
erly interleaved to ensure that memory-related instructions (i.e. loads and stores) were already
completed at the moment the registers involved in such operations were used in a arithmetic
instruction, decreasing the execution time to directly impact the static energy.

3.3 Dynamic Task Scheduling for Energy Reduction

At this point, the fine-grain tasks have been optimized in order to decrease energy consumption
while using the performance-oriented Static scheduling proposed by Venetis and Gao [13]. Even
though the Dynamic Repartition technique is meant to perform an optimized distribution of
work among processing elements, it does not take into account the undesirable delays produced
by the competition of access to shared resources (e.g. competition for memory bandwidth on
shared memory). This results in variations in the completion time between tasks of the same
size. As a consequence, the energy consumption per task will not be uniform. This variation
will be most significant with fine-grained tasks, such as the tiles described for LU factorization.
In the end, a static distribution of limited work, even for cases of very regular tasks, will result
in scenarios where the unbalanced distribution of work will have a negative impact on the Static
Energy consumption. In addition, division of blocks into tiles produces a set of smaller border
tiles per block that are suboptimal in terms of energy consumption.

In order to overcome these problems, a Dynamic Scheduling of tasks was used in the LU
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factorization, using the tile as a unit of work assigned to each processing element, instead of a
block. First, the matrix is divided into tiles of N ×N elements, which are processed following
the LU factorization algorithm, that is, first the Diagonal tile, then all the Column and Row
tiles, and finally all the Inner tiles. However, in this case, the assignment of tiles is not made
statically (as in Venetis and Gao [13]) but in a first-come first-served basis: A tile is assigned
to a processing element as soon as the processing element becomes available (i.e. as soon
as the processing element finishes the computation of the previous assigned tile) and the tile
dependencies are satisfied.

Dividing the matrix in tiles of N × N leads to a significant amount of tasks, which could
increase the overhead of the implementation and reduce the data reuse. Nevertheless, the Dy-
namic Scheduling of tasks has ultimately a positive impact in the Static Energy consumption of
the application since it ensures a better workload balance by keeping the number of idle proces-
sors low. This is ultimately translated in a reduction of the execution time of the application.
In addition to this, the overhead associated with Dynamic Scheduling is diminished thanks to
the support of in-memory atomic operations in the C64 [14]. Using an in-memory atomic
operation such as L_ADD, a Dynamic Scheduler can be easily implemented with a counter for
the number of tasks. Every time a processor is available, it asks for a new task and increments
the counter. Since this increment is performed atomically in memory, additional round trips are
avoided increasing the throughput of this counter.

To increase the data reuse with Dynamic Scheduling and to avoid that a Diagonal tile of
N ×N becomes a bottleneck for the whole algorithm (since no tile can be processed until that
tile is computed), the size of the Diagonal tile can be increased to bN × bN with b ∈ N and
b ≥ 2, while the sizes of other tiles remain as N × N . This reduces by b the number of steps
required to compute the LU factorization. The use of a tile as a unit of work for the Dynamic
Scheduling, instead of a block, decreases significantly the number of suboptimal border tiles,
decreasing the Dynamic Energy too.

4 Experimental Evaluation

This section describes the experimental evaluation of the proposed optimizations targeting en-
ergy consumption and power efficiency described in Section 3. We have used the IBM C64
platform described in Section 2.1 and the energy estimations using the model described in Sec-
tion 2.2. All benchmarks were written in C with hand-tuned assembly for the register tiling.
Benchmarks were compiled with ET International’s C64 C compiler with compilation flags -O3.
We ran all of our experiments using FAST [15], a highly accurate C64 simulator.

We implemented several versions of LU factorization using on-chip shared memory. The
power-aware tiling proposed in Section 3.1 uses N = 6 given the 64 registers per Thread Unit
(TU) available in Cyclops-64. Also, for the Dynamic Task Scheduling described in Section 3.3,
we used b = 2 so the Diagonal tile is 12×12. The Static Energy coefficient e0 was computed using
measurements on a real chip and the number of TUs used, having in mind that 4 additional TUs

14
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Figure 5: Scalability of Energy Consumption with the number of TUs

are reserved: 1 for executing the runtime system and other 3 for managing the communication
with other chips using a 3D mesh.

Our first set of experiments uses a matrix of 840×840, the maximum size that fit in on-chip
memory. We study the scalability of Dynamic Energy (Figure 5a) and Total Energy (Figure 5b)
using different number of TUs. As expected, our Energy Aware tiling decreases the Total
Energy with respect to the baseline version that uses Dynamic Repartitioning. This is also true
for the Dynamic Energy up to 128 TUs. The software pipelining do not significantly impact the
Dynamic Energy because the instructions executed are practically the same but this technique
decreases Total Energy because the total execution time and the Static Energy decreases. In
addition, we noticed that the Dynamic Energy consumption of our Dynamic Task Scheduling
does not vary with the number of TUs. The reason is that the size of the basic unit of work,
the tile, is function of architectural parameters such as the number of registers but it is not
function of the number of TUs like the blocks used in Dynamic Repartitioning. Our approach
using Dynamic Scheduling seems useful for decreasing dynamic energy and total energy when
the number of TUs surpasses 128. In addition, we noticed that total energy and dynamic
energy of the baseline implementation using 1 TU are particularly high, compared with higher
number of threads. The reason is that the Diagonal register tiling used in the Diagonal block
calculation is highly inefficient compared with the other tilings; a serial execution computes an
LU Factorization as a single Diagonal block and exposing this fact.

We also study the impact of the optimizations proposed in terms of Power Efficiency (the
ratio between performance and power consumption) in order to examine the trade offs between
performance and power consumption. Figure 6a shows the scalability of the Power Efficiency
with respect to the matrix size using the maximum number of TUs available, while Figure 6b
shows the scalability of the Power Efficiency with respect to the number of TUs for the biggest
matrix that fits on SRAM.

For different matrix sizes on Figure 6a, all the proposed optimizations increase the power
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Figure 6: Power Efficiency and Performance for LU factorization

efficiency. The increase in power efficiency for the LU factorization varies between 1.68X and
4.87X with respect to a highly optimized version that targets performance (Our baseline that
uses Dynamic Repartitioning). The major returns of the techniques proposed are reached with
small matrices. The optimization with the higher impact is the Dynamic Task Scheduling:
between 1.2X and 3.5X to the power efficiency.

A careful comparison of the behavior between Power efficiency (Figure 6b) and Performance
(Figure 6c) shows similarities when few threads are used. For the baseline implementation, as
well as for the Energy-aware tiling and the Software Pipelining optimizations, the power effi-
ciency drops after 128 TUs. This is related to the fact that even though the execution time and
Static Energy decreases for an increasing number of TUs in all three implementations, the Dy-
namic Energy increases because these optimizations schedule tasks based on blocks. In contrast,
the Power Efficiency of the Dynamic Task Scheduling optimization increases properly with the
number of TUs because this type of scheduling does not only scales in terms of performance and
Static Energy but also because it keeps the Dynamic Energy constant with the number of TUs.

For the C64 architecture there is a big correlation between the performance and the energy
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efficiency using few TUs given the high contribution of the static energy to the total energy
budget. However, this scenario changes when more TUs are used. While all the techniques
proposed improve the performance (as seen in Figure 6c), the power efficiency decreases after
64 TUs or 128 TUS for the Static scheduling techniques (as seen in Figure 6b). On the other
hand, the Dynamic Task scheduling scales in Performance and Power Efficiency.

5 Related Work

As previously mentioned, the modeling of and optimization for energy consumption is a well
researched topic. Many models focus on scheduling and are based on the overall amount of work
per unit time [16] or energy [17]. These approaches yield a simplified model that is comparatively
easy to use. However, the options and optimizations are limited by the coarse-grained approach.

In contrast, fine-grain approaches [18], like our own, exchange complexity for the potential
optimizations that can be applied. Previous works utilized highly accurate, but highly complex,
techniques to reduce energy consumption on uniprocessor architectures. These required precise
information about the underlying hardware and are based on a sturdy foundation of instruction
scheduling techniques [19]. This focus on the individual core worked well for uniprocessor
architectures but it is unclear how well it will scale for multi-cores. Additionally, these models do
not fit with the comparatively recent worldwide pursuit of energy efficiency on multiprocessors:
the development and analysis of hardware features such as energy efficient off-chip memory and
dynamic voltage selection [20].

6 Conclusions and Future Work

In this paper, we studied and implemented several optimizations to target energy efficiency
on many-core architectures with software managed memory hierarchies using LU factorization.
Our starting point was a highly optimized LU factorization designed for high performance [13].
We analyzed the impact of these optimizations on the Static Energy Es, Dynamic Energy Ed,
Total Energy ET and Power Efficiency. To facilitate this, we used a scalable energy consumption
model [8]. We designed and applied further optimizations strategies at the instruction-level and
task-level to directly target the reduction of Static and Dynamic Energy and indirectly increase
the Power Efficiency. We designed and implemented an energy aware tiling to decrease the
Dynamic Energy. The tiling proposed minimizes the energy contribution of the most power
hungry instructions. Our experimental evaluation of the scalability and improvement in energy
consumption and energy efficiency of the proposed optimizations was made using the FAST
simulator for the IBM Cyclops-64 many-core architecture. The proposed optimizations for
energy efficiency increase the power efficiency of the LU factorization benchmark by 1.68X to
4.87X, depending on the problem size, with respect to a highly optimized version designed for
performance. In addition, we point out examples of optimizations that scale in performance but
not necessarily in power efficiency.
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Future work includes the implementation and energy analysis of a DRAM-version of the
LU factorization algorithm, the extension of the model and methodology to other algorithms
(e.g. Linear Algebra and Graphs) and a study of the impact on the energy consumption and
power efficiency of the task size with dynamic scheduling techniques. We are also interested in
the relation between optimum tiling for increasing performance and optimum tiling for energy
efficiency. Additionally, a hybrid approach combining the advantages of static and dynamic
scheduling [21] will be investigated.
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