
TIDeFlow: The Time Iterated Dependency Flow Execution
Model

Daniel Orozco
University of Delaware

ET International
orozco@udel.edu

Elkin Garcia
University of Delaware
egarcia@udel.edu

Robert Pavel
University of Delaware
rspavel@udel.edu

Rishi Khan
ET International

rishi@etinternational.com

Guang Gao
University of Delaware

ggao@capsl.udel.edu

ABSTRACT
The many-core revolution brought forward by recent ad-
vances in computer architecture has created immense chal-
lenges in the writing of parallel programs for High Per-
formance Computing (HPC). Development of parallel HPC
programs remains an art, and a universal doctrine for syn-
chronization, scheduling and execution in general has not
been found for many-core/multi-core architectures. These
issues are exacerbated by the popularity of traditional exe-
cution models derived from the serial-programming school of
thought. Previous solutions for parallel programming, such
as OpenMP, MPI and similar models, require significant ef-
fort from the programmer to achieve high performance.

This paper provides an introduction to the Time Iter-
ated Dependency Flow (TIDeFlow) model, a parallel exe-
cution model inspired by dataflow, and a description of its
associated runtime system. TIDeFlow was designed for ef-
ficient development of high performance parallel programs
for many-core architectures.

The TIDeFlow execution model was designed to efficiently
express (1) parallel loops, (2) dependencies (data, control or
other) between parallel loops and (3) to allow composability
of programs.

TIDeFlow is a work in progress. This paper presents an
introduction to the TIDeFlow execution model and shows
examples and preliminary results to illustrate the qualities
of TIDeFlow.

The main contributions of this paper are:

1. A brief description of the TIDeFlow execution model,
and its programming model,

2. A description of the implementation of the TIDeFlow
runtime system and its capabilities and

3. Preliminary results showing the suitability of TIDe-
Flow to express parallel programs in many-core archi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DFM ’11 Galveston Island, Texas, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

tectures.

1. INTRODUCTION
The computational power of processors continues to in-

crease every day due, in part, to the increased number of
parallel execution units brought forward by the many-core
revolution. Unfortunately, the increase in computational
power often comes at the cost of programmers and scientists
expending significant effort exploiting the increased paral-
lelism of many-core processors.

We argue that the difficulties in exploiting the compu-
tational power of many-core processor chips are, in part,
due to the inertia of popular programming models such as
OpenMP [4], MPI [12] or even serial languages. Express-
ing parallelism in an efficient way under those programming
models is difficult. This is because the programmer is forced
to intermix the application code with runtime-related deci-
sions such as: when should synchronization be done, when
should threads or tasks be created, when should signals be
sent or received, what are the IDs of processors, and so on.
These difficulties in programming are offset by the devel-
opment of special purpose constructs, (e.g. OpenMP prag-
mas for stencil computations), but the problem remains un-
solved.

The dataflow models of computation [14] provide an alter-
native environment that is intrinsically parallel. By writing
programs as graphs, the programmer can be abstracted from
the duties of synchronization, scheduling and task creation,
leaving the runtime system responsible to meet them.

Each one of the many parallel execution models exist-
ing were designed to target particular necessities: Static
Dataflow [6] is excellent for programs without recursion, Dy-
namic Dataflow [1] handles recursion and has been shown
to exhibit excellent parallelism, and Macro Dataflow [20]
leverages on the efficiency of serial architectures.

TIDeFlow is a parallel execution model that has been de-
signed to efficiently express and execute HPC programs.
TIDeFlow leverages the following characteristics of HPC
programs: (1) the abundance of parallel loops, (2) expres-
siveness of dependencies (data, control or other) between

This research was, in part, funded by the U.S. Government. The
views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of the U.S. Government.

parallel loops and (3) composability of programs. The re-
sulting design, explained in Section 3 introduces weighted
actors to address parallel loops and weighted arcs to address
concurrent execution of tasks (e.g. overlapping of communi-
cation and computation, double buffering and pipelining).

The resulting TIDeFlow parallel execution model borrows
many concepts from dataflow but does not aim to be strictly
dataflow. TIDeFlow provides a pact between the program-
mer and the system in which the programmer expresses de-
pendencies between tasks and the runtime system enforces
them. The main difference between TIDeFlow and more tra-
ditional dataflow models is that dependencies can be data,
control, or other.

A runtime system that implements the TIDeFlow execu-
tion model, hereby called the TIDeFlow Runtime System,
has been developed. The TIDeFlow runtime system ad-
dresses the specific features of HPC programs in many-core
architectures: The presence of shared memory within one
computer node, the large number of compute cores, and the
intrinsic nature of programs (loop structure, overlapping of
communication and computation and so on).

The TIDeFlow Runtime system is fully distributed: There
is no centralized process responsible for scheduling, synchro-
nization or task creation or termination. Instead, each pro-
cessor can, in a lock-free, concurrent way, schedule its own
work, perform enforcement of local synchronization signals
and participate in distributed constructs such as join oper-
ations between groups of tasks.

The effectiveness of TIDeFlow for the development of HPC
programs was tested with several common HPC kernels such
as Matrix Multiply, simulations of electromagnetic waves
propagating in 1 and 2 dimensions and Reverse Time Mi-
gration (RTM). In all cases we see that TIDeFlow allows rea-
sonable expressibility of the programs studied, while main-
taining excellent scalability.

The rest of the paper is organized as follows: Section
2 provides relevant background and a summary of related
work. Section 3 formally presents the TIDeFlow execution
model. Section 4 describes the implementation of TIDeFlow
and its runtime system. Section 5 presents experiments
showing the usability of TIDeFlow. Section 6 presents a
summary of this paper along with conclusions and Section
7 presents possible future work directions.

2. BACKGROUND
This section presents relevant background in dataflow ex-

ecution models and their relationship to the TIDeFlow ex-
ecution model. Space limitations constrain the amount of
information that can be presented here to dataflow models
that directly influenced the design of TIDeFlow. Further
information on dataflow models can be found in the com-
prehensive survey on the classical dataflow execution models
written by Najjar et al. [14].

Included in the survey by Najjar et al. is a description
of Static Dataflow [6] and Dynamic Dataflow [1]. Static
Dataflow was studied very thoroughly in the development of
TIDeFlow, and it was found to have limitations to express
parallel loops and to execute recursion, Dynamic Dataflow
was also studied. TIDeFlow borrows the idea of using colors
to simultaneously distinguish multiple tokens in the same arc
from Dynamic Dataflow.

Two works that build upon the concept of dataflow are
Macro Dataflow [20] and the work of Gao [9]. Macro Data-

flow contributed the idea of aggregating several operations
into a single actor. TIDeFlow directly builds upon the work
of Gao by facilitating the efficient pipelining of operations
in a dataflow graph.

However, TIDeFlow differs from traditional dataflow im-
plementations in many ways. One such difference is the
use of weighted nodes, which are not present in Dynamic
or Macro Dataflow. This was inspired by a study of Petri
Nets [13]. We used the concept of places and transitions to
help develop the concept of the weighted node. However, it
is important to note that TIDeFlow relies on shared memory
to transfer data between its actors which is not necessarily
the case in Petri Nets.

Other approaches are similar to TIDeFlow in their objec-
tives but not in their implementation or style. The Kernel
for Adaptive, Asynchronous Parallel and Interactive Pro-
gramming (KAAPI) [11], is an execution system inspired
by Dataflow, that leverages on the C++ philosophy. Cilk
[3], X10 [7], Habanero C, and Habanero Java [23] use
asynchronous task creation to achieve parallelism. TIDe-
Flow is similar to those models in that its runtime system
uses queues to distribute work among processors in a shared
memory environment, but it differs in the way that parallel
loops are represented and executed as well as in the way
programs are expressed.

EARTH [15, 22] is a hybrid dataflow system where actors
are classified as functions or threads. TIDeFlow borrows the
technique for signal synchronization from EARTH, but it is
different from EARTH in the way loops are represented and
in the addition of weights in graphs.

3. TIDEFLOW EXECUTION MODEL
This section presents a description of the TIDeFlow exe-

cution model.

3.1 The Basics
TIDeFlow programs are expressed as graphs of weighted

actors (nodes) and weighted arcs. Both actors and arcs have
state and associated properties.

3.1.1 Actors
The TIDeFlow execution model is based in the obser-

vation that HPC programs are composed mostly of parallel
loops.
Actors represent parallel loops: The nature of par-

allel loops are expressed through actor properties which are
constant: the number of iterations in the loop (N) and a
function f that contains the code to be executed by each
iteration of the loop. As in Macro Dataflow [20], actors
execute a group of operations. Unlike macro dataflow, how-
ever, actors represent a parallel loop rather than a single
computation.

Actors have state: The state held by actors has been
designed to ease the execution and management of parallel
HPC programs. The state of an actor is composed of:

• A time instance: An integer, initialized to zero that
increases its value by one every time an actor success-
fully fires.

• An execution state: An actor can be either not enabled,
enabled, fired (executing), or dead.

Figure 1 shows the state and the properties of an actor in
TIDeFlow.

Time

instance Execution State:

One of {Enabled, Not

Enabled, Firing, Dead}

Number of Loop

Iterations

Function that

executes one

loop iteration.

Arc Weight7

68

6 6

Token with

time instance
Arc

1

0

0

2
0

f Nt=7 Not Enabled

Figure 1: A TIDeFlow actor

3.1.2 Tokens
When an actor finishes execution, it may signal other ac-

tors that depend on it by creating tokens. Tokens are tagged
by the time instance of the actor that produced them. This
is similar to dynamic dataflow execution models such as the
MIT Tagged Token model [2] where tokens are tagged with
a color that in this case is the time instance at the time the
tokens were produced. Unlike the MIT Tagged Token model,
tokens do not carry data, they only convey the meaning of
a dependence met for a particular time instance. Data is
passed between actors through shared memory. This is sim-
ilar to the EARTH model of computation [22].

3.1.3 Arcs
Arcs represent data, control, or other kinds of dependen-

cies between actors.
Arcs carry tagged tokens: The time instance of each

token can be used to distinguish between tokens in an arc.
No two tokens contain the same time instance in the same
arc because, at most, one token per time instance per arc
can be produced. Arcs are allowed to carry an unbounded
number of tokens, although particular implementations can
restrict the number of tokens to a certain maximum.

The weight of an arc represents dependence dis-
tance: A weight of k in an arc indicates that at time in-
stance t an actor must wait for a token tagged as t− k. By
definition, if t − k < 0 the token is assumed to exist and
the dependence is met. The weights on the arc allow a sim-
ple way to represent loop-carried dependencies between two
actors.

3.2 Operational Semantics
This section provides a formal definition of the execution

of a TIDeFlow program. The explanation is conducted by
modeling the behavior of actors as Finite State Machines
(FSM) (Figures 2 and 3). As it will be explained, the two
main components of the actor’s state, the execution state
and the time instance, are independent, so a state diagram
is presented for each.

3.2.1 Execution of an Actor
An actor fires (executes) when it enters the firing state.

The effect of an actor firing is that each one of the N loop it-
erations represented by the actor are executed concurrently
using the function f of the actor. In other words, parallel,
concurrent invocations of f(i), i = 0, ..., N − 1 are called.
The actor finishes execution when all of the parallel invo-
cations of the loop iterations end. When the actor finishes

execution it generates a termination signal and it may or
may not generate output tokens.

When the actor finishes execution, the actor increases its
time instance.

3.2.2 Signals Generated by Actors
An actor only generates signals when it finishes firing.
Termination Signals: When an actor finishes firing, ex-

actly one termination signal is generated, and tokens in the
output arcs may or may not be generated. The termina-
tion signals can be CONTINUE, DISCONTINUE, and END. CON-
TINUE indicates that the execution of the program should
continue as normal, DISCONTINUE indicates that the actor
should not be executed again, but the rest of the program
should continue and END indicates that the actor and all of
its consumers should end. The kind of signals generated is
decided by the user through the return value of the func-
tion f associated with the actor. It is a requirement of the
present specification that all parallel invocations of function
f within the same actor and time instance return the same
signal value.

Generated Tokens: The generation of tokens is subor-
dinated to the termination signal. When CONTINUE is gener-
ated, exactly one token per output arc is generated and the
token is tagged with the time instance with which the actor
executed. DISCONTINUE is a termination signal that removes
an actor from a graph along with its input and output depen-
dency arcs. An actor that generates a DISCONTINUE signal
is never fired again and it does not need to produce any to-
kens because the actor and all its associated arcs have been
removed from the graph. At implementation, a simple flag
can be used to indicate this. Finally an END signal does not
generate any output tokens in any output arcs.

3.2.3 Actors With No Input Arcs
Conceptually, an actor becomes enabled when all its de-

pendencies have been met. TIDeFlow takes the stance that
an actor with no input dependencies has all its dependencies
automatically met because it has zero pending dependen-
cies. The result of this policy is that actors with no input
arcs may fire again if they produce a CONTINUE signal after
they fire.

3.2.4 Token Matching
An actor can only enter the enabled state when (1) it is

in the not enabled state and (2) there is one token tagged
with the appropriate time instance in each arc. As explained
in Section 3.1.3, the weight of the arc offsets the tag of the
required token.

3.2.5 Actor Finite State Machine
The operational semantics can be summarized with the

state diagram of Figures 2 and 3. The execution state of the
actors is independent of the time instance of the actor. For
that reason, separate FSM diagrams are given.

3.2.6 Termination of a Program
A program is defined to end when there are no actors that

are firing or that are enabled.

3.3 Composability
Smaller programs can be used to build larger programs.

This powerful property allows modularity and it gives the

Signals

C: CONTINUE D: DISCONTINUE E:END

S: Scheduled by Runtime

T: Tokens available

Firing

Dead
Not

Enabled

Enabled

D,E
C,S,T,D,EC

S,T

T

C,D,E,S

C,D,E,T

S

Figure 2: State Transitions for Actors

programmer useful abstractions that are not tied to imple-
mentation details such as the number of processors available.

Composability is achieved by allowing small programs to
be seen as actors in the larger program that use them. In
the current specification, to follow the conventions, the ac-
tor that represents the small program is defined to have
only N = 1 iterations, because the small program is only
executed once when it becomes enabled. Additionaly, by
definition, small programs return a CONTINUE signal when
they complete.

By the current specification a TIDeFlow program can only
be constructed from existing programs. At this time, this
design choice precludes the existence of recursive calls be-
cause a program can not be used as part of itself.

Each use of a program does not interfere in any way with
uses of other programs: When a program is used as part of
a larger program, it generates its own local state that exists
for the duration of the program only. Other uses of the same
program have their local state.

3.4 Example: FDTD1D Kernel
Figure 4 shows the kernel for a simulation of an electro-

magnetic wave propagating in 1 dimension using the Finite
Difference Time Domain (FDTD) algorithm.

The serial version of the FDTD1D kernel shown in Fig-
ure 4 was written with the intention to demonstrate how to

0 1 2 ...C,D,E C,D,E

X X X

C,D,E

Signals

C: CONTINUE D: DISCONTINUE E:END

X: Other Signals

Figure 3: State Transitions for Time instances

1 int Ef(int i, int t) {
2

3 /* Single loop iteration */
4 E(i,t+1) = k1 * E(i+1,t) + k2 * (H(i+1,t) - H(i,t));
5

6 /* Termination Condition */
7 if (t == Timesteps) { return END; }
8

9 return CONTINUE;
10 }
11

12 int Hf(int i, int t) {
13

14 /* Single loop iteration */
15 H(i,t+1) = H(i,t) + E(i,t+1) - E(i+1,t+1);
16

17 /* Termination Condition */
18 if (t == Timesteps) { return END; }
19

20 return CONTINUE;
21 }
22

23 void EH_Kernel(void) {
24 t = 0;
25

26 start:
27

28 /* E Parallel Loop */
29 parallel for i in 0 to N-1
30 Signal = Ef(i, t);
31

32 if (Signal == END) { return };
33

34 /* H Parallel Loop */
35 parallel for i in 0 to N-1
36 Signal = Hf(i, t);
37

38 if (Signal == END) { return };
39

40 /* Time instance */
41 t++;
42

43 /* Loop to execute the kernels again */
44 goto start;
45 }

Figure 4: FDTD1D Code

map an HPC program to a TIDeFlow program. A standard,
equivalent, way to write the FDTD1D kernel can be found
in [16, 21].

The equivalent FDTD1D TIDeFlow program is shown in
Figure 5. The program is a direct map of the program in
Figure 4.

The parallel loops have become actors (Ef and Hf). The
dependencies between the loops have been specified as arcs
following the convention for weights in arcs: A weight of k
exists between two actors if the execution of instance t + k
depends on an execution at time t. The Hf at time t needs
the Ef at time t to have completed so the arc between them
has a weight of zero. The Ef at time t + 1 needs the Hf

at time t to have completed so the arc between them has
a weight of 1. In a similar fashion, Ef requires E(i,t) to
compute E(i,t+1), so it has a self-dependency with weight
of k = 1. A similar argument shows that there is a self
dependency on the Hf with a weight of k = 1.

3.5 Memory Model
This section strives to present an intuitive explanation of

the TIDeFlow memory model. A formal, mathematical def-
inition of the TIDeFlow memory model will be the subject

Ef N Hf N

0

1

11

EH_Kernel

Figure 5: FDTD1D expressed in TIDeFlow

of another publication.
The memory model of TIDeFlow has been designed to

provide useful constructs for programmers while at the same
time allowing simple practical implementations in many-core
systems.

Seeking simplicity of implementation and design, the TIDe-
Flow model uses shared memory as the main way of actors to
communicate data. This decision facilitates communication
between actors at the expense of the necessity of additional
rules to avoid race conditions.

The following statements represent the intuition behind
the TIDeFlow memory model.

1. Execution of each one of the loop iterations that com-
pose an actor appears serial.

2. No provisions are specified as to data sharing between
loop iterations in the same actor, in the same time
iteration: The model assumes that actors represent
parallel loops and not other kinds of loops.

3. A dependency from an actor A to an actor B ensures
that B can use data produced by A.

4. In order to use programs as part of larger programs, all
memory operations in a program must have completed
when the program ends.

4. IMPLEMENTATION OF TIDEFLOW
The implementation of TIDeFlow presented several chal-

lenges that ultimately resulted in interesting advances and
tools: A fully distributed runtime system, a programming
language to describe program graphs, concurrent algorithms
[17] and new ways to reason about performance models [18].

This section presents an overview of those challenges and
the products that resulted from their solution.

4.1 Programming Model
TIDeFlow programs are composed of (1) a graph, such

as the graph of Figure 5 that represents the interactions
between parallel loops and (2) functions that describe what
computations must be done in the parallel loops, in the style
of the code presented in Figure 4.

It is envisioned that a source to source compiler can obtain
a graph description expressed in a simple graph format –such
as the DOT language used by Graphviz [8] – and converts
it to use a C interface to declare the existence of the actors

and their relationship. At this point in the development
of TIDeFlow, the programmer must use the C interface to
declare the actors and the dependencies between them.

4.2 Intermediate Representation
Several desirable features were identified during the design

cycle of the TIDeFlow runtime system, including the ability
to support future compiler optimizations, or the possibility
to change the program at various stages of compilation. As
a result, an intermediate representation was designed to rep-
resent the program during the early stages of compilation.

The intermediate representation of TIDeFlow programs
uses a small data structure to represent each actor. A pro-
gram is represented by an array-of-structures that contains
the actors.

The design of the intermediate representation aims to ex-
press the graph as a collection of integers. For example,
whenever a reference to an actor is used, its offset in the
program’s array-of-structures is used rather than a pointer.
This same representation is used to describe arcs: Two inte-
gers are used to represent an arc, representing the starting
and ending actor of the arc.

Representing TIDeFlow programs as a collection of inte-
gers has the great advantage of allowing simple duplication
of a program (for composability of programs) and portability
to other architectures.

Currently, the intermediate representation is computed
automatically by the TIDeFlow toolchain.

4.3 Compiling and executing a program
The final stage of compilation of a TIDeFlow program

takes into account the architecture in which it runs and
leaves the program resident in memory. At this point, saving
a compiled program to non-volatile storage is not supported.
For that reason, the compiler and the launcher of a TIDe-
Flow program are integrated into the same tool.

Compilation of a TIDeFlow program consists of translat-
ing the intermediate representation into an executable data
structure: Offsets in the IR structures result in pointers in
the final program and memory is allocated and initialized
for the actors. The resulting executable data structure con-
tains actors with their properties and their states, linked
through pointers that follow the dependencies specified in
the original program.

A TIDeFlow program is executed when a pointer to the
program is passed to the runtime system. The runtime sys-
tem scans the program and schedules all actors that have
no dependencies for time instance zero. The execution con-
tinues until the runtime system detects that no more actors
will be scheduled.

4.4 Runtime System
The TIDeFlow runtime system supports the execution of

programs by providing scheduling, synchronization, initial-
ization and termination of programs.

The basic unit of execution for scheduling and execution
in the runtime system is the task. A task represents one unit
of computation that must be done. For example, each one of
the parallel iterations on an actor are represented by a single
task in the runtime system. To allow immediate visibility of
available work, all tasks that become enabled are written to
a queue that can be accessed concurrently by all processors.

Perhaps the most important feature of the runtime sys-

tem is that it is fully distributed. There is no one process
or thread or task in charge of the runtime system duties.
Instead each processor concurrently (1) performs its own
scheduling and (2) handles localized signals related to the
actor being executed by the processor, including enabling
other actors and writing them to the global task queue. The
TIDeFlow runtime system is fully distributed with regard to
the processors, because no one processor, thread, or task is
responsible for scheduling, but it is still centralized from the
point of view of the memory because the runtime system
uses a single, global queue.

Development of a decentralized runtime system required
advances in concurrent algorithms and in the internal repre-
sentation of actors and tasks. These advances were achieved
by our work in concurrent algorithms for runtime systems
[18] and in task representation and management [19].

In our first study [18], we found that using a global queue
in a decentralized system is possible if the queue is designed
to sustain a high throughput of operations in a concurrent
environment. Our study has resulted in a very efficient
queue algorithm that can be used by processors to concur-
rently schedule their own work.

In our second study [17], we found that there is a high
similarity in tasks from the same actor: They have the same
properties and they execute the same function. Such simi-
larity can be exploited to decrease the number of operations
required to write those tasks in the centralized queue, greatly
reducing the overhead of the runtime system.

Our runtime system, with the improvements developed
through our work [18, 17], has resulted in a very high perfor-
mance decentralized system, with overheads that are much
lower than the average duration of tasks, even for fine grained
programs. Section 5 shows that our runtime system is an ex-
cellent choice to support the execution of parallel programs
on many-core architectures.

5. EXPERIMENTS
This section presents experimental results regarding the

usability of TIDeFlow. We show results on the scalability
and performance of the TIDeFlow model itself.

It should be noted that presenting experimental evidence
about every aspect of TIDeFlow is outside of the scope of
this paper. Instead, the objective of this section is to show
that TIDeFlow is usable, that it is reasonably efficient and
that it is a reasonable choice to develop and execute HPC
programs.

We believe that TIDeFlow is competitive, at least, when
compared to other HPC parallel execution models. However,
such a study will be the subject of another publication. The
main objective of this publication is to present the TIDeFlow
model and to present it as a tool for parallelism in many-core
architectures.

5.1 Experimental Testbed

5.1.1 Many-Core Architecture Used
All experiments were run on Cyclops-64, a many-core ar-

chitecture by IBM that features non-preemptive execution,
no cache, and 160 execution units per chip, of which 156
are available to the user. Cyclops-64 has been described ex-
tensively in previous publications [10, 16, 5]. Cyclops-64
was chosen for our experiments because its large number
of execution units allow excellent studies in scalability and

parallelism for HPC programs.
Both the TIDeFlow runtime system, its associated tools

and the programs used in the experiments were written in C
and they were compiled using ET International’s compiler
with compilation flags -O3 -g.

Cyclops-64 processor chips are, at the moment this paper
was written, available only to the US Government. For that
reason, the results were produced with FAST [5], a very
accurate simulator that has been shown to produce results
that are within 10% of those produced by the real hardware.

5.1.2 Test Programs
The effectiveness of the TIDeFlow approach was tested

using a simulation of an electromagnetic wave propagating
using the FDTD algorithm in 1 and 2 dimensions (FDTD1D
and FDTD2D), a 13-point Reverse Time Migration (RTM)
kernel and matrix multiplication (MM).

FDTD1D computes a problem of size 499200 with 3 time-
steps and tiles of size 800. FDTD2D computes a problem of
size 750 by 750 with 3 timesteps and tiles of size 25 by 25.
Matrix multiplication multiplies matrices of size 384 by 384,
using tiles of size 6 by 6 using the tiling described in [10].
RTM was run with input size 132 by 132 by 132 with tiles
of size 6 by 6 by 6 with 8 timesteps.

5.2 Scalability
Each test program was run with a varying number of

active processing units to investigate the scalability of the
TIDeFlow model as a whole.

Figure 6 presents a summary of the resulting experiments.
The figure reports the speedup resulting from using multiple
processors when compared to an execution that uses a single
execution unit.

As can be seen from the figure, TIDeFlow provides good
scalability for scientific programs.

5.3 Performance of the Runtime System
An analysis of the performance of a runtime system itself

and not of a particular application using the runtime sys-
tem is difficult because the activities of the runtime system
ultimately depend on what the application requires.

A reasonable way to look into the performance of a run-
time system is to look at the time it takes to execute oper-
ations. In that sense, a number of related publications by
the authors have advanced techniques to optimize particular
operations by the runtime.

Tasks in TIDeFlow are managed through a centralized
queue that uses the CB-Queue algorithm (presented and dis-

Figure 6: Scalability of several kernels using TIDe-
Flow

cussed in detail in [18]). Previous research shows that the
CB-Queue algorithm is an excellent choice for concurrent
systems, and extensive experimental evidence of its usabil-
ity and its impact as part of a runtime system were presented
in one of our previous publications [18].

Task management was further improved with our polytask
technique [17] that took advantage of the similarity between
tasks in HPC programs. The study presented in [17] shows
that polytasks allow a higher efficiency when executing fine
grained programs.

An argument in [17] also shows that the efficiency of a run-
time system is intrinsically tied to the program it runs. In
particular, it provides an explanation saying that (1) when
the granularity of a program is very fine, the intrinsic perfor-
mance of the runtime has a high impact on efficiency and (2)
when the granularity of a program is very coarse, the intrin-
sic performance of the runtime does not play a significant
role in the overall execution of the program.

To finish the discussion on the performance of the runtime
system we can analyze the results of one of our experiments
designed to measure the overhead of individual runtime op-
erations. In the experiment, we ran the RTM kernel again,
with 156 processors and with profiling enabled to see the
amount of time taken by each runtime operation. We saw
a total of 2.26 × 105 runtime operations made. Of those
operations, 97% took less than 900 cycles to complete and
99.65% took less than 3000 cycles to complete. The remain-
ing 0.25% operations corresponded to processors waiting for
work to become enabled. To give a reference in the overhead
of the runtime system, an average, assembly-optimized task
in a program takes 30000 cycles, and a full program is in
the order of 1010 cycles. As a conclusion, we observed that
the overhead of the runtime is low when compared to the
duration of individual tasks and programs.

6. SUMMARY AND CONCLUSIONS
This paper presented TIDeFlow, a parallel execution model

designed to express and execute HPC programs.
The TIDeFlow model has roots in the dataflow model of

execution. However, two main contributions are made to
dataflow: (1) parallel loops are natively represented as a
single actor using weighted nodes and (2) loop carried de-
pendencies are represented as weighted arcs between actors.

In this paper, the TIDeFlow model has been formally de-
fined: the operational semantics of execution have been de-
scribed as Finite State Machines, a brief discussion of the
memory model was presented, and the method by which to
use weighted arcs to express loop carried dependencies has
been described.

The experience of implementing the runtime system and
executing the experiments shows that TIDeFlow is an ef-
fective way to develop and execute parallel programs. The
graph programming model expresses parallelism more eas-
ily than traditional synchronization primitives, and the dis-
tributed runtime system provides very good scalability and
low overhead.

In our experience developing the experiments presented
in Section 5, we have found several good characteristics of-
fered by TIDeFlow: (1) We found that it was easy to express
double buffering by using the composability property to du-
plicate code and by using weighted arcs to indicate a time
dependency between the loader stages, (2) the dependencies
that we expressed through weighted arcs resulted in good

task pipelining during execution, (3) we found that it was
easier to express the dependencies through a graph rather
than through other direct means such as conditional vari-
ables, or MPI processes and (4) load balancing was done
automatically by the runtime system. For those reasons, we
have concluded that TIDeFlow is a good choice for execution
and development of HPC programs in many-core architec-
tures.

7. FUTURE WORK
The TIDeFlow execution model is still a work in progress.

Many aspects of TIDeFlow merit further investigation. This
section presents a list of the research that will be conducted
in the future.

The TIDeFlow memory model needs to be formalized and
studied. This memory model then needs to be compared to
existing memory models and an argument for its usability,
either for execution or for development of processors, has to
be made.

The properties of TIDeFlow programs must be explored.
One such property is a comparison of the memory footprint
of TIDeFlow programs in comparison to the memory foot-
print of an equivalent serial program. Other properties in-
clude, but are not limited to, well behavedness.

Additional extensions to the TIDeFlow model are being
contemplated as well. Priorities of execution of actors may
prove to be an interesting topic. The usability of mutual
exclusion constructs could be studied. The behavior of pro-
grams with respect to composability could also be modified,
for example, to allow recursion or the producing of arbitrary
signals.

8. ACKNOWLEDGMENTS
This research was made possible by the generous support

of the NSF through grants CCF-0833122, CCF-0925863,
CCF-0937907, CNS-0720531, and OCI-0904534.

9. REFERENCES
[1] Arvind and D. E. Culler. Dataflow architectures, pages

225–253. Annual Reviews Inc., Palo Alto, CA, USA,
1986.

[2] K. Arvind and R. S. Nikhil. Executing a program on
the mit tagged-token dataflow architecture. IEEE
Trans. Comput., 39:300–318, March 1990.

[3] R. Blumofe and C. Leiserson. Scheduling
multithreaded computations by work stealing. In
Foundations of Computer Science, 1994 Proceedings.,
35th Annual Symposium on, pages 356 –368, nov 1994.

[4] B. Chapman, G. Jost, and R. v. d. Pas. Using
OpenMP: Portable Shared Memory Parallel
Programming (Scientific and Engineering
Computation). The MIT Press, 2007.

[5] J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao. Toward
a software infrastructure for the cyclops-64 cellular
architecture. In High-Performance Computing in an
Advanced Collaborative Environment, 2006., page 9,
May 2006.

[6] J. B. Dennis. First version of a data flow procedure
language. In Programming Symposium, Proceedings
Colloque sur la Programmation, pages 362–376,
London, UK, 1974. Springer-Verlag.

[7] K. Ebcioglu, V. Saraswat, and V. Sarkar. X10:
Programming for hierarchical parallelism and
non-uniform data access. In Proceedings of the
International Workshop on Language Runtimes,
OOPSLA, 2004.

[8] J. Ellson, E. Gansner, L. Koutsofios, S. North, and
G. Woodhull. Graphviz open source graph drawing
tools. 2265:594–597, 2002.

[9] G. R. Gao. A pipelined code mapping scheme for static
data flow computers. PhD thesis, Massachusetts
Institute of Technology, 1986.

[10] E. Garcia, I. E. Venetis, R. Khan, and G. Gao.
Optimized Dense Matrix Multiplication on a
Many-Core Architecture. In Proceedings of the
Sixteenth International Conference on Parallel
Computing (Euro-Par 2010), Part II, volume 6272 of
Lecture Notes in Computer Science, pages 316–327,
Ischia, Italy, 2010. Springer.

[11] T. Gautier, X. Besseron, and L. Pigeon. Kaapi: A
thread scheduling runtime system for data flow
computations on cluster of multi-processors. In
Proceedings of the 2007 international workshop on
Parallel symbolic computation, PASCO ’07, pages
15–23, New York, NY, USA, 2007. ACM.

[12] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2:
Advanced Features of the Message-Passing Interface.
MIT Press, Cambridge, MA, USA, 1999.

[13] T. Murata. Petri nets: Properties, analysis and
applications. Proceedings of the IEEE, 77(4):541 –580,
apr 1989.

[14] W. A. Najjar, E. A. Lee, and G. R. Gao. Advances in
the dataflow computational model. Parallel Comput.,
25:1907–1929, December 1999.

[15] S. Nemawarkar and G. Gao. Measurement and
modeling of earth-manna multithreaded architecture.
In Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, 1996. MASCOTS
’96., Proceedings of the Fourth International
Workshop on, pages 109 –114, feb 1996.

[16] D. Orozco and G. Gao. Mapping the fdtd application
to many-core chip architectures. In Parallel
Processing, 2009. ICPP ’09. International Conference
on, pages 309 –316, sept. 2009.

[17] D. Orozco, E. Garcia, and G. Gao. Locality
optimization of stencil applications using data
dependency graphs. In Proceedings of the 23rd
international conference on Languages and compilers
for parallel computing, LCPC’10, pages 77–91, Berlin,
Heidelberg, 2011. Springer-Verlag.

[18] D. Orozco, E. Garcia, R. Khan, K. Livingston, and
G. Gao. High throughput queue algorithms. CAPSL
Technical Memo 103, January 2011.

[19] D. Orozco, E. Garcia, R. Pavel, R. Khan, and G. Gao.
Polytasks: A compressed task representation for hpc
runtimes. In Proceedings of the 24th international
conference on Languages and compilers for parallel
computing, LCPC’11.

[20] V. Sarkar and J. Hennessy. Partitioning parallel
programs for macro-dataflow. In Proceedings of the
1986 ACM conference on LISP and functional
programming, LFP ’86, pages 202–211, New York, NY,
USA, 1986. ACM.

[21] A. Taflove and S. Hagness. Computational
Electrodynamics: The Finite-Difference Time-Domain
Method. Artech House, third edition, 2005.

[22] K. Theobald. EARTH: An Efficient Architecture for
Running Threads. PhD thesis, 1999.

[23] Y. Yan, S. Chatterjee, D. Orozco, E. Garcia,
Z. Budimlic, J. Shirako, R. Pavel, V. Sarkar, and
G. Gao. Hardware and Software Tradeoffs for Task
Synchronization on Manycore Architectures. In
Proceedings of the Seventeenth International
Conference on Parallel Computing (Euro-Par 2011).
To appear., Lecture Notes in Computer Science,
Bordeaux, France, 2011.

