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ABSTRACT
Recently, multi-core architectures with alternative memory
subsystem designs have emerged. Instead of using hardware-
managed cache hierarchies, they employ software-managed
embedded memory. An open question is what programming
and compiling methods are effective to exploit the perfor-
mance potential of this new class of architectures. Using the
LU decomposition as a case study, we propose three tech-
niques that combined achieve a 27 times speedup on the IBM
Cyclops-64 many-core architecture, compared to the parallel
LU implementation from the SPLASH-2 benchmarks suite.
Our first method allows adaptive load distribution, which
maximizes load-balance among cores – this is important to
leverage the potential of the next two methods. Secondly, we
developed a method for register tiling that determines the
optimal data tile parameters and maximizes data reuse ac-
cording to register file size constraints. We demonstrate that
our method is inherently general and that it should have a
much broader applicability beyond Cyclops-64. Thirdly, we
present a register allocation method for register tiled loop
bodies. We evaluate its effect through hand-tuned Cyclops-
64 assembly code and observe a 6-fold reduction in load/-
store operations. We achieve a performance of 19.17 and
27.50 GFlops with double-precision floating point numbers,
for a 700× 700 and a 1000× 1000 matrix respectively.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; G.1.0 [Numerical Analy-
sis]: General—Parallel algorithms

General Terms
Performance

Keywords
Multi-core, local memory, LU decomposition, register tiling,
load balancing
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1. INTRODUCTION
The design of contemporary multi-core architectures has

progressively diversified from more conventional architec-
tures. Instead of simply“gluing”together a number of slightly
modified existing uniprocessor cores, a new class of multi-
core architectures is emerging, which is the result of a more
extended exploration of the multiprocessor architecture de-
sign space. An important feature of these new architectures
is the integration of a large number of simple cores with
software-managed embedded memory (or local-storage), in
place of a hardware-managed cache hierarchy. Examples
of such architectures are the IBM/Sony Cell Broadband En-
gine [5], the 188-core Cisco Metro chip [11], the 80-core Intel
Terascale chip [21], the 96-core Clearspeed CSX600 chip [6]
and the 160-core IBM Cyclops-64 chip [8, 24].

Although it is not certain what the final impact of these
new designs will be, they are considered to be interesting
alternatives. A recent study at the University of California,
Berkeley [2] suggests that it will soon be possible to fit more
than 1000 cores on a single chip. Implementing a cache-
coherency protocol for such a number of cores will require
a significant percentage of the chips die area. This might
limit the number of other functional units, which might
leverage the performance potential of these designs more
effectively, e.g., more floating-point units or more on-chip
memory. Moreover, the efficiency of current cache-coherence
protocols is questionable for that many cores.

On the other hand, offering these new architectures as
general-purpose computation platforms creates a number of
new problems, the most obvious one being programmabil-
ity. Cache-based architectures have been studied thoroughly
for years and, despite their differences, share similar charac-
teristics at almost every level. For example, they feature a
two- or three-level hardware-managed cache hierarchy and
each node of the system has its own memory, creating either
a distributed or distributed-shared memory address space.
This lead to the development of well known programming
methodologies for these systems, allowing a programmer to
easily optimize code for them. On the other hand, multi-core
architectures are relatively new and such general directions
for application development do not exist yet.

Several segments in the computer industry are tradition-
ally using explicit local-storage, for example, embedded sys-
tems. However, applying programming methodologies from
this area to multi-core systems is not straightforward. The
main concern in an embedded system is the amount of mem-
ory that the program and data will use, as the size of mem-
ory largely determines the cost of these systems. As a result,



performance is usually a secondary concern. Multi-core ar-
chitectures, on the other hand, are developed for problems
where competitive execution performance is very important,
in order to produce results fast enough or to achieve the de-
sired accuracy. In a sense, the problem is the opposite one,
compared to embedded systems: Having our data in local-
storage, how do we achieve the best performance that our
system can provide?

An important factor, with respect to programmability, is
that the dominance of cache-based systems created a “cache
aware” programming consensus, i.e., algorithms and appli-
cations even implicitly assume the existence of a cache. A
typical example are linear algebra algorithms, where data
distribution is largely determined by this assumption. Fur-
thermore, such algorithms might also be transformed to ex-
ploit the fact that a cache miss will move a whole cache-line
from main memory. The BLAS routines [9, 10], which are
building blocks for high-performance linear algebra applica-
tions, are built on these assumptions.

Another issue that must be addressed is the diversity of
multi-core architectures with local-storage. Local-storage
might be visible only to the core that owns it, as in Cell,
or it might be globally visible, as in Cyclops-64. One more
important aspect for applications is when to move data be-
tween levels of memory [12]. In this case, the method pro-
vided by the hardware must be taken into account. For ex-
ample, Cell provides asynchronous transfers through DMA,
whereas Cyclops-64 only provides synchronous transfers. In
the latter case, however, some of the cores can be used to
run threads that only transfer data, effectively simulating
asynchronous transfers.

Nevertheless, the question of how to program multi-core
architectures with local-storage remains. We believe that
one way to answer it is to implement, evaluate and optimize
as many applications as possible for these systems. Only
then will we be able to identify inefficiencies and provide so-
lutions for them. Finally, it will be possible to have a high-
level overview of problems and associated solutions, provid-
ing programmers with a tool-box from where they can draw
ready-to-use solutions, as it is the case with cache-based ar-
chitectures today. We believe that a good starting point are
linear algebra problems. Most of them have regular access
patterns, which are easy to analyze. Furthermore, they have
been studied thoroughly on cache-based architectures, which
makes it straight-forward to compare them with algorithms
that are developed for local-storage based architectures.

In this paper we analyze our implementation of the LU de-
composition for the Cyclops-64 architecture, as a case study
in our effort to provide more general programming method-
ologies for multi-core architectures with local-storage. Our
main contributions are:

• We propose a method that adjusts the load and data
distribution during each successive elimination step of
the LU computation. This is essential to keep all cores
usefully busy, thus maximizing the register tiling per-
formance potential of the following two techniques.

• We developed a method for register tiling that deter-
mines the optimal data tile parameters and maximizes
data reuse according to register file size constraints.
We demonstrate that our method is inherently general
and that it should have a much broader applicability
beyond the Cyclops-64 architecture.

• We present a register allocation method for register
tiled loop bodies. We evaluate its effect through hand-
tuned Cyclops-64 assembly code and observe a 6-fold
reduction in load/store instructions.

• Our optimizations allow us to achieve an extremely
high performance on the chip. The 19.17 and 27.50
GFlops achieved for a 700 × 700 and a more typical
1000× 1000 matrix are, to our knowledge, the highest
reported GFlops per chip rates so far.

To conduct our experiments, we used the FAST simula-
tor [7], which is a functionally-accurate simulator of Cyclops-
64. It is, however, worth to mention that our code has also
been run on a first test implementation of the real chip.
Results are within 15% up to 100 thread units. After that
point, the general trend in performance is still followed quite
accurately by the simulator.

The rest of this paper is organized as follows. In Section 2,
we describe the Cyclops-64 architecture. In Section 3 we give
a short overview on the current status of blocking algorithms
for LU. In Section 4 we introduce our dynamic repartitioning
algorithm. In Section 5 we present our register tiling method
and in Section 6 we present the results of our experimental
evaluation. In Section 7 we present related work and we
conclude our paper in Section 8.

2. THE CYCLOPS-64 ARCHITECTURE
The Cyclops-64 (C64) chip is based on a multi-core-on-a-

chip design, featuring 80 processors, each with two thread
units (TUs). The chip is currently being developed by IBM
and its design can be seen in Figure 1. Each processor is
further equipped with a floating point unit and two SRAM
memory banks of 32KB each. A 32KB instruction cache,
not shown in the figure, is shared among five processors.
The C64 chip has no data cache. Instead a portion of each
SRAM bank can be configured as scratchpad memory (SP).
The remaining sections are combined together, to form the
global memory, which is uniformly addressable from all TUs.
All TUs and SRAM banks are connected through a 96-port
crossbar network, which provides a bandwidth of 4GB/s per
port. This accounts to a total of 384GB/s on each direction.
This huge bandwidth supports both the intra-chip commu-
nication as well as the six routing ports that connect each
C64 chip to its neighbors. The complete C64 system is built
out of tens of thousands of C64 processing nodes, arranged
in a 3-D mesh topology. Each processing node consists of a
C64 chip, external DRAM, and a small amount of external
interface logic. This system incarnates the next generation
of the Cyclops cellular architecture, which is designed to
serve as a dedicated petaflop compute engine for running
high performance applications.

The C64 architecture represents a major departure from
mainstream microprocessor design in several aspects. The
C64 chip integrates processing logic, embedded memory and
communication hardware in the same piece of silicon. How-
ever, it provides no resource virtualization mechanisms. For
instance, execution is non-preemptive and there is no hard-
ware virtual memory manager. The former means that the
C64 microkernel will not interrupt the execution of a user ap-
plication, unless an exception occurs. The latter means the
three-level memory hierarchy of the C64 chip is visible to the
programmer. From the processing core standpoint, a thread
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Figure 1: The architecture of a Cyclops-64 node.

unit is a simple 64-bit, single issue, in-order RISC proces-
sor with a small instruction set architecture, operating at a
moderate clock rate (500MHz). Nonetheless, it incorporates
efficient support for thread level execution. For instance, a
thread can stop executing instructions for a number of cycles
or indefinitely and can be woken up in a few tens of cycles
by another thread through a hardware interrupt. C64 also
provides an extremely fast hardware implementation of the
barrier synchronization primitive.

3. CLASSIC BLOCK LU ALGORITHMS
The LU decomposition is in itself quite simple, as it only

decomposes the matrix that describes a linear system into
a product of a lower and an upper triangular matrix. Solv-
ing the linear systems described by these new matrices is
then a trivial task. Due to its importance to scientific com-
puting, it comes as no surprise that the LU decomposi-
tion is a well studied algorithm and many variations to it
have been proposed, both for uni- and multi-processor sys-
tems. The significance of this application is further under-
lined by the fact that it is used as the primary means to
characterize the performance of high-end parallel systems
and determine their rank in the Top 500 list [20]. Varia-
tions to the LU algorithm include recursive methods [13],
pipelining and hyperplane solutions [16], as well as block-
ing algorithms [14, 23], on which we will focus in this pa-
per. Known implementations of the algorithm include the
Linpack benchmark [1, 10] and its parallelized version High-
Performance Linpack (HPL) [14]. The latter has been devel-
oped mainly for distributed-memory architectures, although
it can also run on shared-memory systems. Another imple-
mentation is the one included in the SPLASH-2 benchmarks
suite [23], which specifically targets shared-memory systems.

Although each of these implementations targets a different
set of architectures, the algorithms used at the highest level
are similar. The main concept is to partition the matrix into
smaller blocks with a fixed size, each one being processed
by one processor. The SPLASH-2 implementation divides
the matrix into blocks that fit into the L1 data cache of a
processor. HPL can be thought of having one more level
of block creation. The matrix is initially divided into fixed
size blocks that are distributed among nodes on the system,
creating a first level of memory locality. Within each node,
these blocks are further divided into smaller blocks, again of
a fixed size, in order to take advantage of the cache hierarchy.

Figure 2 is an example of applying such a blocking algo-
rithm to a matrix. On a shared-memory architecture, the

Figure 2: How the classic algorithms define blocks
and progress in each step.

whole matrix is assumed to be in the globally accessible
memory address space. On a distributed system, each block
is on a different node. Blocks with the same color can be
executed in parallel. The algorithm starts by processing the
diagonal block on one processor, while all other processors
wait on a barrier. After this block finishes, the blocks on
the same row and column with the diagonal block can be
processed in parallel. Each processor will update a few of
these blocks and will then wait again on a barrier. Finally,
all other (inner) blocks can be processed, which completes
the first step of the algorithm. The second step starts by
moving to the next diagonal block and the whole procedure
is repeated.

Despite its simplicity, the algorithm at the block-level has
an important drawback. The number of available blocks in
each parallel phase is usually not exactly divisible by the
number of processors. This creates a load imbalance at each
step, with the associated overhead accumulating over time.
However, the exploitation of the cache on a per processor
basis compensates to a large degree for this loss.

Nonetheless, LU implementations differ in a very impor-
tant aspect, e.g., how they process each block. HPL uses
the Level 3 Basic Linear Algebra Subprograms (BLAS-3) [9].
These routines perform operations between matrices. SPLASH-
2 uses only the DAXPY() BLAS-1 routine, which updates a
vector with a second vector, the latter having been multi-
plied with a scalar value, i.e., −→y ← α · −→x + −→y . As already
mentioned, all these routines are specifically optimized to
exploit the data cache hierarchy of contemporary systems.

The last issue regarding LU is the stability of the compu-
tation. In order to achieve better accuracy, usually partial
pivoting is employed, i.e., the largest coefficient in the same
column with the current diagonal element is found in the
remaining equations and the whole row that contains it is
exchanged with the row that contains the diagonal element.
In the rest of this paper, however, we do not employ this
method for several reasons. Firstly, our focus is how to
achieve the best possible performance on multi-core archi-
tectures with local-storage and not the stability of a specific
algorithm. Secondly, pivoting is a completely independent
pass in the LU decomposition and it could be easily added
and optimized at any time. Moreover, the algorithms we
propose are independent of pivoting. Therefore, the imple-
mentation of the rest of the application is not affected. Fi-
nally, for some common classes of scientific computing appli-
cations, pivoting is not required in practice because standard
discretizations lead to diagonally dominant matrices.

4. DYNAMIC BLOCK LU ALGORITHM
In the previous section we identified how two features of

applying a blocking algorithm for LU have been implicitly
influenced by the fact that the algorithms were to be exe-
cuted on cache-based systems. These are the use of a fixed



Figure 3: How the dynamic algorithm defines blocks
and progresses in each step.

size for each block and the use of the BLAS routines to
process each block. In this section, we argue that these
decisions are poor choices for multi-core architectures with
local-storage. Therefore, we introduce a new blocking algo-
rithm, which focuses on load balancing, rather than memory
access patterns.

Our blocking algorithm, which we will refer to as Dynamic
Repartitioning (DR), calculates the number of blocks and
the size of each block based on the number of processors
that are used to execute the algorithm, rather than the pa-
rameters of memory. More formally, we assume that we have
a N×N matrix and that the number of available processors
is P . In this case the matrix is divided into B = (P/2) + 1
blocks on each dimension. To make it easier to follow the
description of our algorithm, we include Figure 3, which pro-
vides an example for 16 processors. As B might not exactly
divide N , we define the first block, which will be the di-
agonal block in that step, to have a size equal to bN/Bc.
Since processing blocks in parallel can start only after the
diagonal block has been processed, the latter should finish
as soon as possible. Therefore, using the smallest size that
also leads to a load balanced execution in the parallel phases
benefits our algorithm. If NR is the remainder of N/B, then
0 ≤ NR < B. We define the size of the next NR blocks to be
bN/Bc+1. The remaining B−NR−1 blocks will have again
a size of bN/Bc. This assures that the size of all blocks does
not differ more than one on each dimension. After apply-
ing the above algorithm to create the blocks and processing
the diagonal block, we are left with P/2 blocks on the same
row and P/2 blocks on the same column with the diagonal
block. Hence, all P processors have exactly one block to pro-
cess. In the second parallel phase, where all inner blocks are
processed, we have a total of (P/2) · (P/2) = P 2/4 blocks.
Therefore each processor has to be assigned P/4 blocks in
this phase. From this result, we conclude that our algorithm
can be applied when P can be exactly divided by four. With
a simple extension, we managed to apply the algorithm for
every even number of processors. However, this is not the
focus of our paper.

Although we managed to balance the work load in the first
step of our algorithm, there remains an important issue. If
we continue the execution of the algorithm with the current
distribution of elements among blocks, we will have a load
imbalance in all the following steps of the algorithm. The so-
lution we adopted can be seen in Figure 3. Before each step
of the algorithm begins, we repartition the remaining part
of the matrix according to the same algorithm. Obviously,
this creates at each step the same number of blocks, which
results in good load balance, and only assigns less elements
to each block.

In the first steps of the algorithm, each block might be
quite large, which is an important drawback for the diagonal
block. Using 16 processors on a 1000× 1000 matrix, the di-
agonal block would have a size of b1000/((16/2)+1)c = 111.

The SPLASH-2 LU, in contrast, would create a much smaller
diagonal block, typically 16× 16. Since processing the diag-
onal block is performed by a single processor, this becomes a
significant bottleneck. However, the operation performed on
the diagonal block is actually a serial version of LU. There-
fore, the bottleneck can be easily removed by recursively ap-
plying DR to the diagonal block. This is depicted in the left
most part of Figure 3. The recursion stops when the num-
ber of elements in the last created diagonal block becomes
smaller than (P/2) + 1, which would result in zero-sized
blocks at the next level of recursion. After returning from
each level of recursion, we can use all processors to solve
the current diagonal block. Finally, after the last recursion
completes, we can continue to the parallel phases in the ini-
tial matrix. During the next step of our algorithm, when
we repartition the matrix, if the new diagonal block is large
enough, we can apply the same procedure of recursions.

The opposite problem appears as we move towards the
lower-right end of the matrix. Step after step, the part of
the matrix that has to be processed becomes smaller. In
the first implementation of our algorithm, this last part was
calculated serially, after its size became less than (P/2) + 1.
However, using a large number of processors would leave a
large portion of the matrix to be updated serially. In order
to overcome this problem, we modified our algorithm. After
reaching the last part of the matrix we simply halve the
number of processors we use. This allows each block to have
a size larger than zero in the next step. Hence, we continue
using the parallel algorithm. As we move further and the last
part becomes again small enough, we again halve the number
of processors and continue, until only one processor is left.
This allows us to process in parallel the whole matrix. We
refer to this optimization as Processor Adaptation. Notice
that we also apply this optimization when recursively calling
our parallel algorithm for the diagonal block. In this case,
we just have to restore the number of processors each time
we leave a level of the recursion.

One more optimization that can be applied, relies on the
fact that the P/4 inner blocks that each processor has to
update can be statically assigned to it. Therefore, we can
choose the blocks to be continuous, combine them into a
larger block and call only once the function that is used to
update the inner blocks. As we will see in a later section,
the best way to combine inner blocks in our algorithm is
to use blocks that are on the same column. In other im-
plementations this is not possible and blocks have to be as-
signed dynamically to processors. Moreover, the total num-
ber of blocks is much larger, which has two important con-
sequences. The absolute function calling overhead per pro-
cessor is much higher. The same holds for the percentage of
function calling overhead compared to the processing time
of each block, since the latter ones are smaller.

HPL is considered to be one of the best LU implementa-
tions and using it as a baseline to compare our algorithm
to would be ideal. However, it requires an implementation
of the MPI [18] message passing interface, even on shared-
memory systems, which is not yet available on C64. There-
fore, we decided to port the Non-Contiguous implementa-
tion of LU found in the SPLASH-2 benchmarks suite to
C64. In the rest of this paper, we will refer to this port as
the Base Implementation (BI). We did not use the Contigu-
ous version, as it accesses elements in each block through
a jump table, which in turn contains the starting address



Figure 4: Performance of both algorithms on
Cyclops-64 (700× 700 matrix).

of each block. Thus, it requires two memory accesses per
element. Although this is acceptable in the presence of a
cache, it is not in our case, as each memory access has to
go through the interconnection network to main memory.
Specifically for C64, loading data from SRAM requires 20
cycles, whereas contemporary Intel based systems have a
cache access time of 10 to 12 cycles.

Figure 4 presents the results of executing DR and BI on
C64. For this experiment we used a 700×700 matrix, which
is the maximum size that fits into SRAM. In order to only
compare the blocking algorithms, we still use the DAXPY()

routine to update each block. For BI we used the default
block size of 16×16, which also proved to be the best choice.
BI manages to closely follow DR up to 16 TUs. However,
its performance remains almost unchanged for more TUs. In
contrast, DR scales much better after that point, reaching
2.22 GFlops on 156 TUs, about 3.2 times better than BI.

Figure 5 presents the results of executing the algorithms
on a 4 processor system. Each processor is a 3.0 GHz Intel
Xeon with two cores. Each core supports HyperThreading
and features a 32KB L1 and a 2MB L2 data cache. In or-
der to be able to measure the execution time for this case
accurately, we used a 4000× 4000 matrix. As expected, the
results are inverted. BI achieves a much better performance
and scales far better than DR. These results strongly indi-
cate that our approach better suits multi-core architectures
with local-storage and that it can be used as a solid base for
further improvements.

5. OPTIMIZING OPERATIONS WITHIN
EACH BLOCK

5.1 Minimizing Memory Operations
In this section, we propose an alternative to DAXPY(),

in order to process the elements of each block. DAXPY()

takes advantage of the fact that a cache miss will move a
whole cache line from main memory. On systems with local-
storage, however, each request for data has to go through the
interconnection network to main memory. Our goal, there-
fore, is to minimize the loads and stores that have to reach
main memory. For C64, we can use SP and the register file
of each TU for this purpose. In our implementation, we did

Figure 5: Performance of both algorithms on an In-
tel based system (4000× 4000 matrix).

not use the first one for several reasons. Firstly, as we will
see in Section 6, the percentage of lost cycles that correspond
to memory delays is extremely low, after optimizing register
usage. Hence, using the synchronous data transfer method
available on C64 would only add more overhead. If, on the
other hand, we simulated asynchronous transfers, we would
loose the performance of some TUs for actual calculations.
DAXPY() updates each row, using the rows above it, which

is a good choice for cache-based architectures. For reasons
that will become clear in Subsection 5.2, we changed this
behavior and process the matrix by columns. Due to this
change, we now have to use the stride of the matrix, to
access the correct elements in each column. Initially, this
slightly reduced performance, but was extremely important
to finally improve it.

A well known method to maximize data reusage and min-
imize accesses to main memory is Register Tiling [4, 17],
which has been successfully applied to matrix multiplica-
tion on C64 [15]. In this paper, we rely on this method to
further improve performance, but extend it in a significant
way. Register tiling is usually implemented as a compiler op-
timization and does not have a global, high-level knowledge
of the algorithm that is used to solve a specific problem.
It rather relies on the static semantics of the loop under
consideration. In contrast, we took advantage of the global
knowledge about our algorithm and especially data depen-
dencies. This allows us to find an optimal solution for two
problems, i.e., the optimal size for each tile and the optimal
sequence in which tiles have to be traversed. We solved the
first problem by taking into account the number of registers
for a given architecture and the data dependencies between
both, tiles and blocks created from our blocking algorithm.
The second problem was solved by exhaustively analyzing
all possible schemes to traverse tiles.

In order to clarify the above discussion, we describe this
procedure through the example of Figure 6. In this exam-
ple we assume that the inner block C has to be updated.
The algorithm also requires data from two more blocks, one
that is on the same row (A) and one that is on the same
column (B) with the diagonal block. Furthermore, we as-
sume that block C has a size of N × M and the diagonal
block a size of K × K. Block B has been subdivided into
tiles of size L3×L1, whereas block C is subdivided into tiles
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Figure 6: Dividing into tiles for ProcessInnerBlock().

of size L3 × L2. Due to data dependencies, block A has to
be divided into tiles of size L1 × L2. This can be derived
from Figure 7, which depicts the source code of the DAXPY()

function and the function that updates the inner block C,
which we call ProcessInnerBlock(). For the rest of this
section, we assume that the size of a block can be exactly
divided with the size of each tile. This has no effect on the
general results of our analysis, but makes it simpler to fol-
low. Our implementation, however, takes into account these
remainders and can be used to process matrices of any size.
It can be derived that there are a total of 6 cases to create
and traverse tiles when working with the inner blocks and
all of them have been analyzed [22]. In the following para-
graphs we present only the method to create tiles and how
to traverse them that proves to be the optimal one.

We start by loading and keeping in registers tiles of size
L1 × L2, updating all possible tiles. Using the example of
Figure 6, we would load (A1) and use it to update (C1), in
conjunction with (B1). While still having (A1) in registers,
we would load (C3) and (B5), in order to update (C3) and
we would repeat the same process for all other tiles under
(C3). This gives the following results:

Loads = L1 · L2 + (L1 · L3 + L2 · L3) · (N/L3)

Stores = L2 · L3 · (N/L3)

At this point, (A1) is not needed anymore and we can load
the next tile. This can be done either by moving horizontally
to tile (A5) or vertically to tile (A2). For this case, it does
not matter which way we choose to continue and the result
will be exactly the same, with respect to the total number of
loads and stores required. This is because either way, there
are a total of K/L1 ·M/L2 tiles that have to be loaded and
in each case we need the aforementioned number of loads
and stores. We chose to move vertically, as it allows for a
more efficient implementation of index calculations. Hence,
our final equations are:

Loads =

[
L1 · L2 + (L1 · L3 + L2 · L3) ·

N

L3

]
·

K

L1
·

M

L2
=

=
K ·M ·N

L1
+

K ·M ·N
L2

+ K ·M

Stores =

[
L2 · L3 ·

N

L3

]
·

K

L1
·

M

L2
=

K ·M ·N
L1

According to the last equations, the number of loads and
stores does not depend on L3. Moreover, the bigger the

void Process InnerBlock ( double ∗∗A, double ∗∗B,
double ∗∗C, long K, long N, long M) {

long i , j ;

f o r ( i = 0 ; i < K; i++) {
f o r ( j = 0 ; j < M; j++) {

DAXPY(&C [ 0 ] [ j ] , &B [ 0 ] [ i ] , −A[ i ] [ j ] , N) ;
}

}
}

void DAXPY( double ∗A, double ∗B, double X, long N) {
long i ;

f o r ( i = 0 ; i < N; i++) {
A[ i ∗ St r id e ] += X ∗ B[ i ∗ St r id e ] ;

}
}

Figure 7: The initial source code of the ProcessIn-

nerBlock() and DAXPY() functions in C.

remaining two parameters are, the smaller the number of
loads required. Hence, we set L3 = 1. If our architecture
has R registers available, then one tile of each block has to
fit into these registers:

L1 · L2 + L1 · L3 + L2 · L3 = R⇒ L1 · L2 + L1 + L2 = R⇒
L2 = (R− L1)/(L1 + 1)

By replacing the value of L2 in the equation that deter-
mines the number of loads and setting the derivative of that
equation to zero, we can calculate the value of L1 that mini-
mizes the total number of loads. In order to keep the analysis
short, we just present the final results:

dLoads/dL1 = 0⇒ R · L2
1 + 2 ·R · L1 −R2 = 0⇒

L1 = −1±
√

R + 1⇒ L2 = −1±
√

R + 1

Notice that up to this point we did not refer to C64 at
all, i.e., our method is general enough to be applied on any
architecture. Applying it specifically to C64, the largest
value of R that will also give an integer result is R = 48.
Hence, L1 = L2 = 6 and our final equations are:

Loads = (K ·M ·N)/3 + K ·M
Stores = (K ·M ·N)/6

Other cases for processing the block would be to keep con-
stantly in registers tile (B1) or (C1). We also have to make a
similar analysis for the diagonal block, as well as the blocks
on the same row and column with the diagonal block, which
leads to a total of 15 cases. Again, all of them have been
thoroughly analyzed and only the best method for each case
was used in our implementation. Table 1 summarizes the
results of our analysis. For comparison, we include results
when using DAXPY(). We remind the reader that the results
for the optimized versions are not completely accurate, since
we assumed that there are no remainders when we divide a
block into tiles. Despite this fact, they can be used as a
good estimate. From these results, we conclude that the
number of loads and stores is reduced 4 times for the diag-
onal block and 6 times for all other blocks. It is important
to notice that these numbers correspond to the optimal size
of the tiles in each case. Therefore, the reduction would
be larger for architectures with more registers. We realize,



Block Loads Loads Stores Stores
Type (DAXPY) (Optimized) (DAXPY) (Optimized)

Diagonal 2·N·(N2−1)
3

N·(N−1)·(N+4)
6

N·(N2−1)
3

N·(N+2)·(N+4)
6

Row M·N·(N+1) M·N2
6 + N·(N+1)

2
M·N·(N+1)

2
M·N·(N+6)

12

Column M·(2·N+1)·(M−1)
2

M2·N
6 + M·(M−1)

2
M·N·(M−1)

2
M·N·(M+6)

12

Inner 2·K·M·N+K·M K·M·N
3 +K·M K·M·N K·M·N

6

Table 1: Comparing the number of loads and stores.

however, that applying this methodology manually to each
application is a time consuming and error-prone procedure.
Therefore, we believe that compilers should be made aware
of an application’s behavior at this level. To our knowledge,
no compiler is currently able to identify all cases, make a
detailed analysis as above and use the optimal case.

At this point, it is worth to mention that some recent
studies [3, 19] propose a different approach to solve LU on
multi-core systems with local-storage. They acknowledge
the load-balancing problem when using fixed-sized blocks
and try to solve it by simply reducing the size of each block.
A dependence-based, dynamic scheduling algorithm is then
employed to process all blocks. This procedure seems suit-
able for systems where local-storage can be accessed only
by the core that owns it, as is the case in the aforemen-
tioned studies where Cell is used. We believe, however, that
it introduces unnecessary complexity in the case of shared
local-storage. Our static assignment of blocks to processing
units is much simpler to implement. Moreover, the authors
of these studies suggest that smaller blocks can better ex-
ploit the large register file of Cell. Not only do we agree
with this statement, but we took it one step further by cal-
culating the optimal size of each tile, instead of using clas-
sical square tiles. As a conclusion, these studies try to solve
both problems by reducing block size, whereas we make a
distinction between the load-balancing and optimal register
file exploitation problems and propose a different, optimal
solution for each one of them.

5.2 Architecture Specific Optimizations
Although the above results are already very important

and promising, we can optimize our implementation even
more, due to special load and store instructions provided
by the C64 architecture. Specifically, our architecture pro-
vides the assembly instruction ’ldm RT, RA, RB’ , which
combines several loads of data from memory into only one
instruction. The register RA contains an address in mem-
ory. Starting from this address, consecutive 64-bit values in
memory are loaded into consecutive registers, starting from
RT through and including RB . Since each block is divided
into smaller tiles that have either 4 or 6 elements consecu-
tively in memory, we can take advantage of this instruction.
This is also the reason why we changed our algorithm to per-
form calculations on columns, instead of rows, as described
in Section 4. Notice that the number of elements that have
to be loaded and operated on will still be the same in the
optimized version, no matter if we use normal load oper-
ations or ldm. However, the number of load instructions
that have to be issued, if we use ldm, will be less. More-
over, when using the normal load instructions, one request
for data transfer is issued per element. If we use ldm, there
is only one request for every 4 or 6 values. This reduces
contention on the crossbar, allowing us to better exploit the
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Figure 8: Evaluating the impact of each optimiza-
tion on the performance of the application.

available bandwidth. Similarly to ldm, our architecture also
provides the optimized store instruction ’stm RT, RA, RB’,
which we also used in our implementation.

Another optimization that has been employed for our pur-
pose is the hardware implemented barrier, provided by the
C64 architecture. It allows TUs to synchronize extremely
fast and since barriers are the only synchronization opera-
tions required in our algorithm, it is important to use an
efficient implementation.

6. EXPERIMENTAL EVALUATION
In this section we present the experimental evaluation of

LU. Since the C64 chip is not yet physically available, all ex-
periments had to be conducted using the FAST simulator [7].
FAST is an execution-driven and binary-compatible simula-
tor of a multi-chip C64 system. It accurately represents the
hardware components and reproduces the functional behav-
ior of C64. It models in high detail all key components, such
as the memory subsystem, the crossbar and other functional
units. FAST has been extensively used by the C64 archi-
tecture design team at IBM for the purpose of chip design
verification, and many developers for early application de-
velopment. The development tool-chain for C64 includes
version 4.1.1 of the gcc compiler. During compilation, we
used the highest available optimization level (-O3).

First we evaluate the effect of each optimization on the
performance of LU. During our experiments we used 156
TUs and a 1000× 1000 matrix. Although only a 700× 700
matrix fits into SRAM in the default chip configuration, it
is possible to redefine the size of SRAM in the simulator. As
will be explained in more detail, all matrices behave well for
all optimizations that were described in Section 4. However,
applying register tiling only shows its full potential for larger
matrices. Figure 8 shows the results of our experiments.
After applying all optimizations, we reach 27.50 GFlops, a
27 times speedup compared to BI.

In order to better explain these results, we include Fig-
ure 9, which is a break-down of the instruction mix executed
by our algorithm. We use two cases to explain this large in-
crease in performance. The first one is the C code before
using register tiling (fourth column in Figure 8) and the
second one is our assembly code, after register tiling (fifth



Figure 9: Break-down of instruction mix.

column in Figure 8). The first two columns in Figure 9 rep-
resent the relative number of instructions executed in each
case. The third column is an enlarged version of the sec-
ond one, to high-light the differences between the two cases.
Our optimized code requires only 12% of the number of in-
structions that the unoptimized code executes. Since both
versions solve the same problem, the absolute number of
floating-point instructions does not change. However, we
were able to reduce 28 times the number of load and store
instructions issued. We remind the reader that in our anal-
ysis the number of load and store instructions is shown to
be reduced approximately 6 times due to register tiling and
6 more times due to the use of ldm and stm instructions.
A pleasant by-product, is the 36 times reduction of integer
instructions, mainly because index calculations are reduced
for the same reasons. As we can see, the experimental and
theoretical results are fairly close in this case. Due to these
improvements, the total time lost while waiting for data from
memory dropped from 31.4% to 4.7%.

From these results, it is obvious that there are two opti-
mizations that contribute the most in achieving the maxi-
mum performance. The first one is the introduction of DR.
Although the performance is not very high, compared to
the final numbers we achieve, it marks the first leap from
the extremely slow BI. Effectively, it provides a solid basis,
on which we can build our more advanced optimizations.
Moreover, it proves that our departure from algorithms that
implicitly rely on a cache hierarchy was a correct decision.
The second important optimization is register tiling. This
proves that our exhaustive and analytical approach for this
optimization was driven by correct assumptions about its
importance on our architecture. Additionally, it confirms
that the introduction of an application-aware implementa-
tion of register tiling can lead to better exploitation of the
available hardware.

As previously mentioned, only a 700 × 700 matrix can
fit into SRAM on the default configuration of C64. The
performance of our algorithm for this matrix and different
numbers of TUs is depicted in Figure 10. Although the
total performance using 156 TUs is quite high, our algo-
rithm does not scale very well. After thoroughly studying
the execution traces of several experiments, we concluded
that the main problem is the current size of the available
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Figure 10: Performance achieved for different com-
binations of matrix sizes and number of TUs.

SRAM, which limits the number of elements that have to
be updated by each TU. As the efficiency of register tiling
depends on the amount of data that is being reused, smaller
data sets are not fully exploiting this optimization. In order
to verify our explanation, we run another set of experiments.
Fortunately, FAST allows us to redefine the size of SRAM.
Using this feature, we run our application for larger matrix
sizes, ranging from 1000 × 1000 up to 4000 × 4000. The
results of these experiments are also depicted in Figure 10.
As can be seen, the performance improves dramatically as
the size of the matrix increases. These experiments confirm
that our algorithm is capable of achieving good performance
and that the current limit is the size of SRAM. In turn, the
size of the SRAM is currently limited only by the size of the
chip, as it must co-exist with 80 cores, the crossbar and all
other functional units. As manufacturing processes improve
and the integration of chips increases, the size of SRAM will
eventually become larger. Therefore, our experiments with
larger matrices provide a useful insight on the performance
that eventually can be achieved by C64.

Finally, we compare our results with the results reported
for other architectures. Table 2 summarizes the performance
of HPL for a variety of systems, on a per chip basis. The
results for Cell were obtained for a 1000× 1000 matrix. For
all other systems, the results are the ones reported in the
Top500 list [20] and the matrix size was the largest possible
for the available memory. This gives these systems an edge
over C64, as larger matrices allow better utilization of the
hardware and higher performance metrics. Although our
implementation of LU is not based on HPL, this comparison
can still give some interesting insights.

Even for the smallest matrix we used, the 19.17 GFlops
of C64 outperform the next best architecture, which is Cell
with 9.46 GFlops. The difference rises much higher, if we use
the matching 1000×1000 matrix on C64. All other architec-
tures achieve an even lower total performance, even though
they operate on larger matrices. A significant drawback of
C64, is the fact that it achieves a much lower efficiency. The
peak performance that can be achieved on 156 TUs is 78
GFlops, therefore the efficiency is 24.6% for the 700 × 700
matrix, 35.3% for the 1000× 1000 matrix and reaches only
52.3% for the largest matrix we used. This can be explained
by the fact that we use a much higher number of TUs, re-



Peak Actual
Efficiency

GFlops GFlops
Cell BE 3.2 GHz 14.63 9.46 64.66%
Power5 1.9 GHz 7.60 6.21 81.71%
Itanium2 1.6 GHz 6.40 5.30 82.83%
Pentium 4 Xeon 3.6 GHz 7.20 5.20 72.22%
Cray XT3 2.6 GHz 5.60 4.17 74.48%
Opteron 2.8 GHz 5.60 3.87 69.10%
Blue Gene/L 700 MHz 2.80 2.14 76.46%

Table 2: Maximum performance with one processor.

ducing the data set that each one operates on. In contrast,
Cell has only 8 Synergistic Processing Units (SPUs), each
one operating at a much higher clock rate. Using 8 TUs on
C64 for the 1000 × 1000 matrix gives an efficiency rate of
57.5%, which is much closer to the one achieved by Cell.

7. RELATED WORK
Apart from the HPL [14] and SPLASH-2 [23] implemen-

tations of LU, which we analyzed and compared to our own
algorithms, others also exist. A recursive algorithm for LU
has been proposed for uni-processor systems [13]. The main
characteristic of this algorithm is that it tries to reduce the
working set at each level of recursion, to better exploit the
cache. In contrast, we applied recursion on a parallel al-
gorithm and with a totally different goal, i.e., to improve
load-balancing among processors.

Pipelined and hyperplane (or wavefront) algorithms have
also been studied for shared-memory systems [16]. The first
category divides the matrix into horizontal stripes. As soon
as a processor finishes with the first column in its stripe, it
moves to the second column and informs the next proces-
sor that it can calculate its own first column. This creates
a pipelined execution, which is again specifically designed
to take advantage of the cache. Wavefront algorithms, on
the other side, fail to exploit effectively the cache, but allow
more parallelism. Their drawback is that they require much
more fine-grained synchronization. However, they are ex-
tremely suitable for specific parallel architectures, e.g., sys-
tolic arrays.

Currently, we are trying to apply our methodology to
other linear algebra problems. A good candidate seems to
be matrix multiplication. Although this application has al-
ready been studied on C64 [15], the approach is not as sys-
tematic as ours and preliminary results indicate that we are
able to achieve a much higher performance.

8. FUTURE WORK AND CONCLUSIONS
In this paper we present a methodology to design algo-

rithms for multi-core architectures with local-storage and
apply it to implement the LU decomposition for C64. Ini-
tially, we established that the design of current algorithms
for linear algebra problems relies, either explicitly or im-
plicitly, on the fact that they are executed on cache-based
architectures. We show that this approach does not scale
well for the architectures under consideration and propose a
data distribution scheme that favors load-balancing, instead
of memory access patterns. If required by the application,
we redistribute data at appropriate points, to ensure that
load-balancing is maintained throughout execution. For the
same reason, we recursively apply our parallel algorithm to
parts that traditionally have been solved serially.

Currently, register tiling depends on the ability of the
compiler to discover data dependencies among elements that
are accessed in loops. However, the current status of compil-
ers only allows them to have a narrow view of these depen-
dencies, within the limits of the loop itself. We minimized
the number of memory accesses required to load data by
applying register tiling in an application aware manner and
mathematically proved the best way that it can be applied
on a given architecture.

Regarding our Dynamic Repartitioning algorithm, we be-
lieve that it is an important departure from more conven-
tional solutions. This algorithm has been developed due to
the realization that traditional blocking algorithms trade the
performance gain of load balancing with the larger gain due
to the exploitation of the cache. Since this cannot hold in
the architectures under consideration, we believe that algo-
rithms targeting multi-core architectures with local-storage
should focus more on load balancing. Similar arguments
can be made for the register tiling method we propose. The
fact that a cache miss will move a whole cache line from
main memory has a definite impact on the methodology fol-
lowed when applying register tiling, as it should be taken
into account when loading data into registers, if maximum
performance is to be achieved. Again, this fact does not
hold in our case and which values are loaded into registers
should be adapted accordingly.

It is important to mention that in this paper we focused
mainly on blocking algorithms. However, it remains an open
question whether other LU decomposition algorithms would
perform better on our architecture, especially after optimiz-
ing them as carefully as we did for the proposed blocking
algorithm. Currently, we consider the possibility to imple-
ment other algorithms on C64. Certainly, however, we can
argue that the implemented combination of algorithms and
methodologies does provide an extremely high performance.

An important aspect is the fact that the C64 architec-
ture actually includes a large number of nodes. Currently,
however, our application only runs on one node. Our work
up to this point remains relevant, even if we decide to ex-
pand our algorithm to run on more nodes. As previously
mentioned, the update of the diagonal block is in itself an
LU decomposition of smaller size. Therefore, the code that
we developed would be reused to process the diagonal block
on just one node. However, routines that would handle all
other kinds of blocks would have to be written in this case.
Finally, some care would also be required if pivoting is de-
sired. During this independent phase of the algorithm, some
communication between nodes would be necessary.
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