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Abstract. This paper is motivated by the desire to provide an efficient and scal-
able software cache implementation of OpenMP on multicore and manycore ar-
chitectures in general, and on the IBM CELL architecture in particular. In this
paper, we propose an instantiation of the OpenMP memory model with the fol-
lowing advantages: (1) The proposed instantiation prohibits undefined values that
may cause problems of safety, security, programming and debugging. (2) The
proposed instantiation is scalable with respect to the number of threads because
it does not rely on communication among threads or a centralized directory that
maintains consistency of multiple copies of each shared variable. (3) The pro-
posed instantiation avoids the ambiguity of the original memory model definition
proposed on the OpenMP Specification 3.0.

We also introduce a new cache protocol for this instantiation, which can be
implemented as a software-controlled cache. Experimental results on the Cell
Broadband Engine show that our instantiation results in nearly linear speedup
with respect to the number of threads for a number of NAS Parallel Benchmarks.
The results also show a clear advantage when comparing it to a software cache
design derived from a stronger memory model that maintains a global total order-
ing among flush operations.

1 Introduction

An important open problem for future multicore and manycore chip architectures is
the development of shared-memory organizations and memory consistency models (or
memory models for short) that are effective for small local memory sizes in each core,
scalable to a large number of cores, and still productive for software to use. Despite the
fact that strong memory models such as Sequential Consistency (SC) [1] are supported
on mainstream small-scale SMPs, it seems likely that weaker memory models will be
explored in current and future multicore and manycore architectures such as the Cell
Broadband Engine [2], Tilera [3], and Cyclops64 [4].

OpenMP [5] is a natural candidate as a programming model for multicore and many-
core processors with software-managed local memories, thanks to its weak memory
model. In the OpenMP memory model, each thread may maintain a temporary view of
the shared memory which “allows the thread to cache variables and thereby to avoid
going to memory for every reference to a variable” [5]. It includes a flush operation on
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a specified flush-set that can be used to synchronize the temporary view with the shared
memory for the variables in the flush-set. It is a weak consistency model “because a
thread¡¯s temporary view of memory is not required to be consistent with memory at
all times” [5]. This relaxation of the memory consistency constraints provides room for
computer system designers to experiment with a wide range of caching schemes, each
of which has different performance and cost tradeoff. Therefore, the OpenMP memory
model can exhibit very different instantiations, each of which is a memory model that
is stronger than the OpenMP memory model, i.e., any legal value under an instantiation
is also a legal value under the OpenMP memory model, but not vice versa.

Among various instantiations of the OpenMP memory model, an important problem
is to find an instantiation that can be efficiently implemented on multicore and manycore
architectures and easily understood by programmers.

1.1 A Key Observation for Implementing the Flush Operation Efficiently

The flush operation synchronizes temporary views with the shared memory. So it is
more expensive than read and write operations. In order to efficiently implement the
OpenMP memory model, the instantiation should be able to implement the flush oper-
ation efficiently.

Unfortunately, the OpenMP memory model has the serialization requirement for
flush operations, i.e., “if the intersection of the flush-sets of two flushes performed by
two different threads is non-empty, then the two flushes must be completed as if in
some sequential order, seen by all threads” [5]. Therefore, it seems that it is very hard
to efficiently implement the flush operation because of the serialization requirement.
However, this requirement has a hidden meaning that is not clearly explained in [5].
The hidden meaning is the key for efficiently implement the flush operation.

We use an example to explain the real meaning of the serialization requirement. For
the program in Fig. 1, it seems that the final status of the shared memory must be either
x = y = 1 or x = y = 2 according to the serialization requirement. However, after
discussion with the OpenMP community, x = 1, y = 2 and x = 2, y = 1 are also legal
results under the OpenMP memory model. The reason is that the OpenMP memory
model allows flush operations to be completed earlier (but cannot be later) than the
flush points (statements 3 and 6 in this program). Therefore, one possible way to get
the result x = 1, y = 2 is that firstly thread 2 assigns 2 to x and immediately flushes x
into the shared memory, then thread 1 assigns 1 to x and 1 to y and then flushes x and
y, and finally thread 2 assigns 2 to y and flushes y. Therefore, we get a key observation
for implementing the flush operation efficiently as follows.

Thread 1 Thread 2
1: x = 1; 4: x = 2;
2: y = 1; 5: y = 2;
3: flush(x,y); 6: flush(x,y);

Is x = 1, y = 2 (or x = 2, y = 1) legal under the OpenMP memory model?

Fig. 1. A motivating example for understanding the serialization requirement under the OpenMP
memory model
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The Key Observation: A flush operation on a flush-set of shared locations can be de-
composed into unordered flush operations on each individual location. Each flush oper-
ation after decomposition must be completed no later than the flush point of the original
flush operation. Assuming that a memory location is the minimal unit for atomic mem-
ory accesses, the serialization requirement is naturally satisfied.

1.2 Main Contributions

In this paper, we propose an instantiation of the OpenMP memory model based on the
key observation in Section 1.1. It has the following advantages.

– Our instantiation prohibits undefined values that may cause problems of safety, se-
curity, programming and debugging. The OpenMP memory model may allow pro-
grams with data races to generate undefined values. However, in our instantiation,
all return values must be in a subset of initial value and the values that was written
by some thread before. Since the OpenMP memory model allows programs with
data races 1, our instantiation would be helpful when programming in such cases.

– Our instantiation is scalable with respect to the number of threads because it does
not rely on communication among threads or a centralized directory that maintains
consistency of multiple copies of each shared variable.

– Our instantiation avoids the ambiguity of the original memory model definition
proposed on the OpenMP Specification 3.0, such as the unclear serialization re-
quirement, the problem of handling temporary overflow and the unclear semantics
for programs with data races. Therefore, our instantiation is easy to understand
from the angle of efficient implementations.

We also propose the cache protocol of the instantiation and implement the software-
controlled cache on Cell Broadband Engine. The experimental results show that our in-
stantiation has nearly linear speedup with respect to the number of threads for a number
of NAS Parallel Benchmarks. The results also show a clear advantage when comparing
it to a software cache design derived from a stronger memory model that maintains a
global total ordering among flush operations.

The rest of the paper is organized as follows. Section 2 introduces our instantiation
of the OpenMP memory model. Section 3 introduces the cache protocol of the instanti-
ation. Section 4 presents the experimental results. Section 5 discusses the related work.
The conclusion is presented in Section 6.

2 Formalization of Our OpenMP Memory Model Instantiation

A necessary prerequisite to build OpenMP’s software cache implementations is the
availability of formal memory models that establish the legality conditions for deter-
mining if an implementation is correct. As observed in [6], “it is impossible to verify
OpenMP applications formally since the prose does not provide a formal consistency

1 Section 2.8.6 of the OpenMP specification 3.0 [5] shows a program with data races that imple-
ments critical sections.
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model that precisely describes how reads and writes on different threads interact”.
While there is general agreement that the OpenMP memory model is based on tem-
porary views and flush operations, discussion with OpenMP experts led us to conclude
that the OpenMP specification provides a lot of leeway on when flush operations can
be performed and on the inclusion of additional flush operations (not specified by the
programmer) to deal with local memory size constraints.

In this section, we formalize an instantiation of the OpenMP Memory Model —
ModelLF , based on the key observation in Section 1.1. ModelLF builds on OpenMP’s
relaxed-consistency memory model in which each worker thread maintains a temporary
view of shared data which may not always be consistent with the actual data stored
in the shared memory. The OpenMP flush operation is used to establish consistency
between these temporary views and the shared memory at specific program points. In
ModelLF , each flush operation only forces local temporary view to be consistent with
the shared memory. That is why we call it ModelLF where “LF” means local flush. A
flush operation is only applied on a single location. We assume that a memory location is
the minimal unit for atomic memory accesses. Therefore, the serialization requirement
of flush operations is naturally satisfied. A flush operation on a set of shared locations
is decomposed into unordered flush operations on each individual location, where those
flush operations after decomposition must be completed no later than the flush point
of the original flush operation. So it avoids the known problem of decomposition as
explained in Section 2.8.6 of the OpenMP specification 3.0 [5], where the compiler
may reorder the flush operations after decomposition to a later position than the flush
point and cause incorrect semantics.

2.1 Operational Semantics of ModelLF

In this section, we define the operational semantics of ModelLF . Firstly, we intro-
duce a little background for the definition. A store, σ, is a mathematical representa-
tion of the machine’s shared memory, which maps memory location addresses to values
(σ : addr �→ val). We model temporary views by introducing a distinct store, σi, for
each worker thread Ti in an OpenMP parallel region. Following OpenMP’s convention,
thread T0 is assumed to be the master thread. σi[l] represents the value stored in loca-
tion l in thread Ti’s temporary view. The flush operation, flush(Ti, l) makes temporary
view σi consistent with the shared memory σ on location l.

Under ModelLF , program flush operations are performed at the program points spec-
ified by the programmer. Moreover, additional flush operations may be inserted nonde-
terministically by the implementation at any program point, which makes it possible to
implement the memory model with bounded space for temporary views, such as caches.
The operational semantics of memory operations of ModelLF include the read, write,
program flush operation and nondeterministic flush operation defined as follows:

– Memory read: If thread Ti needs to read the value of the location l, it performs a
read(Ti, l) operation on store σi. If σi does not contain any value of l, the value in
the shared memory will be loaded to σi and returned to the read operation.

– Memory write: If thread Ti needs to write value v to the location l, it performs a
write(Ti, v, l) operation on store σi.



A Study of a Software Cache Implementation of the OpenMP Memory Model 345

– Program / Nondeterministic flush: If thread Ti needs to synchronize σi with the
shared memory on a shared location l, it performs a flush(Ti, l) operation. If σi

contains a “dirty value” 2 of l, it will write back the value into the shared memory.
After the flush operation, σi will discard the value of l. A thread performs program
flush operations at program points specified by the programmer, and can nondeter-
ministically perform flush operations at any program point. All the program and
nondeterministic flush operations on the same shared location must be observed by
all threads to be completed in the same sequential order.

3 Cache Protocol of ModelLF

In this section, we introduce the cache protocol that implements ModelLF . We assume
that each thread contains a cache which corresponds to its temporary view. Therefore,
performing operations on temporary views is equivalent to performing such operations
on the caches. Without loss of generality, in this section, we assume that each operation
is performed on one cache line. The reason is that an operation on one cache line can be
decomposed into sub operations; each of which is performed on a single location. We
use per-location dirty bits in a cache line to take care of the decomposition problem.

3.1 Cache Line States

We assume that each cache line contains multiple locations. Each location contains a
value that can be a “clean value” 3, a “dirty value”, or an “invalid value”. Each cache
line can be in one of the five states as follows.

Invalid: All the locations contain “invalid values”.
Clean: All the locations contain “clean values”.
Dirty: All the locations contain “dirty values”.
Clean-Dirty: Each location contains either a “clean value” or a “dirty value”.
Invalid-Dirty: Each location contains either an “invalid value” or a “dirty value”.
For simplicity, the cache line cannot be in other states such as Invalid-Clean. Addi-

tional nondeterministic flush operations may be performed when necessary to force the
cache line to be in one of the five states as above. We use a per-line flag bit together
with the dirty bits to represent the state of the cache line. The flag bit indicates whether
those non-dirty values in the cache line are clean or invalid.

3.2 Cache Operations and State Transitions

The state transition diagram of ModelLF cache protocol is shown in Fig. 2. Now we
explain how each cache operation affects the state transition diagram.

Memory read: If the original state of the cache line is invalid or invalid-dirty, the
invalid locations will load “clean values” from memory. Therefore, the state will change
to clean or clean-dirty, respectively. In other cases, the state will not change. After that,
the values in the cache line will be returned.

2 The term “dirty value” means that the value of location l was modified by thread Ti.
3 The term “clean value” means that the value was read but not modified by the thread.
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Fig. 2. State transition diagram for the cache protocol of ModelLF

Memory write: A write operation writes specified “dirty values” to the cache line.
Therefore, if the original state is invalid or invalid-dirty, it becomes either invalid-dirty
or dirty after the write operation, which depends on whether all the locations contain
“dirty values”. In other cases, the state will become either clean-dirty or dirty, which
depends on whether all the locations contain “dirty values”.

Program / Nondeterministic flush: A flush operation forces all the “dirty values” of
the cache line to be written back into memory. Then, the state will become invalid.

There may be various ways to implement the flush operation. For example, many
architectures support a block of data to be written back at a time. So a possible way
of implementing the flush operation is to write back the entire cache line that is being
flushed together with the dirty bits and then merge the “dirty values” into the corre-
sponding memory line in the shared memory. If the mergence in memory is not sup-
ported, a thread has to load the memory line, and then merge it with the cache line, and
finally write back the merged line, where the process must be atomic to handle the false
sharing problem. For example, on the Cell processor, atomic DMA operations can be
used to guarantee atomicity of the process.

4 Experimental Results and Analyses

In this section, we introduce our experimental results under ModelLF cache protocol. In
section 4.1, we introduce the experimental testbed. Then in section 4.2, we introduce the
major observations of our experiments. Finally, we introduce the details and analyses
of the observations in the last two sections.

4.1 Experimental Testbed

The experimental results presented in this paper were obtained on CBEA (Cell Broad-
band Engine Architecture) [2] under the OPELL (OPenmp for cELL) framework [7].

CBEA: CBEA has a main processor called the Power Processing Element (PPE) and a
number of co-processors called the Synergistic Processing Elements (SPEs). The PPE
handles most of the computational workload and has control over the SPEs, i.e., start,
stop, interrupt, and schedule processes onto the SPEs. Each SPE has a 256KB local
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storage which is used to store both instructions and data. An SPE can only access its
own local storage directly. Both PPE and SPEs share main memory. SPEs access main
memory via DMA (direct memory access) transfers which are much slower than the
access on each SPE’s own local storage.

We executed the programs on a PlayStation 3 [8] which has one 3.2 GHz Cell Broad-
band Engine CPU (with 6 accessible SPEs) and 256MB global shared memory. Our ex-
periments used all 6 SPEs with the exception of the evaluation of speedup which used
various numbers of SPEs from 1 to 6.

OPELL Framework: OPELL is an open source toolchain / runtime effort to imple-
ment OpenMP for the CBEA. OPELL has a single source compiler which compiles an
OpenMP program to a single source file that is executable on CBEA.

During runtime, the executable file starts to run the sequential region of the program
on PPE. Once the program enters a parallel region, PPE will assign tasks of computing
parallel codes to SPEs. After SPEs finish the tasks, the parallel region ends and PPE
will go ahead to execute the following sequential region.

Since each SPE only has 256KB local storage to store both instructions and data,
OPELL has a partition /overlay manager runtime library that partitions the parallel
codes into small pieces to fit for the local storage size, and loads and replaces those
pieces on demand.

Since a DMA transfer is much slower than an access on the local storage, OPELL
has a software cache runtime library to take advantage of locality. The runtime library
manages a part of local storages as caches and has a user interface for accessing. We
implement our cache protocol in OPELL’s software cache runtime library. The cache
protocol uses 4-way set associative caches. The size of each cache line is 128 bytes. We
ran the experiments on various cache sizes which range from 4KB to 64KB. We did not
try bigger cache size because the size of local storage is very limited (256KB) and a
part of it is used to store instructions and maintain stack.

Benchmarks: We used three benchmark programs in our experiments — Integer Sort
(IS), Embarrassingly Parallel (EP) and Multigrid (MG) from the NAS Parallel
Benchmarks [9].

4.2 Summary of Main Results

The main results of our experiments are as follows:

Result I: Scalability (Section 4.3): ModelLF cache protocol has nearly linear speedup
with respect to the number of threads for the tested benchmarks.

Result II: Impact of Cache Size (Section 4.4): We use another instantiation of the
OpenMP memory model — ModelGF 4, to compare with ModelLF . ModelGF maintains
a global total ordering among flush operations. The difference between ModelGF and
ModelLF is that when ModelGF performs a flush operation on a location l, it enforces
the temporary views of all threads to see the same value of l by discarding the values of
l in the temporary views. To implement ModelGF , we simulate a centralized directory

4 Operational semantics of ModelGF is defined in [10].
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that maintains the information for all the caches. When a flush operation on a location l
is performed, the directory informs all the threads that contain the value of l to discard
the value. We assume that the centralized directory is “ideal”, i.e., the cost of mainte-
nance and lookup is trivial. However, the cost of informing a thread is as expensive as
a DMA transfer because the directory is placed in main memory. ModelLF outperforms
ModelGF due to its cheaper flush operations. Our results show that the performance gap
between ModelLF and ModelGF cache protocols increases as the cache size becomes
smaller. This observation is significant because the current trend in multicore and many-
core processors is that the local memory size per core decreases as the number of cores
increases.

4.3 Scalability

Fig. 3 shows the speedup as a function of the number of SPEs (Each SPE runs one
thread.) under ModelLF cache protocol. The tested applications are MG with a 32KB
cache size, and IS and EP with a 64KB cache size. All the three applications have input
size W. We can see that for IS and EP benchmarks, ModelLF cache protocol nearly
achieves linear speedup. For MG benchmark, the speedup is not as good as the other
two when the number of threads is 3, 5 and 6. The reason is that the workloads among
threads are not balanced when the number of threads is not a power of 2.

IS W and EP W
hi l tachieve almost

linear speedup.

MG W performsMG W performs
worse because
of unbalanced
workloadsworkloads.

Fig. 3. Speedup as a function of the number of SPEs under ModelLF cache protocol

4.4 Impact of Cache Size

Fig. 4 and 5 show execution time and cache eviction ratio curves for IS and MG with
input size W on various cache sizes (4KB, 8KB, 16KB, 32KB and 64KB 5) per thread.
The two figures show that the cache eviction ratio curves under the two cache protocols
are equal, but the execution time curves are not. Moreover, the difference in execution
time becomes larger as the cache size becomes smaller. This is because the cost of cache
eviction in ModelGF cache protocol is much higher. Moreover, the smaller the cache size
is, the higher the cache eviction ratio is. To show the change of performance gap clearly,
we normalize the execution time into the interval [0, 1] by applying division on every
execution time where the divisor is the maximal execution time in all tested configura-
tions. The corresponding configurations to the maximal execution time are 4KB cache
sizes under ModelGF for both MG and IS. The performance gap between ModelGF and
ModelLF keeps constantly for EP when we change the cache sizes. The reason is that EP
has very bad temporal locality. So it is insensitive to the change of cache sizes.

5 64KB is only for IS.
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The difference of normalized execution time increased from 0.15 to 0.25 as the cache size per
SPE was decreased from 64KB to 4KB.

Fig. 4. Trends of execution time and cache eviction ratio for IS-W on various cache sizes

The difference of normalized execution time increased from 0.04 to 0.16 as the cache
size per SPE was decreased from 32KB to 4KB.

Fig. 5. Trends of execution time and cache eviction ratio for MG-W on various cache sizes

5 Related Work

Despite over two decades of research on memory consistency models, there does not
appear to be a consensus on how memory models should be formalized [11,12,13,14].
The efforts to formalize memory models for mainstream parallel languages such as
the Java memory model [15], the C++ memory model [16], and the OpenMP memory
model [6] all take different approaches.

The authoritative source for the OpenMP memory model can be found in the spec-
ifications for OpenMP 3.0 [5], but the memory model definition therein is provided
in terms of informal prose. To address this limitation, a formalization of the OpenMP
memory model was presented in [6]. In this paper, the authors developed a formal,
mathematical language to model the relevant features of OpenMP. They developed an
operational model to verify its conformance to the OpenMP standard. Through these
tools, the authors found that the OpenMP memory model is weaker than the weak con-
sistency model [17]. The authors also claimed that they found some ambiguities in the
informal definition of the OpenMP memory model presented in the OpenMP speci-
fication version 2.5 [18]. Since there is no significant change of the OpenMP mem-
ory model from version 2.5 to version 3.0, their work demonstrates the need for the
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OpenMP community to work towards a formal and complete definition of the OpenMP
memory model.

Some early research on software controlled caches can be found in the NYU Ultra-
computer [19], Cedar [20], and IBM RP3 [21] projects. All three machines have local
memories that can be used as programmable caches, with software taking responsibility
for maintaining consistency by inserting explicit synchronization and cache consistency
operations. By default, this responsibility falls on the programmer but compiler tech-
niques have also been developed in which these operations are inserted by the compiler
instead, e.g., [22]. Interest in software caching has been renewed with the advent of mul-
ticore processors with local memories such as the Cell Broadband Engine. There have
been a number of reports on more recent software cache optimization from compiler
angle as described in [23,24,25].

Examples of recent work on software cache protocol implementation on Cell pro-
cessors can be found in [26,27,28]. The cache protocol used in [26] uses a centralized
directory to keep tract cache line state information in the implementation - reminds
us the ModelGF cache protocol in this paper. The cache protocols reported in [27,28]
do not appear to use a centralized directory - hence appear to be more close to the
ModelLF cache protocol. However, we do not have access to the detailed information
on the implementations of these models, and cannot make a more definitive compar-
isons at the time when this paper is written.

OPELL [7] is an open source toolchain / runtime effort to implement OpenMP for
the Cell Broadband Engine. Our cache protocol framework reported here has been de-
veloped much earlier in 2006-2007 frame and embedded in OPELL (see [7])- but the
protocols themselves are not published externally.

6 Conclusion and Future Work

In this paper, we investigate the problem of software cache implementations for the
OpenMP memory model on multicore and manycore processors. We propose an instan-
tiation of the OpenMP memory model — ModelLF which prohibits undefined values
and avoids the ambiguity of the original memory model definition on OpenMP Speci-
fication 3.0. ModelLF is scalable with respect to the number of threads because it does
not rely on communications among threads or a centralized directory that maintains
consistency of multiple copies of each shared variable.

We propose the corresponding cache protocol and implement the cache protocol by
software cache on the Cell processor. The experimental results show that ModelLF cache
protocol has nearly linear speedup with respect to the number of threads for a number
of NAS Parallel Benchmarks. The results also show a clear advantage when comparing
it to ModelGF cache protocol derived from a stronger memory model that maintains a
global total ordering among flush operations.

This provides a useful way that how to formalize (architecture unspecified) OpenMP
memory model in different ways and evaluate the instantiations to produce different
performance profiles. Our conclusion is that OpenMP’s relaxed memory model with
temporary views is a good match for software cache implementations, and that the
refinements in ModelLF can lead to good opportunities for scalable implementations of
OpenMP on future multicore and manycore processors.
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In the future, we will investigate the possibility of implementing our instantiation on
different architectures and study its scalability in the case that the architecture contains
big number of cores (e.g. over 100).
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Zhang, T., O’Brien, K., O’Brien, K.: Hybrid access-specific software cache techniques for
the Cell BE architecture. In: PACT 2008: Proceedings of the 17th international conference
on Parallel architectures and compilation techniques, pp. 292–302. ACM, New York (2008)

http://www.openmp.org/mp-documents/spec25.pdf

	A Study of a Software Cache Implementation of the OpenMP Memory Model for Multicore and Manycore Architectures
	Introduction
	A Key Observation for Implementing the Flush Operation Efficiently
	Main Contributions

	Formalization of Our OpenMP Memory Model Instantiation
	Operational Semantics of Modellf 

	Cache Protocol of Modellf 
	Cache Line States
	Cache Operations and State Transitions

	Experimental Results and Analyses
	Experimental Testbed
	Summary of Main Results 
	Scalability
	Impact of Cache Size

	Related Work
	Conclusion and Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /DEU <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


