
ACDT: Architected Composite Data Types
Trading-in Unfettered Data Access for Improved Execution

Andres Marquez∗, Joseph Manzano∗, Shuaiwen Leon Song∗, Benoı̂t Meister†
Sunil Shrestha‡, Thomas St. John‡ and Guang Gao‡

∗Pacific Northwest National Laboratory
{andres.marquez,joseph.manzano,shuaiwen.song}@pnnl.gov

†Reservoir Labs
meister@reservoir.com
‡University of Delaware

{shrestha,stjohn,ggao}@capsl.udel.edu

Abstract—

With Exascale performance and its challenges in mind,
one ubiquitous concern among architects is energy efficiency.
Petascale systems projected to Exascale systems are unsustainable
at current power consumption rates. One major contributor
to system-wide power consumption is the number of memory
operations leading to data movement and management techniques
applied by the runtime system. To address this problem, we
present the concept of the Architected Composite Data Types
(ACDT) framework. The framework is made aware of data
composites, assigning them a specific layout, transformations
and operators. Data manipulation overhead is amortized over a
larger number of elements and program performance and power
efficiency can be significantly improved.

We developed the fundamentals of an ACDT framework
on a massively multithreaded adaptive runtime system geared
towards Exascale clusters. Showcasing the capability of ACDT,
we exercised the framework with two representative processing
kernels - Matrix Vector Multiply and the Cholesky Decomposition
– applied to sparse matrices. As transformation modules, we
applied optimized compress/decompress engines and configured
invariant operators for maximum energy/performance efficiency.
Additionally, we explored two different approaches based on
transformation opaqueness in relation to the application. Under
the first approach, the application is agnostic to compression and
decompression activity. Such approach entails minimal changes to
the original application code, but leaves out potential application-
specific optimizations. The second approach exposes the decom-
pression process to the application, hereby exposing optimization
opportunities that can only be exploited with application knowl-
edge. The experimental results show that the two approaches
have their strengths in HW and SW respectively, where the
SW approach can yield performance and power improvements
that are an order of magnitude better than ACDT-oblivious,
hand-optimized implementations. We consider the ACDT runtime
framework an important component of compute nodes that will
lead towards power efficient Exascale clusters.

I. INTRODUCTION

As we strive to bring to bear the Exascale era, we are still
confronted with the arduous task to tame the expected power
hunger of these machines. The challenge is to get into a regime
of ∼20MW [1] whereas current projections consider an order
of magnitude higher to be realistic. To get into the required
power regime, we expect that massively multithreaded systems
with billion way concurrency and HW/SW technologies will
reduce or avoid energy costs of data transfers as we move
data around. These techniques will complement data transfer

reduction approaches associated with improved data locality,
obtained through optimized data and computation distribution.
In the SW-stack we foresee the runtime system to have a
particular important role to contribute to the solution of the
power challenge. It is here where the massive concurrency is
managed and where judicious data layouts [11] and data move-
ments are orchestrated. With that in mind, we set to investigate
on how to improve efficiency of a massively multithreaded
adaptive runtime system in managing and moving data, and the
trade-offs an improved data management efficiency requires.
Specifically, in the context of run-time system (RTS), we
explore the power efficiency potential that data compression
has to offer under various degrees of opaqueness to the
application.

Previous studies [20] [10] [24] suggest that data movement
across the memory hierarchy and across nodes not only impact
the overall performance significantly but also contribute
greatly to overall power consumption. It stands to reason that
avoiding or reducing [9] data movement will be advantageous
for either power and/or performance efficiency. In order to
reduce data movement, this work explores opportunities to
occasionally decorate composites – i.e., vectors, structures
– with additional type attributes used solely by the RTS
for optimization purposes. We call this concept “Architected
Composite Data Type” [ACDT] – as reference, we denote an
untouched composite as “Unstructured Composite Data Type”
[UCDT].

ACDT associates type information to the whole composite
that goes beyond element type information. Important
attributes of a composite are size and shape (e.g., tiling).
Additional attributes are related to data format, residency
and lifetime (stays in the memory hierarchy), algebraic and
topological matrix properties (value types and distribution),
as well as dynamic range distribution and access/reuse
pattern. ACDT is known to the runtime. One important
aspect of ACDT is that it enables the runtime to reason
about composites as a whole, e.g., weighing-in the benefits
and detriments of encapsulating a composite: Hereby,
ACDT trades in unfettered access to elements of the
composite via primitive operators/load&stores in favor
of architected operators/gets&puts that act on the whole
composite. Encapsulated composites are beneficial because
their architected operators, compared to their elemental
primitive counterparts, better amortize overheads and improve

efficiency in the runtime of data manipulation algorithms
such as data compression/decompression [15], reshaping [16],
marshaling [21], redundancy and rematerialization [7] to
name a few. All these algorithms have a direct impact on
data management and movement. In summary, contrary to
the top-down approach that high-level languages do to bridge
the semantic gap, ACDT’s bottom-up approach is to improve
the efficiency of data manipulation algorithms in the runtime
system.

Algorithm 1 Matrix Vector Multiply
for i = 1 to m do

for k = 1 to n do
c[i] += A[i][k]* b[k]

end for
end for

Consider Algorithm 1 as an example, showcasing a simple
Matrix Vector Multiply (MVM). The composites are a 2D
matrix A, an input vector b and an output vector c. In the
first case I, we assume the density of the three composites to
be dense, meaning the number of non-zero elements for each
composite is larger than a specified threshold. In the second
case II, we assume that matrix A is non-dense (i.e., sparse),
following the same threshold criterion. We will further assume
that the composite sparsity information is an attribute of an
ACDT, as is residency, lifetime and access/reuse pattern. This
information provides opportunities to the RTS for operator
selection, data transformation and data movement that are
intended to yield amortized savings across various elements.
Determining A’s ACDT gives multiple options to the runtime
system: (A) Based on A’s sparsity, the runtime system could
alternatively choose to use an operator implementation that
relies on a Vector or SIMD implementation for improved
performance; (B) based on scheduling status, the runtime
could decide to postpone the execution and/or ship the data
to a remote resource; (C) based on (A), (B) and data reuse,
the runtime could decide to use compression. However, the
right course of action is dependent on the overhead as well
as the amortized benefits of the applied transformations and
operators. We provide a detailed cost/benefit analysis for
MVM in Section V-A.

In this paper, we propose the ACDT framework which
addresses the importance of data management/ movement and
explores opportunities to improve power and performance
efficiency. We showcase that our framework can improve
performance and power efficiency of a massively multithreaded
adaptive runtime system by an order of magnitude for a
selected Cholesky decomposition algorithm. This paper makes
the following contributions:

1) We developed an ACDT conceptual framework on
a massively multithreaded adaptive runtime system
geared towards Exascale systems.

2) We tested the framework with two representative
processing kernels - Matrix Vector Multiply and
the Cholesky Decomposition, both running sparse
matrices. We opted for compress/decompress [C/D]
engines as transformations and selected composite
specific operators for performance/power improve-
ment.

3) We developed two different ACDT approaches based
on transformation opaqueness in relation to the ap-
plication. We demonstrated that the two approaches
show promise in hardware and software respectively,
where the software approach can yield performance
and power improvements that are an order of magni-
tude better than implementations without ACDT.

The remainder of the paper is structured as follows: We
provide an overview of related work that is tangential or has
a direct impact on our work in Section II. Next, we give
an overview of our ACDT framework in Section III where
we reiterate the concepts of ACDT and explore the creation
and maintenance of these composite data types. It follows
a framework use case in Section IV where we introduce
the concepts and tools necessary to run our experiments.
Experimental setup, results and discussion of our compres-
sion/decompression approaches and results on Matrix Vector
Multiply and Cholesky Decomposition are shown in Section V.
We end with future work and conclusions in Section VI.

II. RELATED WORK

A. Massively Multithreaded Adaptive Runtime Systems

Massively Multithreaded Runtime Systems are capable of
scheduling thousands of threads, managing memory band-
width and contention avoidance. For instance, Cilk [4] is a
multithreaded parallel programming model with an associated
runtime system. Threads are dispatched by a work-stealing
scheduler, executing in nonblocking fashion. Cilk’s strength
lies in its performance predictive capability that accounts for
the amount of work and the critical path. The execution model
is limited to processing a tree-like task graph that requires
”fork-join” synchronization at each level. X10/Habanero [6]
relaxes the requirement to ”join” at each level. Supporting
a more general execution model, the Efficient Architecture
for Running THreads (EARTH) [22] schedules DAGs and
uses uninterruptable fine grain threads, called fibers, that
share activation frames. Under this model, data is either
passed around as output from fibers or explicitly moved
with asynchronous or synchronous functions. The generality
is bought at the expense of limiting performance prediction.
In addition, this type of model puts the entire responsibility
of expressing parallelism and memory access solely on the
fiber programmers. The SWARM framework [8] builds on
EARTH concepts, adding support for a type system, direct
access shared memory structures, placement information and
syntactic sugar. As before, the burden is on the programmer to
express parallelism and synchronization. Similar in concept, a
recent ongoing development is the Open Community Runtime
(OCR) [19] system. OCR has the concept of control- and data-
flow event driven tasks. Data is passed between tasks with the
support of memory data blocks. OCR is an open platform to
experiment with adaptive runtime systems at extreme scale.
Neither of the above mentioned RTS offers performance and
power efficiency adaptation due to composite data properties.
This work offers a remedy.

B. Compression & Decompression

1) Compression Algorithms: Besides powerful compres-
sion techniques used in commercial software, like dictionary
based methods (Lempel-Ziv and others), a few selected com-
pression algorithms are used for online compression of sci-
entific data. These algorithms are characterized by an affinity

for small blocks, an ease to interface with synchronous devices
(busses, memory controllers, etc), being lossless, and with fast
and efficient methodologies that could be easily implemented
in hardware.

The XMatch with Run Length (XRL) encoding algorithm
[13] depends on the construction of a dynamic dictionary that
assigns shorter codewords to frequently appearing patterns.
Before the XMatch phase starts, the data stream is precon-
ditioned with a run length encoder that is sensitive to long
chains of zeroes. An entry in the dictionary (with an associated
codeword) is especially reserved for these zero sequences.
XRL is used in the selective compressed memory system [15].
In this system, the level 1 caches are uncompressed and the
level 2 caches uses the XRL for each data block. Due to its
ease-to-implement, we selected the run length encoding part of
this algorithm as a compression engine for one of the ACDT
types in Section V-A.

The floating point compression algorithm (FPC) was intro-
duced by Burtscher and Ratanaworabhan [5]. In this algorithm,
when a new floating point value arrives, two predictors are used
to guess this number. Afterwards, a quick comparison to the
original value takes place and the smallest residual is encoded.
The predictor used, the residual and the number of leading
zeroes are encoded in the final compressed data. The use of
the predictor tables allow this algorithm implementations to
catch a wide range of patterns. For this reason, we selected
this algorithm to showcase a more sophisticated compression
engine in support of the ACDT type presented in Section V-A.

2) Compression formats: The application designers can
tailor their algorithms and data structures when they have the
knowledge of the sparsity of the workloads. These techniques
usually take the form of compressed format representations
for the structures of interest. One of the famous methods is
the Compressed Sparse Row (CSR) format [2]. In this format,
the sparse matrix is stored in three arrays: val, ptr and col.
Array val is dedicated to save the non-zero elements of the
structure in row major order. The other two arrays contain
positional information. The ptr array contains the location on
val of the first non-zero element of each row. The second array,
named col, contains the column indexes of the elements of
val in the original array. The Block Compressed Sparse Row
[18] approach takes the idea of CSR but instead of values,
block of data are saved in the val array. A disadvantage of
this approach is that, depending upon the shape of the matrix,
extra padding might be required. Finally, some tiles might
be mostly composed of zeroes since the internal structure
is not exploited. Compressed Sparse eXtended [14] format
exploits the inner structures of non-zero elements inside a
sparse matrix. However, all of these formats are best used as
static (read-only) formats. In this work, we modified the Block
Compressed Sparse Row representation to make it amenable
to online usage in Section V-B.

C. Power Efficiency

Optimizing data movement of Exascale applications for
high performance and energy efficiency has been defined
as one of the major challenges and key research areas by
DARPA [3]. There has been some recent work focusing on
characterizing energy data movement consumption across dif-
ferent memory hierarchies. Molka et al. [17] have characterized
the energy efficiency of arithmetic and memory operations
across multiple cache levels. Based on micro-benchmarks, they

built a basic model to approximate the energy consumption of
data transfers from cache levels to main memory. Kestor et
al. [12] have also proposed a more elaborate energy model
that not only approximates the energy consumption but also
considers the energy cost of stalled cycles and the impact of
prefetching on energy waste. Unlike our approach, none of the
work above has proposed an adaptive runtime system level
framework to manage various data-movement optimization
techniques that hides non-trivial architectural details from
users.

III. FRAMEWORK OVERVIEW

The overview of the conceptual framework is shown in
Figures 1(a),1(b). In Figure 1(a) we depict the MVM dataflow
graph with threads as vertices and dependencies as edges.
Startup and Finalize threads are located top and bottom,
respectively. The A matrix is tiled according to size and shape
and distributed to multiple thread chains. Each thread chain
is comprised of a Get, a Computation and a Put phase. In
the Get phase the tile is read in its entirety into the thread
chain context. The Computation operates on the tile and the
Put phase discharges the whole tile out of the thread context.
Notice how the ACDT framework introduces additional threads
into the graph (shown as small bars) that operate on the
tiles – in this example, transparently to the application. The
contractual agreement between the ACDT framework and
application requires that the application follow the abstract
thread model of Get/Put phases that transfer whole tiles. The
ACDT framework now has the freedom to view these tiles
as composites, associating feature attributes encoded as meta-
data at compile or runtime derived from size, shape, algebraic
or topological properties, constant values, expected lifetimes
and access/reuse pattern. In our MVM example, we use size
and shape in conjunction with architectural features to guide
tiling. The topological properties are used to transparently
guide compression as discussed further in the experimental
Section V-A.

Figure 1(b) depicts the inner details of the framework.
On the right side we have an excerpt of a dataflow graph
as seen by the runtime system. Each actor in the graph is
represented by a thread chain (yellow circle with a ’T’) that
communicates with other thread chains via runtime mediation
(grey rectangles). ACDT composites and UCDT (Unstructured
Composite Data Type) default composites are passed between
threads in dataflow fashion. Center and top left in the figure
showcase the role of the runtime system: a type discriminator
samples the stream of feature vector meta-data associated
with a composite and the composite itself. The discriminator
determines type changes and appropriate operators that are
suitable for respective ACDT data layouts.

IV. ACDT FRAMEWORK USE CASE

For the remainder of this paper we will consider op-
portunities that ACDT offers for compression as a data
manipulation technique on a massively multithreaded run-
time system. We will consider two use cases, Matrix Vector
Multiply and Cholesky Decomposition to guide the reader
through the methodology. Each use case will expose a dif-
ferent compression approach, Balanced- and Unbalanced-
Compress/Decompress, whose mechanisms will be described
next.

(a) MVM in ACDT framework (b) Overview of ACDT framework (c) balanced (top) & unbalanced C/D

Fig. 1. ACDT framework

TABLE I. COMPOSITE INVARIANT ALGEBRAIC OPERATORS

CIAO Composite
x diag(-1), diag(1)

+, x matrix(0)

A. ACDT for Compression

1) Balanced Compress/Decompress [bC/D]: With “Bal-
anced Compress/Decompress” (bC/D) we denote a class of
compression algorithms where both parts, compression and
decompression, run at the same level of the software stack.
With bC/D it is possible to subject composites to data trans-
formations completely transparent to the application. In that
case, any resulting ACDT operators will not be visible to the
application since the application is oblivious to the underly-
ing transformations. Figure 1(c)(top) exemplifies this method.
Compress and decompress engines are not located with the ap-
plication. ACDT composites (colored bricks) are transformed
into their UCDT composite counterparts (uncolored bricks) as
they are read from memory and shipped to the application.
On their way back to memory, the UCDT composites are
converted back into ACDT. Section V-A showcases the use
of this approach.

2) Unbalanced Compress/Decompress [uC/D]: With “Un-
balanced Compress/Decompress” (uC/D) we denote a class of
compression algorithms where both parts, compression and de-
compression, run at different levels of the software stack. The
part that runs at application level will have access to ACDT
operators, if applicable. Figure 1(c)(bottom) showcases this
method. Only the Compress engine is located with the runtime
system, in order to run in the background. The Decompress
engine is located with the application. Information associated
with the ACDT composites is visible to the application and can
be used advantageously. Section V-B demonstrates the use of
this approach.

3) Composite Invariant Algebraic Operators [CIAO]: The
uC/D approach is attractive because decompressing at the
application level makes ACDT operators available to the appli-
cation as seen in Figure 1(c). Composite algebraic invariants
can be detected with almost no overhead since repeating
values are a fundamental compression resource of any C/D
engine. Tab. I showcases the composite invariants and their
associated algebraic operators. Section V-B exploits CIAOs to
obtain performance and power improvements by eliminating
redundant computation [25].

B. C/D Latency Model

In order to help determine first order benefits of one C/D
implementation over another, we developed a simple latency
model tracking first order effects of DRAM memory and a set
of compress/decompress engines commonly found in literature.

The DRAM latency model assumes symmetric read/write
access and no contention: The memory holds a large matrix
with square tiles s.t. each new tile vector of the matrix’s
leading dimension is placed and fits in a different memory row.
Furthermore, we will assume that the number of tile elements
N is a large multiple of the memory burst size Bcol. The
resulting memory access latency Latmem to move a tile into
the cache is a function of the refresh Cref and the row Crow

and column Ccolb (per element amortized burst mode) costs
respectively (Eq. 1-2).

Bcol � N ; fref (N)� N (1)

Latmem
∼= fref (N) ∗ Cref +

√
N ∗ Crow +N ∗ Ccolb (2)

Overheaddec = Fix+Nc ∗D with F ix� Nc ∗D (3)
Overheaddec ∼= Nc ∗D (4)

Overheaddec = Overheaddec/Reuse (5)
Latmem u > Latmem c +Overheaddec (6)

The compression and decompression engines under this
framework are designed to support high throughput, amenable
to SW or HW engines, relying on a few simple ALU op-
erators such as shifts or xor. Hence, the decoding overhead
Overheaddec for a tile is Θ(Nc) in the number of compressed
tile elements Nc under the assumption that we size our tiles
such that the fixed cost Fix can be neglected in comparison to
the decoding cost D (Eq. 3-4). Reusing the tile Reuse times
per single decode further reduces the overhead yielding an
amortized overhead Overheaddec (Eq. 5).

Armed with these formulas, we are now able to formu-
late the condition under which it is beneficial to engage a
C/D encoding scheme for our ACDT framework: Let Nu

be the number of elements of an uncompressed tile and as
before, Nc the number of compressed elements for the same
tile. Memory access latencies are denoted by Latmem u and
Latmem c respectively for the uncompressed and compressed
cases. Benefits start to accrue when Eq. 6 is met. We use the
C/D latency model in our discussion section to reason about
trade-offs.

C. Runtime System

In order to explore Exascale software stacks whose ini-
tial implementation we expect in the 2017 timeframe, we
choose SWARM [8] as X in MPI + X and extend it with
the ACDT framework. In this programming paradigm, the
inter-node communication is handled by MPI calls and the
intra-node aspects are handled by the X programming/exe-
cution model. Like several other recent advanced runtimes
(including the Open Community Runtime (OCR), Intel CnC,
and OpenStreams), SWARMs multithreaded execution model
supports asynchronous task spawning, dynamic load balancing
as well as point-to-point task synchronization. These features
are necessary to expose all the task parallelism in programs,
a strict requirement at Exascale. One advantage of SWARM
which made us originally choose it over other runtimes is that it
offers a rich set of synchronization mechanisms. Nevertheless,
we expect results of these studies to impact currently more
popular, yet more restrictive execution models as well e.g. Cilk
and OpenMP.

D. ACDT Discriminator

This section provides an overview of an ACDT discrimi-
nator with the ability to select between different compression
techniques. It would run in the background and provide
guidance for selection based on algorithmic and architectural
state throughout the execution process. It requires detecting
different data patterns at runtime and selecting an efficient
compression technique based on available feature vectors. Here
we conduct analysis on the determination of the topology
of two initially sparse matrices (bcsstk36 and bundle1) from
Table II to demonstrate how various sampling techniques affect
the partial knowledge of the composite state in the ACDT
framework.

(a) I=128(99.78%) (b) I=8K(98.7%) (c) I=22K(96.8%)

(d) I=0(99.3%) (e) I=1K(63%) (f) I=10K(36.1%)

Fig. 2. Bcsstk36 and Bundle1 sparsity evolution

Using uniform sampling (US), random sampling (RS) and
sub-composite sampling (STS), we ran our experiments with
different sampling ratios and composite sizes and compared
them against the non-sampled (NS) data. Our results show
very close approximation of cumulative composite distribu-
tion based on sparsity for the UFL matrices [23] as well
as intermediate matrices produced during execution. For in-
stance, Figures 2(a), 2(b) and 2(c) show gradual progression
of sparsity for matrix bcsstk36 at iteration 128, 8K and
22K for the Cholesky Decomposition algorithm used in our
experiment (Section V-B). Sparsity in this example reduces
very slowly over time (99.7%, 98.7%, 96.8%). However, such
progression of sparsity can vary per application. Figures 2(d),

2(e) and 2(f) show sparsity progression of matrix bundle1
at iteration 0, 1K and 10K, for which sparsity reduces very
rapidly (99.3%, 63%, 36.1%). Change in sparsity can have
direct impact on the compression ratio for different com-
pression techniques as data patterns can dynamically change
during runtime. Such changes affect number of CIAOs, cache
hits/misses and used bandwidth.

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

!*+# !*+$#!*+%#!*+&#!*+'#!*+(#!*+)#!*+,#!*+-#!*++# $#

./
0
/1
23

45
#6
715
#8
79
:;
7<
/3

=>
#

?@2;97:A#./:=B#C21/5#

D?# E?# F?# ?6?#

(a) Bcsstk36

!"#$

!%#$

&"#$

&%#$

'"#$

'%#$

%"#$

%%#$

("#$

"$
")
"(
$

")
*!
$

")
*+
$

")
!'
$

")
&$

")
&(
$

")
'!
$

")
'+
$

")
%'
$

")
($

")
((
$

")
,!
$

")
,+
$

")
+'
$

")
-$

")
-(
$

./
0
/1
23

45
67
15
8
79
:;
7<
/3

=>
$

?@2;97:A$./:=B$C21/5$

D?$ E?$ F?$?6?$

(b) Bundle1

Fig. 3. Cumulative composite distribution over different cutoff value (vertical
red line) , composite size=256, SR=0.01

For simplicity, we are not interested in getting close
sparsity approximation for every sampled composite but in-
stead we classify composites into two broad categories where
composites with patterns (in this case sparse composites) are
compressed for memory and bandwidth savings. The cutoff
value to decide such classification can be predetermined or cal-
culated during runtime. Figure 3(a) and 3(b) show cumulative
percentage of composites at different cutoff values (vertical
red lines) for intermediate matrices in Figures 2(c) and 2(e)
respectively. The cut off line shown at 95 percentile and 80
percentile can be moved on the x-axis in Figure 3(a) and 3(b)
to create different classifications based on certain thresholds.
The height of the last entry before the cut off line represents
the percentile of composites left untouched by the compression
engine.

Here we applied static analysis as an example, however our
eventual goal is to provide a dynamic system that is capable of
guiding classification based on data patterns, composite sizes,
compression ratios and architectural states. We leave further
optimization of the discriminator for future work.

V. EXPERIMENTS AND RESULTS

In this study, we report power consumption in Watts [W],
energy consumption in Joules [J], and timing (performance) in
seconds [s]. Data points in the graphs are the average records
of multiple runs. We conduct our experiments on two multi-
core HPC nodes to show the usage of our ACDT framework:
A large Intel based Xeon SMP (for Cholesky Decomposition
Analysis) and a 16-core Intel Xeon E5-2670 with 64 GiB of
main memory (for Matrix Vector Multiplication). The large
SMP Intel node is an Intel Westmere-E7 8860 multiprocessor
(32nm) and it contains 8 sockets with 10 cores/socket. The
default core clock speed is 2.27GHz and turbo boost is
supported. L2 cache (256k) is shared by all the cores in each
socket and L3 cache (24MB) is shared by all the sockets. The
memory size on the SMP node is 2TB, useful for scalability
studies and in line with demands of future Exascale systems.
To maximize performance, we use the maximum number of
threads supported by the architecture (e.g. 80 threads for the
SMP node) to run applications.

After an analysis of our introductory Matrix Vector Multi-
ply example using our ACDT framework in Section V-A, we

TABLE II. UFL DATASET FEATURES

Name row columns non-zeros Description
bundle1 10,581 10,581 770,811 3D vision
bcsstk17 10,974 10,974 428,650 Pressure Vessel
bcsstk36 23,052 23,052 1,143,140 Shock Absorber
QY case9 14,454 14,454 147,972 Power Network
pdb1HYS 36,417 36,417 4,344,765 Protein
raefsky4 19,779 19,779 1,316,789 Structural
Trefethen 20,000 20,000 554,466 Combinatorial

showcase a power-efficient, ACDT based, Cholesky Decom-
position (Section V-B). We select several popular real-world
datasets (e.g., structural problem, computer graphics/vision,
etc.) from University of Florida Sparse Matrix Collection [23]
to cover a wide spectrum of data pattern and degrees of
sparsity. Their features are shown in Table II. All datasets in
the table are real and symmetric.

A. MVM Analysis

The matrix vector multiply (MVM) is a good didac-
tic example to showcase Architected Composite Data Types
(ACDT). It features a regular control and memory access
pattern. Moreover, it is a kernel that is featured in many linear
algebra operations. The serial implementation used as baseline
is presented in algorithm 1. Starting from this version, we
implemented a tiled version in which the matrix and the vectors
are equally divided in tiles and padded if the division is not
exact.

Each chain of SWARM codelets is associated to a thread
and binds to it. Due to the usage of matrix A in the algorithm,
each tile of matrix A was selected to be transformed to
a balanced Compress/Decompress (bC/D) ACDT composite.
In the current experiments, the bC/D composite can take
advantage of two underlying compression algorithms. They
have different tradeoffs between compression ratios and over-
heads depending on the composition of the workload. The
first algorithm is the Burtscher and Ratanaworabhan FPC [5]
described in Section II-B. It was selected for its floating point
workload affinity and its high compression ratio. However, its
high complexity results in a high overhead when no hardware
support is provided. The second algorithm is the Run Length
Encoding (RLE) phase of the X-Match algorithm [13]. RLE
was selected because it is a simpler algorithm and it has a lower
compression overhead. Nevertheless, the compression ratio of
this approach is lower than the FPC algorithm. The bC/D
ACDT composites are compressed at the beginning of their
lifetime based on the compression ratio, and are decompressed
before being used inside a codelet chain.

Both implementations were highly optimized for the ar-
chitectural testbed. In the case of FPC, the predictor tables
were reduced in size to ensure that they fit in the cache and
vector instructions were used for their main operations. In the
case of RLE, the main loops were enhanced with pre-fetching
instructions. Using these algorithms, we ran Matrix Vector
Multiply with bC/D ACDT composites. The following analysis
showcases the compression overhead of both algorithms, the
number of last level cache misses, the gain on the computa-
tional kernel and the general speedup of the application. Each
test case was run with synthetic workloads to ensure a uniform
distribution of non zero elements on each composite.

(a) Performance 4096 (b) Speedup 4096

(c) Overhead with 1% NZ (left
axis) and Performance Gain (right
axis)

(d) LLC Misses for 4096

Fig. 4. FPC: Collected performance data for the MVM algorithm. In
the Figures, comp stands for compressed and def stands for the baseline
implementation

1) The FPC Analysis: Figure 4(a) shows the relationship
between overall performance and sparsity for the FPC-based
bC/D ACDT. The y-axis represents application’s time to com-
pletion in microseconds with different sparsity levels. The bars
are grouped by the number of codelet chains. The bars are 1%
non-zero values (the blue bar), 50% sparsity (the red bar),
and dense (the gray bar)1. Finally, the default bar (the yellow
bar) represents the most optimized version of the application
in the SWARM runtime that does not utilize compression. As
depicted in the Figure, FPC increases in complexity when deal-
ing with compressible patterns as shown by the 1% bar. The
50% sparsity bar shows that it has negligible improvements
over the non-compression scheme (i.e. dense).

Due to its compression overhead, FPC does not scale as
well as the best optimized Matrix Vector running in SWARM
in the current testbed. The speedup curves in Figure 4(b) shows
a decrease to a quarter in speedup when compared to the
optimized version.

The overhead of this algorithm is shown in Figure 4(c)’s
left axis and appears to be substantial, showing a maximum
value of 160K for composite sizes of 4k by 4k. However,
there is a computational kernel gain of bringing data into the
cache using compression (shown in Figure 4(c)’s right axis).
Due to its disproportionate high overhead, the benefits of this
software-based compression method are offset by its overhead.
However, if we separate the overhead from the application, the
data tells a different story. When considering the computational
kernel runtime, there is a reduction of overall runtime from
11% to 6% when increasing the composite size from 1024
by 1024 to 4096 by 4096. The reduction of performance gain
when increasing the composite size is due to cache eviction
effects since the composite sizes rapidly overcome the cache
sizes. Moreover, there is an aspect of thread interference that
is aggravated by this increase. Nevertheless, this trend shows
performance gains in the computational kernel. Compression
helps in this aspect since it effectively decreases the cache
footprint and allows bigger size composites to amortize the
cost of the compression and decompression algorithms. This
experimental sweep also showcases that the cache behavior

1with no compression but with a pre-fetching scheme to bring data to the
cache

is an important aspect that must be considered when selecting
the right composite type with the discriminator. Otherwise, the
performance gain will be lost due to detrimental side effects.

Finally, the FPC algorithm shows promise when dealing
with the last level cache misses. Shown in Figure 4(d), last
level cache misses for FPC are on average 13 times lower
than the dense version. This trend shows that in this case,
compression helps to bring data sets into the core’s caches
with fewer memory transactions from main storage.

Such trends help us make a case for reducing the over-
head of bC/D type’s algorithms to better utilize the memory
bandwidth and to improve the orchestration of resources in the
computer system.

2) The RLE Analysis: The RLE algorithm results present
a case in which the overhead of the underlying algorithm
is lower and how a lower compression overhead affects the
performance. The runtime shown in Figure 5(a) presents
the RLE overhead. When compared with the FPC algorithm
numbers, there is around 2x to 3x reduction in overhead. This
reduction translates into an overall improvement in scalability
(around twice) over its FPC counterpart, as shown in Figure
5(b). Meanwhile, RLE maintains similar computational kernel
gains (shown in Figure 5(c)’s right axis) and reduction of
level 3 cache misses (shown in Figure 5(d)). Although this
is not enough to overcome the gap in performance between
the compressed and default approaches, the speedup curves
and runtime numbers show that this gap is greatly reduced
(around half).

The reason behind the similar behavior between the com-
pression algorithms is that the synthetic data sets present very
simple and similar compressible pattern to both algorithms.
This means that the extra features of FPC do not have an
effect on the compression ratio of the final composite for this
set of experiments.

As the data has shown, having hardware support for these
operations can greatly increase performance because of the
computational kernels improvements due to a reduced number
of main memory transactions. However, there are other key
aspects that need to be considered in order to exploit algo-
rithmic and architectural optimization opportunities. One of
these aspects is the lifetime of a composite. Matrix Vector
multiply is a simple example to showcase the abilities of
the framework. However, due to the limited lifetime of its
composites, the advantages that could be harnessed from the
ACDT framework are limited. Thus, hardware support alone
is not enough and adaptive runtime support is needed to select
the best possible composite candidate based on aspects such
as composite lifetime, cache sizes, access latency, etc. For this
reason, the ACDT’s discriminator in Sec. IV-D would need to
periodically sample composites about their feature vectors in
order to select an adequate compression/decompression action.
Moreover, since the bC/D ACDT version is transparent to the
application, benefits from operating directly on compressed
data cannot be exploited. If the application can be made
aware of these opportunities, chances are that performance
and power efficiencies will greatly increase. We will showcase
these benefits using the uC/D ACDTs for sparse data workload
as presented next.

(a) Performance 4096 (b) Speedup 4096

(c) Overhead with 1% NZ (left
axis) and Performance Gain (right
axis)

(d) LLC Misses 4096

Fig. 5. RLE: Collected performance data for MVM algorithm. In the Figures,
comp stands for compressed and def stands for the baseline implementation

B. Cholesky Decomposition Analysis

To understand how our ACDT framework performs on
more sophisticated algorithms, we decided to evaluate perfor-
mance and power of a SWARM Cholesky decomposition –
“nativeCholesky” for short. The existing reference implemen-
tation (to be found at [8] website) is highly hand optimized for
dense real, positive-definite matrices. Our challenge is to apply
the code to sparse matrices with no or slight modifications
and derive improvements in performance and power – as an
added bonus, we get memory capacity savings as well. We
will call this modified code “ucdCholesky” for short. As the
Section V-A showcased, performance improvements in SW
without HW support are difficult to attain for the bC/D case
(see Sec. IV-A1). Some “data transformation awareness” in
the application is desirable to improve the performance and
power efficiency outcome. This insight led us to develop an
ucdCholesky for the uC/D case with only slight modifications
to the original optimized code.

For the uC/D compress/decompress engine we chose a
simple Block Sparse Row (BSR) [18] representation for
the sparse matrix square tiles served to the math kernels.
BSR has the advantage that the original interfaces to the
underlying math kernels (potrf, rrsm, syrk, gemm – in BLAS
and LAPACK nomenclature) do not need to be modified. The
tiles in these experiments conform to the composites of our
ACDT framework. BSR is the unbalanced uC/D approach in
our framework.

BSR is a static matrix representation and as such, is not
amenable to dynamic matrix changes without recompressing
the matrix after each algorithmic step; a process that would be
prohibitively time consuming. For this purpose we extended
BSR to dynamic BSR (dBSR). If a tile is not found in the
original BSR structure, a secondary key/value store structure
addressed by a chain-hashing function is queried. This sec-
ondary store holds the matrix fill-ins that are generated as the
algorithm progresses.

BSR’s decompressing time complexity is O(
√
T) where

T = n/N is the total number of square tiles after matrix
partitioning. n and N are the number of elements in the matrix
and tile, respectively. For the nominal case, this complexity
tends to be much smaller and is a function of the non-zero-
element (NZE) distribution in the matrix. dBSR’s decoding

(a) Bcsstk36 Time[s]-Power[W] over tile size (b) Bundle1 Time[s]-Power[W] over tile size (c) RAEFSKY4 Time[s]-Power[W] over tile size

(d) Bcsstk36 CIAO[%]-Energy[J] over tile size (e) Bundle1 CIAO[%]-Energy[J] over tile size (f) RAEFSKY4 CIAO[%]-Energy[J] over tile size

Fig. 6. Cholesky factorization Native (Nat) vs. unbalanced Compression/Decompression (uC/D)

time complexity is O(
√
T + T) as we consider probing the

secondary key/value store. Yet for the nominal case, avoiding
most bucket collisions, we end up again with O(

√
T). dBSR’s

decompressing time complexity in ucdCholesky contrasts with
the overhead that the original, optimized SWARM Cholesky
decomposition (nativeCholesky) expends on tile addressing in
the order of O(1). In practice, our Overheaddec in formula 6
in Sec. IV-B tends to be 3-5x the addressing overhead of the
original implementation. According to formula 6 it is clear
that we can only expect improvements if we have latency
access savings; in other words, without HW modifications, if
we substantially reduce the number of memory accesses.

The latency aspect is tilted in favor of ucdCholesky by
extensive use of Composite Invariant Algebraic Operators
(CIAO) (Sec. IV-A3): Probing dBSR inherently signals Zero
tiles (“SigZero”) during decompression2. We use this signal
to enable optimizations at the decompression engine as well
as at the application logic: Upon SigZero, the decompression
engine delivers to the application either a Read-Zero tile or
a Write-Zero tile. Read-Zero tile requests are aliased to a
unique reserved memory address with the consequence that
the tile values will be served with high probability from the
cache, reducing memory access traffic and hereby improving
performance and power. Write-Zero tiles are served from a
memory pool and registered in dBSR’s key/value store.

In addition, CIAO benefits the application in two ways: 1)
Tile decompression is evaluated in a lazy fashion, ordered by
the algebraic importance of the operator’s constituent right-
hand tiles. A SigZero of a dominant tile obliviates decom-
pression of the dominated tiles. 2) SigZero can lead to an
arithmetic intensity reduced operator, in most cases either a
tautology or no operator at all. As with the decompression
engine optimizations, these two application optimizations have
a positive impact on performance and power as well.

As an example, Figures 6(a),6(d) depict performance (T),
power (P) and energy (E) over varying tile sweeps of Boeing’s

2Diagonal 1,-1 tiles that enable CIAO could be encoded into dBSR as well
but is out of scope for this paper

Bcsstk36 matrix running nativeCholesky (Nat) or ucdCholesky
(uC/D). Recall from discussion in Sec. IV-D, (Figure 2) that
this matrix maintains a high level of sparsity during program
evolution. We notice from the left-y-axis half-logarithmic
Figure 6(a) that the performance of ucdCholesky over native-
Cholesky is an order of magnitude better at the stationary
point located at tile size ∼ 3502. Moving farther left from
the minimum, the ratio of computation vs. memory movement
becomes unfavorable, as smaller tiles yield less work and
addressing and decoding overhead starts to dominate. Since the
Overheaddec = O(

√
T) > O(1) we see ucdCholesky rapidly

loosing its advantage. From the stationary point on to the right,
overhead due to addressing or decompression starts to loose
importance in comparison to computation. Moving farther
right from the minimum, we notice ucdCholesky gradually
ceding benefits: This behavior is explained by Figure 6(d).
It shows left-y-axis accumulated CIAOs per tile size run in %
for Cholesky’s potrf, trsm, syrk and gemm math kernels. As
tile sizes increase, invariably the number of SigZero signals
decreases as a function of the probability mass function (pmf)
of NZE over the matrix’s topology. For ucdCholesky, the most
prominent CIAO contributor is related to gemm.

The average power consumption per Cholesky run over
tile size depicted in Figure 6(a) right-y-axis corroborates the
performance findings. The power consumption improvement
in general is >∼ 20% if we compare ucdCholesky vs. na-
tiveCholesky. In fact, at tile size ∼ 3502 we see an uptick
in power consumption due to increased arithmetic intensity.
Even at the performance sweetspot we still experience 22%
power improvement. The extensive use of CIAO reduces power
consumption without sacrificing performance by not wasting
power on memory movements that do not change the algo-
rithmic outcome. Substantial improvements in performance
and power consumption reflect positively on energy use as
well as seen on the half-logarithmic right-y-axis Joules axis in
Figure 6(d). A > 10x improvement translates into savings of
90kJ.

Figures 6(b), 6(e), 6(c) and 6(f) all showcase similar trends,
albeit with different personalities. Table II indicates that we
ran more test cases which confirm our results. In terms of

performance, ucdCholesky always wins by varying degrees of
margin – recall that the performance axis is logarithmic. Power
consumption is more erratic. As the addressing/decompression
becomes less relevant, nativeCholesky and ucdCholesky curves
approach each other. Nevertheless, even selecting the best tile
sizes for nativeCholesky, ucdCholesky still wins. Overall, this
translates into one order of magnitude (> 10x) in energy
savings measured in kJ.

To check how ucdCholesky would fare with matrices
that loose their sparsity quickly during program evolution –
36% sparsity at the end – we exercised ucdCholesky with
the Lourakis Bundle1 matrix discussed in Sec. IV-D (see
Figures 2(d), 2(e) and 2(f)). As it turns out, even in this case
ucdCholseky wins. In Figure 6(b) we see that performance
gains have melted to single digits but still constitute respectable
several seconds savings, despite the fact that CIAOs disappear
quickly and fill-ins dominate (see Figure 6(e)). The power
gains are tight at the sweet spot but are still discernible.
Overall, energy savings are still 8kJ.

In summary, in this section we have shown how the
unbalanced Compress/Decompress (uC/D) approach under the
ACDT framework can yield significant improvements in per-
formance, power and energy for an important set of sparse
matrices. Furthermore, these composites can exhibit significant
changes in their attributes – e.g., change in sparsity of Lourakis
Bundle1. A discriminator at runtime would be able to detect
these changes, update the feature vector and discern a new
type that would assign modified transformation rules to the
composite.

VI. CONCLUSIONS AND FUTURE WORK

We showed that our ACDT framework can improve effi-
ciency of a massively multithreaded adaptive runtime system
by managing composites in different compressed formats.
With our bC/D approach, we showed better reuse of memory
within different level of caches by reducing data movement.
Similarly, with our uC/D, we showed improvement in power
and performance by an order of magnitude utilizing ACDT
operators and taking advantage of ACDT invariants. Next steps
will examine ACDT on other adaptive runtime systems such
as OCR and expand ACDT capabilities to support resiliency.

ACKNOWLEDGMENT

This research was supported in part by DOE ASCR XStack
program under Awards DE-SC0008716, DE-SC0008717.

REFERENCES

[1] S. Ashby et al. The Opportunities and Challenges of Exascale Com-
puting. Technical report, US Department of Energy Office of Science,
2010. Summary Report of the Advanced Scientific Computing Advisory
Committee (ASCAC).

[2] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. V. D. Vorst. Templates for
the solution of linear systems: Building blocks for iterative methods. In
SIAM, 1994.

[3] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-
neau, P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein,
R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling,
R. S. Williams, and K. Yelick. Exascale computing study: Technology
challenges in achieving exascale systems peter kogge, editor & study
lead. Technical report, DARPA, 2008.

[4] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: an efficient multithreaded runtime system.
SIGPLAN Not., 30(8):207–216, Aug. 1995.

[5] M. Burtscher and P. Ratanaworabhan. Fpc: A high-speed compressor
for double-precision floating-point data. Computers, IEEE Transactions
on, 58(1):18–31, 2009.

[6] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In Proceedings of the 20th
annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, OOPSLA ’05, pages 519–538,
New York, NY, USA, 2005. ACM.

[7] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick. Avoiding
communication in sparse matrix calculations. Apr. 2008.

[8] ETI. Swarm (swift adaptive runtime machine)
http://www.etinternational.com/index.php/products/swarmbeta/, 2012.

[9] E. Georganas, J. González-Domı́nguez, E. Solomonik, Y. Zheng,
J. Touriño, and K. Yelick. Communication avoiding and overlapping
for numerical linear algebra. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, SC ’12, pages 100:1–100:11, Los Alamitos, CA, USA, 2012.
IEEE Computer Society Press.

[10] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose
microprocessors. Solid-State Circuits, IEEE Journal of, 31(9):1277–
1284, Sep 1996.

[11] C. Jung, S. Rus, B. P. Railing, N. Clark, and S. Pande. Brainy: Effective
selection of data structures. In Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’11, pages 86–97, New York, NY, USA, 2011. ACM.

[12] G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie. Quantifying the
energy cost of data movement in scientific applications. In Workload
Characterization (IISWC), 2013 IEEE International Symposium on,
2013.

[13] M. Kjelso, M. Gooch, and S. Jones. Design and performance of a
main memory hardware data compressor. In EUROMICRO 96. Beyond
2000: Hardware and Software Design Strategies., Proceedings of the
22nd EUROMICRO Conference, pages 423–430, 1996.

[14] K. Kourtis, V. Karakasis, G. Goumas, and N. Koziris. Csx: An extended
compression format for spmv on shared memory systems. SIGPLAN
Not., 46(8):247–256, Feb. 2011.

[15] J.-S. Lee, W.-K. Hong, and S.-D. Kim. Design and evaluation of
a selective compressed memory system. In Computer Design, 1999.
(ICCD ’99) International Conference on, pages 184–191, 1999.

[16] S. Leung and J. Zahorjan. Optimizing data locality by array restruc-
turing. Citeseer, 1995.

[17] D. Molka, D. Hackenberg, R. Schone, and M. Muller. Characterizing
the energy consumption of data transfers and arithmetic operations on
x86 64 processors. In Green Computing Conference, 2010 International,
pages 123–133, 2010.

[18] Y. Saad. Sparskit: a basic tool kit for sparse matrix computations -
version 2. Technical Report. Computer Science Department. University
of Minnesota, Minneapolis, MN, 55455, 1994.

[19] V. Sarkar, B. Chapman, W. Gropp, and R. Lethin. Building an Open
Community Runtime (OCR) framework for Exascale Systems, nov
2012. Supercomputing 2012 Birds Of A Feather session.

[20] J. Shalf, S. Dosanjh, and J. Morrison. Exascale Computing Technology
Challenges. In Proceedings of the 9th International Conference on
High Performance Computing for Computational Science, VECPAR’10,
pages 1–25, Berlin, Heidelberg, 2011. Springer-Verlag.

[21] M. A. Suleman, O. Mutlu, J. A. Joao, Khubaib, and Y. N. Patt. Data
marshaling for multi-core architectures. In Proceedings of the 37th
Annual International Symposium on Computer Architecture, ISCA ’10,
pages 441–450, New York, NY, USA, 2010. ACM.

[22] K. Theobald. Earth: An Efficient Architecture for Running Threads.
McGill University, 1999.

[23] Y. H. Tim Davis. The university of florida sparse matrix collection.
http://www.cise.ufl.edu/research/sparse/matrices/, 1994.

[24] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded soft-
ware: A first step towards software power minimization. In Proceedings
of the 1994 IEEE/ACM International Conference on Computer-aided
Design, ICCAD ’94, pages 384–390, Los Alamitos, CA, USA, 1994.
IEEE Computer Society Press.

[25] H.-W. Tseng and D. M. Tullsen. Data-triggered threads: Eliminating
redundant computation. In HPCA’11, pages 181–192, 2011.

