
Hardware and Software Tradeoffs for Task
Synchronization on Manycore Architectures

Yonghong Yan1, Sanjay Chatterjee1, Daniel Orozco2, Elkin Garcia2, Zoran
Budimlić1, Jun Shirako1, Robert Pavel2, Guang R. Gao2, and Vivek Sarkar1

1 Department of Computer Science, Rice University
{yanyh,sanjay.chatterjee,zoran,shirako,vsarkar}@rice.edu
2 Department of Electrical Engineering, University of Delaware
{egarcia@,orozco@eecis.,rspavel@,ggao@capsl.}udel.edu

Abstract. Manycore architectures – hundreds to thousands of cores per
processor – are seen by many as a natural evolution of multicore proces-
sors. To take advantage of this massive parallelism in practice requires
a productive parallel programming model, and an efficient runtime for
the scheduling and coordination of concurrent tasks. A critical prerequi-
site for an efficient runtime is a scalable synchronization mechanism to
support task coordination at different levels of granularity.

This paper describes the implementation a high-level synchronization
construct called phasers on the IBM Cyclops64 manycore processor,
and compares phasers to lower-level synchronization primitives currently
available to Cyclops64 programmers. Phasers support synchronization of
dynamic tasks by allowing tasks to register and deregister with a phaser
object. It provides a general unification of point-to-point and collective
synchronizations with easy-to-use interfaces, thereby offering productiv-
ity advantages over hardware primitives when used on manycores. We
have experimented with several approaches to phaser implementation
using software, hardware and a combination of both to explore their
portability and performance. The results show that a highly-optimized
phaser implementation delivered comparable performance to that ob-
tained with lower-level synchronization primitives. We also demonstrate
the success of the hardware optimizations proposed for phasers.

1 Introduction

Manycore architectures, with hundreds to thousands of cores per processor, are
seen by many as a natural evolution of multicore processors. In practice, a pro-
ductive parallel programming model, and an efficient runtime for thread execu-
tion and coordination, are essential to take advantage of this massive parallelism.
Programming models using dynamic task parallelism, such as the ones intro-
duced in the programming languages of the DARPA HPCS program (X10 [1] and
Chapel [2]), present a promising approach to productive parallel programming
on manycore processors. However, the overhead of communication and synchro-
nization between concurrent tasks typically presents one of the greatest obstacles

2 Y. Yan, S. Chatterjee, D. Orozco, E. Garcia et al.

to achieving high performance and scalability on parallel systems. To support
diverse workloads on manycore architectures, synchronization mechanisms that
provide high-level operations such as barrier using different granularity levels,
would be highly desirable.

Phasers, first introduced in the Habanero-Java multicore programming sys-
tem [3], are synchronization constructs for task parallel programs. Phasers unify
barrier operation and point-to-point synchronization in a single interface, and
feature deadlock-freedom and phase-ordering. The current Habanero-Java phaser
implemented on a Java virtual machine does not leverage hardware support for
synchronization and only works on top of a work-sharing runtime, a much less
scalable choice for task parallel runtime than workstealing [4]. In this paper,
we present the evaluations of phaser implementations in a workstealing runtime
using a C-based Habanero-C parallel programming language. Using the IBM
Cyclops64 (C64) manycore architecture [5], we have experimented with several
approaches to phaser implementations using software, hardware, and a combina-
tion of both to explore their portability and performance. The results show that
a highly-optimized phaser implementation delivered comparable performance to
that obtained with lower-level synchronization primitives. We also demonstrate
the success of the hardware optimizations proposed for phasers.

The contributions of this work includes the following. First, we have provided
a highly-optimized spin-based implementation of phasers. It is software-based
and portable across POSIX-compliant systems. Secondly, we have optimized a
phaser implementation that leverages hardware support for synchronization to
deliver superior performance over the software approach while maintaining the
same interfaces and features. Finally, we have provided a runtime that is able to
switch between software and hardware based implementations to better leverage
hardware support, if available.

In the rest of the paper, Section 2 presents the Habanero-C task parallel
programming language, and the portable software implementation of phasers.
Section 3 describes the phaser implementations on Cyclops64, taking advantage
of its hardware features. Section 4 presents the experimental results. Finally,
Section 5 discusses related work and Section 6 concludes the paper.

2 Asynchronous Task Parallelism and Software Phasers

Phasers were implemented in the Habanero-C research language developed at
Rice University. Habanero-C language has two basic primitives, borrowed from
X10 [1], for asynchronous task parallel programming: async and finish. The async
statement, async 〈stmt〉, causes the parent task to fork a new child task that may
execute 〈stmt〉 in parallel with the parent task. Execution of the async statement
returns immediately, i.e. the parent task does not wait for the child task to
complete. The finish statement, finish 〈stmt〉, performs a join operation on all
the tasks created within 〈stmt〉, including transitively spawned tasks.

The async and finish constructs are simpler than the conventional pthread create
and pthread join APIs, and more flexible than the Cilk spawn and sync key-

Hardware and Software Tradeoffs for Task Synchronization 3

SIGNAL_WAIT

WAIT_ONLY SIGNAL_ONLY

SIGNAL_WAIT_NEXT

(SINGLE)

(a) Phaser Mode Lattice

1: finish {
2: new_phaser(SIGNAL_WAIT);
3: for (int j=0; j<ntasks; j++)
4: async phased IN(j) {
5: for (int i=0; i<innerreps; i++) {
6: delay(delaylength);
7: printf("Task %d at step %d!\n", j, i);
8: next; }
9: } }

(b) Barrier Example Using Phasers

Fig. 1. Phaser Mode Lattice and Barrier Example

words [6] and OpenMP task and taskwait directives. For example, the sync or
taskwait constructs can only synchronize tasks that are created within the same
function scope. Using async and finish as a foundation, we were able to easily
experiment with different choices of task parallelism and target platforms.

2.1 Asynchronous Task Synchronization Using Phasers

There are several nice features to use phasers as synchronization constructs with
the async and finish task parallel programming model. First, phasers unify collec-
tive and point-to-point synchronization in a single set of programming interfaces.
The interfaces are ease of use, improving programmer productivity in paral-
lel programming and debugging. Secondly, phasers have two safety properties:
deadlock-freedom and phase-ordering [3]. These properties, along with the gener-
ality of its use for dynamic parallelism, distinguish phasers from other synchro-
nization constructs in past works including barriers, counting semaphores [7],
and X10 clocks [1]. Thirdly, in implementation, phasers have been integrated
with a workstealing scheduler that was used in Habanero-C runtime. As a new
contribution of this paper, the implementation provided reference solutions to
how to map asynchronous tasks with hardware threads when performing syn-
chronization operations. The details of these solutions are discussed in Section 3.

Figure 1(b) shows an example of using phasers to implement a barrier among
multiple asynchronously created tasks. The async statement in line 4 and the j-
for loop create ntasks child tasks, each registering with the phaser created in line
2 in the same mode as in the master task. The next statement in line 8 is the
actual barrier wait; each task waits until all tasks arrive at this point in each
iteration of the i-for loop. The first next operation of each task causes itself to
wait for the master task to do next operation or to deregister. When the master
task reaches the end of the finish scope, it deregisters from the phaser so all child
tasks continue and synchronize by themselves in each iteration.

2.2 Software Phasers in Habanero-C

As a synchronization object for dynamic tasks, a phaser has two phases, the
signal phase and wait phase, each represented by a counter. Given the mode a

4 Y. Yan, S. Chatterjee, D. Orozco, E. Garcia et al.

task registers with a phaser, a phaser operation could be either or both of a
signal and a wait operation, which advances the corresponding phase counter. A
task registration is represented by a unique synchronization object, named sync,
which contains the registration mode and the current signal and wait phase.
In order to guarantee deadlock freedom, a child task can only register in a
mode that is the same as or below the mode in the parent task according to
the phaser mode lattice shown in Figure 1(a). When signaling on a phaser, a
task simply increments the signal phase in the sync object. The next operation
has the effect of advancing each phaser with which a task registers to its next
phase, thereby synchronizing all tasks registering with the same phaser. Details
operation semantics are described in [3].

Hierarchical Phaser Implementation: The phaser implementation discussed
above has used a single master task to advance to its next phase. While the single
master approach provides an effective solution for modest levels of parallelism, it
quickly becomes a scalability bottleneck as the number of tasks increases. To ad-
dress this limitation, we have used an approach based on hierarchical phasers [8]
for scalable synchronization.

The hierarchical phaser employs a tree of sub-masters, instead of a single
master, as in the case of a flat phaser. Tree-based barriers have the advantage
that gather operations in the same level (tier) can be executed in parallel by sub-
masters. Also, in cases when the hierarchy of sub-masters follows the natural
hierarchy in the hardware, each sub-master will leverage data locality among
workers in its sub-group. Although the initialization overhead of building a tree
is greater than the flat phasers, the runtime of hierarchical phasers outperform
the flat phasers heavily on higher number of tasks, as discussed soon in Section 4.

3 Hardware Support in Phasers

The counter-based phaser implementation is a spin-based software approach, also
referred to as busy-wait. It consumes both CPU cycles and memory bandwidth,
and may quickly become a scalability bottleneck when a large number of tasks
are involved in a phaser operations, as in manycores. Recent trends in manycore
processor design use tiled architectures to reduce the dependency on the memory
bus [9] and to localize synchronizations. In this Section, we explore a phaser
implementation that leverages hardware support for synchronization using the
IBM Cyclops64 (C64) manycore chip [5] as our evaluation platform.

3.1 Cyclops64 Manycore Architecture

The IBM Cyclops64 is a massively parallel architecture initially developed by
IBM as part of the Blue Gene project. As shown in Figure 2, a C64 processor
features 80 processing cores on a chip, with two hardware thread units per core
that share one 64-bit floating point unit. Each core can issue one double precision
floating point Multiply Add instruction per cycle, for a peak performance of 80

Hardware and Software Tradeoffs for Task Synchronization 5

(a) C64 Chip Architecture

Latency
Overall Bandwidth

Load: 2 cycles; Store: 1 cycle

640GB/s

Load: 57 cycles; Store: 28 cycles
16GB/s (Multiple load and Multiple store

instructions); 2GB/s

Load: 31 cycles; Store: 15 cycles

320GB/s

64
Registers

SP
16kB

GM
~2.5MB

Off-Chip
DRAM

1GB

Read: 1 cycle
Write: 1 cycle

1.92 TB/s

(b) C64 Memory Hierarchy

Fig. 2. Cyclops64 Architecture Details

GFLOPS per chip when running at 500MHz. The processor chip includes a high-
bandwidth on-chip crossbar network with a total bandwidth of 384 GB/s. C64
employs three-levels of software-managed memory hierarchy, with the Scratch-
Pad (SP) currently used to hold thread-specific data. Each hardware thread unit
has a high-speed on-chip SRAM of 32KB that can be used as a cache.

C64 utilizes a dedicated signal bus (SIGB) that allows thread synchronization
without any memory bus interference. The SIGB connecting all threads on a chip
can be used for broadcast operations taking less than 10 clock cycles, enabling
efficient barrier operations and mutual exclusion synchronization. Fast point-to-
point signal/wait operations are directly supported by hardware interrupts, with
costs on the order of tens of cycles.

The C64 tool chain includes a highly efficient threading library, named TiNy-
Threads (TNT) [5], which uses the C64 hardware support to implement thread-
ing primitives. Additionally, TNT provides APIs that can be used to access
the hardware synchronization primitives to allow for suspension of threads, and
including and excluding specific threads from barriers, as shown in Table 1.

Name Description

tnt suspend() Suspend current thread

tnt awake (const tnt desc t) Awaken a suspended thread

tnt barrier include (tnt barrier t *) Join in the next barrier wait operation

tnt barrier exclude (tnt barrier t *) Withdraw from the next barrier wait operation

tnt barrier wait (tnt barrier t *) Wait until all threads arrive this point

Table 1. Cyclops64 TNT APIs for Hardware Synchronization Primitives

3.2 Optimization Using Hardware Barriers

Barrier operations using phasers can be optimized in manycore architectures
that offer direct hardware support for barriers, such as C64. The phaser runtime
is able to detect if a phaser operation specified by the user program is equiv-
alent to a barrier operation by checking whether all phasers are registered in

6 Y. Yan, S. Chatterjee, D. Orozco, E. Garcia et al.

SIGNAL WAIT mode. If so, the underlying hardware support is used directly
to perform the barrier operation.

Implementing a hardware barrier in a phaser requires threads to include
themselves in the barrier by calling tnt barrier include. This requirement is partic-
ularly interesting in a workstealing environment due to the fact that the worker
that executes the task which is participating in the barrier, has to include itself
in the hardware barrier. In workstealing, we cannot include the worker a priori
in the barrier. The Habanero-C runtime only includes a worker in the hardware
barrier when it is ready to execute a task.

3.3 Optimization Using Thread Suspend and Awake

The TNT API provides functions to suspend a thread and to awake a sleeping
thread. A suspend instruction temporarily stops execution in a non-preemptive
way, and a signal instruction awakes the sleeping task. Using thread suspend and
awake mechanism in place of the busy-wait approach reduces memory bandwidth
pressure because all waiting tasks can suspend themselves instead of spinning.
The master can collect all the signals from waiting tasks and finally signals the
suspended tasks to resume the execution.

The C64 chip provides an interesting hardware feature called the “wake-up
bit”. When a thread tries to wake up another thread, it sets the “wake-up bit” for
that thread. This enables a thread to store a wake-up signal. Hence, if a thread
tries to suspend itself after a wake-up signal is sent, it wakes up immediately and
the suspend effectively becomes a no-op. This feature is fully utilized by phasers
to easily move from phase to phase without worrying about a thread that can
execute a suspend after a wake up signal.

3.4 Adaptive Phasers

Adaptability is one of the main features of our phaser implementation. As ex-
plained before, the runtime can directly detect the synchronization operation be-
ing performed and make a reasonable decision as to how to execute it. A phaser
operation can switch to the optimized versions that utilize hardware primitives.
These details of how a phaser operation is executed are hidden from the user.

Phaser operations can be implemented in a number of ways to take advan-
tage of the particular characteristics of the underlying hardware. Even when a
phaser has all tasks registered in SIGNAL WAIT mode, it is not guaranteed that
a hardware barrier will be used. A task that is registered to support split-phase
or fuzzy barriers may signal ahead of its next operation. When a task registers
as SIGNAL ONLY or WAIT ONLY on a phaser that has been using a hardware
barrier, our runtime detects such a scenario and switches to software mode.

The runtime chooses the best mode of operation, depending on the current
program state and available features. Each implementation alternately exhibits
particular traits: maximum portability and reasonable performance is achieved
with a busy-wait implementation; low bandwidth and low power usage are fea-
tured in the suspend-awake implementation.

Hardware and Software Tradeoffs for Task Synchronization 7

3.5 Memory Optimizations

Phaser and sync objects contain volatile phase counters, and phaser operations
involve frequent read and write of those counters in both software based busy-
wait approach and hardware-optimized implementations. So low latency and
high bandwidth of the memory system are key to the performance of phasers.

The C64’s memory hierarchy, as seen in Figure 2, is similar to hardware
cache in regular commodity CPUs. The power of using it comes from program
manageability as our runtime itself can decide which synchronization objects
need to reside on or move to the high-speed SRAM. Yet there is a tradeoff in
this software-managed caching approach because the DRAM is limited in its
sizes and shared with stack in C64. For a simple DRAM-optimization, the run-
time allocates on SRAM, synchronization objects that contain spinning counters.
More complex optimizations use heuristic or historical information to identify
frequently-accessed data and move them to SRAM. Further memory manage-
ment by the Habanero-C runtime, such as allocating a list of synchronization
objects in a dense array, provide another level of memory optimizations on C64.

4 Implementation and Experiments

Habanero-C includes a workstealing runtime and a compiler for the async and
finish task parallel programming constructs. The C64 manycore processor de-
scribed in Section 3.1 was used as experimental platform for this study. This
work is the result of a joint research effort between Rice University and Univer-
sity of Delaware (UDel). Figure 3 shows a description of the infrastructure used
for this project as well as the contributions of each institution.

Generated
C ProgramHabanero-C

Applications
Habanero-C

Compiler
C64 Toolchain

and TNT Runtime

Habanero-C
Runtime ETIRiceUDel and Rice

Rice and UDel

C64 Program

Experiments run on C64 Simulator
and C64 Machine by UDel

Conventions:
Software

Tool
Source Code Executable

Fig. 3. Collaboration and Software Infrastructure

4.1 Implementation and Experimental Benchmarks

Habanero-C compiler was implemented on top of the ROSE source-to-source
compiler framework [10]. The compiler transforms async and finish statements to
appropriate library and runtime calls that create and enqueue tasks, and calls
to ensure proper task termination within each finish scope.

Habanero-C runtime contains a number of worker threads; each worker thread
maintains a double-ended queue (deque). A worker enqueues and dequeues tasks

8 Y. Yan, S. Chatterjee, D. Orozco, E. Garcia et al.

from the tail end of its deque when creating and executing local tasks, respec-
tively. Other workers steal tasks from the head of the deque, when they do not
have local tasks to work on. While this approach to the workstealing runtime
is similar to the Cilk runtime [6], task creation and enqueuing policy when en-
countering an async is different from Cilk. In Cilk’s “work-first” policy, the code
after the async task body (the continuation) is pushed onto the deque while the
current worker continues the execution of the async body. In our policy, which
is referred to as “help first” [4], the async task itself is pushed onto the deque
while the current worker continues the execution of the continuation.

The evaluation was conducted using microbenchmarks and common appli-
cations. The microbenchmarks include barrier and threadring for evaluating
phaser barrier and point-to-point synchronizations. The applications include
two-dimensional finite difference time domain (FDTD2D), and Successive Over
Relaxation (SOR), to study the performance impact of synchronization overhead
using software and hardware approaches, and their tradeoffs.

4.2 Hierarchical Phasers and Memory Optimizations

In Figure 4, we show the barrier overhead of using software flat phasers versus
hierarchical phasers, and phasers residing on SRAM versus on DRAM. The dra-
matic scalability improvements of using hierarchical phasers (4-degree fan-out
hierarchy) as compared to flat phasers are obvious. Placing phasers in SRAM
results in large (one to two orders of magnitude) overhead reduction for both flat
phaser and hierarchical phasers. While this performance does not imply superi-
ority of SRAM over DRAM implementation in general (spin-based solutions may
have adverse effects as well), we use the SRAM hierarchical phasers as baseline
to compare with other hardware-based implementations in later sections.

2 4 8 16 32 64 128

SRAM-flat 1.882 2.343 3.204 4.877 8.122 14.836 29.178

DRAM-flat 3.73 5.19 8.66 26.14 113.56 416.82 1681.59

SRAM-tree 2.164 2.651 3.469 3.808 4.465 4.734 5.678

DRAM-tree 4.06 7.1 10.37 14.35 21.33 41.2 89.85

0

5

10

15

20

25

30

35

40

b
a

rr
ie

r
o
v
e
rh

e
a
d

 (
u

s
)

threads

Fig. 4. Hierarchical Phasers and SRAM Optimization

Hardware and Software Tradeoffs for Task Synchronization 9

4.3 Barrier and Point-to-Point Microbenchmarks

The barrier microbenchmark was based on the EPCC OpenMP syncbench bench-
mark that was developed for evaluating OpenMP barrier overhead. When using
phasers as barriers, barrier wait operations are performed by phaser next op-
erations. A task can dynamically join and leave a barrier wait operation by
registering and deregistering with the phaser that is created (with at least SIG-
NAL WAIT capability) for this operation. This is different from OpenMP barrier
that only allows a fixed number of threads involved in a barrier from the begin-
ning to the end of a parallel region. OpenMP does not permit the use of barriers
within parallel loops, either.

0

5

10

15

20

25

30

35

2 4 8 16 32 64 128

O
v

e
rh

e
a
d

 (
u

s
)

threads

phaser with hardware barrier

software barrier-tree

phaser with hardware suspend/awake

software barrier-flat

(a) Phaser Barrier

0

50

100

150

200

250

300

350

400

450

500

2 4 8 16 32 64 128

T
im

e
 (

u
s
)

threads

software phaser

phaser with hardware
suspend/awake

(b) Threadring

Fig. 5. Barrier and Point-to-Point Microbenchmarks

Figure 5(a) shows the barrier overheads using four phaser implementations
on C64. The implementation that leverages the C64 hardware barrier incurs
much lower overhead than that of the software barrier. The reason behind this
is the phaser implementation switches to hardware barriers whenever the tasks
registering with the phaser are actually perform the barrier wait operations.
The implementation that uses suspend/awake performs worse than software
phasers because of the sequentially accumulated cost of hardware interrupt in
suspend/awake implementation. For software hierarchical phasers, both signal
gathering and wait operations are performed in parallel, thus reducing overhead.

The threadring microbenchmark evaluates point-to-point signal-wait opera-
tion of two tasks. In this program, a group of tasks form a signal ring; each task
waits on the signal from the previous task and signals the next task after receiv-
ing the signal. As shown in Figure 5(b), the memory consumption of the software
busy-wait approach has little impact on the time required to complete a round
of the ring. In fact, the implementation using software phasers performs slightly
better than the one using hardware interrupts. These imply the effectiveness of
using the portable software-based solution for point-to-point synchronizations.

The high performance obtained using the busy-wait implementation is due in
part to the high bandwidth and low latency of the local on-chip memory in C64.
Although the other techniques in our experiments use hardware support, they

10 Y. Yan, S. Chatterjee, D. Orozco, E. Garcia et al.

still suffer from overhead in the supporting software required to use the hardware
primitives. In contrast, busy-wait uses a very simple polling mechanism that does
not require complex software support.

4.4 Applications

A simulation of propagation of electromagnetic waves that uses the two-dimensional
finite difference time domain (FDTD2D) algorithm was used to test the effective-
ness of phasers for commonly used scientific applications. The FDTD algorithm
used [11] is an excellent choice to study synchronization and parallelization tech-
niques for manycore architectures; the algorithm has abundant parallelism and
its complexity depends on the physical phenomena that it models, ranging from
a simple read-modify-write of an array to numerical integration of physical vari-
ables. The experiments simulate the propagation of a wave in two dimensions,
with an implementation that results in a two dimensional array where each ele-
ment is updated several times using data from the array elements that surround
it. A full description of the FDTD algorithm used here can be found in [12].

The case presented in Figure 6(a) is characterized by a constant amount of
computation per array element. Barriers have been successfully used to synchro-
nize multiple threads executing the program, since all threads share approxi-
mately the same amount of workload.

0

2

4

6

8

10

12

2 4 8 16 32 64 128

T
im

e
 (

s
)

threads

async/finish

async/finish+phaser

async/finish+hardware barrier

(a) FDTD 2D

0

5

10

15

20

25

30

35

2 4 8 16 32 64 128

T
im

e
(s

)

threads

hardware barrier

phaser with hardware barrier

phaser with hardware suspend/awake

(b) SOR

Fig. 6. Applications Performance Using Different Implementations

Figure 6(a) shows FDTD2D performance using following implementations:

1. async/finish: use finish to join tasks as barrier operations; tasks are recreated
via async and joined in each iteration. This approach is commonly used in
task parallel programming language, such as Cilk.

2. async/finish+phaser: use phaser to perform barrier wait; tasks are created
once, and then coordinated via phasers in each iteration. Tasks are termi-
nated when the computation completes.

Hardware and Software Tradeoffs for Task Synchronization 11

3. async/finish+hardware barrier: similar to async/finish+phaser, but using hard-
ware barrier to perform barrier wait.

The implementation using phasers doubles the performance of the one using
finish for synchronization. The reason behind this is that finish is a coarse-grained
synchronization approach, and it suffers from the runtime overhead for creating
and scheduling tasks. Thus algorithms that require fine grained synchronization
with large number of iterations should use lower-overhead, finer-grained task co-
ordination mechanism such as phasers. The similar performance between the one
using phasers and the one using hardware barriers is because phasers adaptively
switch to hardware barrier when it detects a barrier wait should be performed.

Another application we used for the evaluation is Red-Black Successive Over-
Relaxation (SOR). SOR is a method of solving partial differential equations using
a variant of Gauss Seidel method. Task synchronization patterns are similar to
FDTD2D, requiring barrier operations to synchronize each iteration. Figure 6(b)
shows similar executions time for phasers and hardware barriers, demonstrating
the adaptivity of our phaser implementation to the underlying hardware.

5 Related Work

Cilk [6], Cilk++, and OpenMP 3.0 introduced task parallelism at the program-
ming language level. The Cilk’s sync and OpenMP’s taskwait constructs, related
to finish in Habanero-C, are global barrier synchronization points indicating that
the execution of current task cannot proceed until all previously spawned tasks
have completed. Using this style of synchronization, the runtime efficiency de-
pends heavily on the granularity of parallelism built into the program.

X10 [1] and Chapel [2] provide constructs for dynamic task creation and
constructs for task synchronization. X10 allows for the barrier-style phase ad-
vancing among all participating tasks using the next operation but it lacks of
the point-to-point signal-wait style coordination capability that is available in
phasers. Chapel introduce sync variables for programming producer-consumer
coordination among tasks. Chapel does not provide direct language construct
for barrier operations, or phase-ordered synchronization.

The JUC CyclicBarrier class [13] supports periodic barrier synchronization
among a set of threads. Unlike phasers, however, CyclicBarrier does not sup-
port the dynamic addition or removal of threads; nor do they support one-way
synchronization or split-phase operations.

6 Conclusions and Future Work

In this paper, we present the design and implementation of phasers, a high-
level synchronization construct for asynchronous tasks on manycore Cyclops64
processors in the Habanero-C workstealing runtime. We have designed and im-
plemented different techniques for phaser synchronization on C64 that use a

12 Y. Yan, S. Chatterjee, D. Orozco, E. Garcia et al.

combination of software-based busy-wait approach, hardware barriers, and hard-
ware support for thread suspend/awake. Our experiments show that phasers are
able to take advantage of hardware primitives on manycore architectures and
optimizations for their memory subsystems to provide superior performance to
portable software approaches.

In the future, we will experiment with more bandwidth-limited applications
on C64 to evaluate the limitations of our busy-wait phaser implementation.
We will also investigate more applications for other phasers operations, such as
broadcast and reduction.

7 Acknowledgments

We wish to thank Vincent Cavé and Joshua Landwehr for their hard work on
the correctness, performance and efficiency of the Habanero-C runtime. We wish
to express our gratitude to ET International for their advice and their logistics
support which ultimately boosted the quality and quantity of our experiments.
This work was supported by the National Science Foundation through grants
CCF-0833122, CCF-0925863, CCF-0937907, CNS-0720531, and OCI-0904534.

References

1. P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von
Praun, and V. Sarkar, “X10: an object-oriented approach to non-uniform clus-
ter computing,” in Proceedings of the 20th annual ACM SIGPLAN conference on
OOPSLA. New York, NY, USA: ACM, 2005, pp. 519–538.

2. “Chapel Programming Language,” http://chapel.cray.com/.
3. J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer, “Phasers: a unified

deadlock-free construct for collective and point-to-point synchronization,” in Pro-
ceedings of the 22nd ICS, New York, NY, USA, 2008, pp. 277–288.

4. Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-First and Help-First Schedul-
ing Policies for Async-Finish Task Parallelism,” in IPDPS ’09, 2009.

5. J. d. Cuvillo, W. Zhu, Z. Hu, and G. R. Gao, “TiNy Threads: A Thread Virtual
Machine for the Cyclops64 Cellular Architecture,” in IPDPS ’05, 2005, p. 265.2.

6. M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of the cilk-
5 multithreaded language,” in Proceedings of the ACM SIGPLAN Conference on
PLDI, ser. PLDI ’98. New York, NY, USA: ACM, 1998, pp. 212–223.

7. V. Sarkar, “Synchronization using counting semaphores,” in Proceedings of the 2nd
international conference on Supercomputing. New York, NY, USA: ACM, 1988,
pp. 627–637.

8. J. Shirako and V. Sarkar, “Hierarchical phasers for scalable synchronization and
reductions in dynamic parallelism,” in IPDPS’10, 2010.

9. D. Wentzlaff et al., “On-chip interconnection architecture of the tile processor,”
IEEE Micro, vol. 27, no. 5, pp. 15–31, 2007.

10. “ROSE compiler framework,” http://www.rosecompiler.org.
11. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference

Time-Domain Method, 3rd ed. Artech House Publishers, 2005.
12. D. Orozco and G. Gao, “Diamond tiling: A tiling framework for time-iterated

scientific applications.” in CAPSL Technical Memo 091, December 2009.
13. B. Goetz, Java Concurrency In Practice. Addison-Wesley, 2007.

