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Abstract. Programming a multicore processor is difficult. It is even more dif-
ficult if the processor has software-managed memory hierarchy, e.g. the IBM
Cyclops-64 (C64). A widely accepted parallel programming solution formul-
ticore processor is OpenMP. Currently, all OpenMP directives are onlyused to
decompose computation code (such as loop iterations, tasks, code sections, etc.).
None of them can be used to control data movement, which is crucial for the C64
performance. In this paper, we propose a technique calledtile percolation. This
method provides the programmer with a set of OpenMP pragma directives. The
programmer can use these directives to annotate their program to specify where
andhowto perform data movement. The compiler will then generate the required
code accordingly. Our method is a semi-automatic code generation approach in-
tended to simplify a programmer’s work. The paper provides(a) an exploration
of the possibility of developing pragma directives for semi-automatic data move-
ment code generation in OpenMP;(b) an introduction of techniques used to im-
plement tile percolation including the programming API, the code generationin
compiler, and the required runtime support routines;(c) and an evaluation of tile
percolation with a set of benchmarks. Our experimental results show that tile per-
colation can make the OpenMP programs run on the C64 chip more efficiently.

1 Introduction

OpenMP [1] is thede factostandard for writing parallel programs on shared memory
multiprocessor system. For the IBM Cyclops-64 (C64) processor [2, 3], OpenMP is one
of the top selected programming model. As shown in Figure 1(a), the C64 chip has
160 homogeneous processing cores. They are connected by a 96-port, 7-stage, non-
blocking on-chip crossbar switch [4]. The chip has 512KB instruction cache but no
data cache. Instead, each core contains a small amount of SRAM (5.2MB in total) that
can be configured into either Scratchpad Memory (SPM), or Global Memory (GM), or
both in combination. Off-chip DRAM are attached onto the crossbar switch through 4
on-chip DRAM controllers. All memory modules are in the sameaddress space and
can be accessed directly by all processing cores [5]. However, different segment of
the memory address space has different access latency and bandwidth. See Figure 1(b)
for the detailed parameters of the C64 memory hierarchy. Roughly speaking, the C64
chip is a single-chip shared memory multiprocessor system.Therefore, it is easy to land
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Fig. 1. The IBM Cyclops-64 Multicore Processor

OpenMP on the C64 chip [6]. However, due to itssoftware-managedmemory hierarchy,
making an OpenMP program run efficiently on the C64 chip is nota trivial task.

Given a processor like C64, it is very important for the OpenMP program to fully
utilize the on-chip memory resources. This requires the programmer to insert code in
the program to move data back and forth explicitly between the on-chip and off-chip
memory. Thus, the program can benefit from the short latencies of the on-chip memory
and the huge on-chip bandwidth. Unfortunately, this would make the C64 multicore
processor more difficult to program. From the OpenMP methodology, we have learned
that it would be very helpful if we could annotate the programwith a set of OpenMP
pragma directives to specify where data movement is beneficial and possible, and let the
compiler generate the required code accordingly. This is just like using theparallel
for directive to annotate a loop and let the OpenMP compiler generate the multi-
threaded code. This would free the programmer from writing tedious data movement
code.

In this paper, we introducetile percolation, a tile aware parallelization technique
[7] for the OpenMP programming model. The philosophy behindthe tile aware paral-
lelization technique is to enable OpenMP programmers not only the capability to direct
the compiler to perform computation decomposition, but also the power to direct the
compiler to perform data movement. The programmer will be provided with a set of
simple OpenMP pragma directives. They can use these directives to annotate their pro-
gram to instruct the compilerwhereandhow data movement will be performed. The
compiler will generate the correct computation and data movement code based on these
annotations. At runtime, a set of routines will be provided to perform the dynamic data
movement operations. This not only makes the programming onthe C64 chip easier, but
also makes sure that the data movement code inserted into theprogram is optimized.
Since the major data objects being moved are ”sub-blocks” inthe multi-dimensional
array, this approach is termedtile percolation. The major contributions of the paper are
as follows:

1. As far as the authors are aware, this is the first paper that explores the possibility
of using pragma directives for semi-automatic data movement code generation in
OpenMP.



2. The paper has introduced the techniques used to implementtile percolation in-
cluding the programming API, the code generation in compiler, and the required
runtime support.

3. We have evaluated tile percolation with a set of benchmarks. Our experimental
results show that tile percolation can make the OpenMP programs run on the C64
chip more efficiently.

The rest of the paper is organized as follows. In Section 2, weuse a motivating
example to show why tile percolation is necessary. Section 3will discuss how to im-
plement tile percolation in the OpenMP compiler. We presentour experimental data in
Section 4 and provide our conclusions in Section 5.

2 Motivation

In this section, we use the tiled matrix multiplication codeas a motivating example
to demonstrate why writing efficient OpenMP program for the software-managed C64
memory hierarchy is not trivial and why a semi-automatic code generation approach is
necessary.

loops
tiling

1 for (ii=0; ii<n; ii+=b)
2  for (jj=0; jj<n; jj+=b)
3   for (kk=0; kk<n; kk+=b)

4    for (i=ii; i<min(ii+b,n); i++)

6      for (k=kk; k<min(kk+b,n); k++)
5     for (j=jj; j<min(jj+b,n); j++)

controlling loops

7       C[i][j]+=A[i][k]*B[k][j]
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(a) Tiled Matrix Multiplication Code (b) Data Access Pattern in the Tiling Loops

Fig. 2. Tiled Matrix Multiplication: C = A x B

Figure 2 shows the tiled matrix multiplication code1 and the data access pattern
of the kernel loops. On the C64 chip, to make sure that this program fully utilizes
the on-chip memory resources, the programmers need to insert tile movement code
manually in the source code to move data tiles back and forth between the on-chip and
off-chip memory. Figure 3 shows the examples of the manuallyinserted code. In both
examples, no matter how the computations in thecontrolling loopsare decomposed
among the cores, for the tiling loops, small data tiles are moved into the on-chip SRAM
memory and the associated computations are performed there. Figure 3(a) shows the
naive version, in which the array elements are copied into the on-chip memory one
by one. A better version is shown in Figure 3(b), which utilizes the off-chip memory
bandwidth more efficiently. In both versions, the programmers need to study the original

1 Because of the advantages of thesurface-to-volumeeffect [8], thealgorithm-by-tileapproach
[9, 10] is used intensively in developing scientific and engineering code.For instance, the LA-
PACT programs [11, 12] use many level-3 BLAS code [13] to leveragethe computer’s memory
hierarchy, no matter if the memory hierarchy is managed by hardware or software, or if it is
managed implicitly or explicitly.



0 /* allocate on-chip memory */
1 AA=(float *)sram_malloc(...);
2 BB=(float *)sram_malloc(...);
3 CC=(float *)sram_malloc(...);
4 ...
5 /* item-by-item memory copy */
6 for (i=ii;i<min(ii+b,n);i++)
7 for (j=jj;j<min(jj+b,n);j++)
8 for (k=kk;k<min(kk+b,n);k++){
9 AA[i-ii][k-kk] = A[i][k];

10 BB[k-kk][j-jj] = B[k][j];
11 CC[i-ii][j-jj] = C[i][j];
12 }
13 /* MxM performed on-chip */
14 for (i=0;i<min(b,n-ii);i++)
15 for (j=0;j<min(b,n-jj);j++)
16 for (k=0;k<min(b,n-kk);k++)
17 CC[i][j]+=AA[i][k]*BB[k][j];
18 /* copy out the results */
19 for (i=ii;i<min(ii+b,n);i++)
20 for (j=jj;j<min(jj+b,n);j++)
21 for (k=kk;k<min(kk+b,n);k++)
22 C[i][j]=CC[i-ii][j-jj];

0 /* allocate on-chip memory */
1 AA=(float *)sram_malloc(...);
2 BB=(float *)sram_malloc(...);
3 CC=(float *)sram_malloc(...);
4 ...
5 /* mcpy: optimized memory copy routine */
6 for (i=ii; i<min(ii+b,n); i++)
7 mcpy(&CC[i-ii][0],&C[i][jj],min(b,n-jj))
8 for (k=kk; k<min(kk+b,n); k++)
9 mcpy(&BB[k-kk][0],&C[k][jj],min(b,n-jj))

10 for (i=ii; i<min(ii+b,n); i++)
11 mcpy(&AA[i-ii][0],&A[i][kk],min(b,n-kk))
12 ...
13 /* on-chip calculation */
14 for (i=0; i<min(b,n-ii); i++)
15 for (j=0; j<min(b,n-jj); j++)
16 for (k=0; k<min(b,n-kk); k++)
17 CC[i][j]+=AA[i][k]*BB[k][j];
18 ...
19 /* copy out the results */
20 for (i=ii; i<min(ii+b,n); i++)
21 mcpy(&C[i][jj],&CC[i-ii][0],min(b,n-jj))
22 ...

(a) A naive version (b) An optimized version

Fig. 3. Examples of Manually Inserted Data Movement Code (Pseudo Code)

source code carefully to figure out how to write correct and efficient data movement
code. They are forced to deal with the convoluted array indexcalculation, which makes
their work more complicated.

A simpler approach is to let the compiler to generate the required data movement
code automatically. In [14, 15], the authors present their implementation of this idea on
the IBM CELL processor. However, in [16], it is revealed thatthe performance of the
automatically generated code is worse than the performanceof the manually reformed
code2. The reason is not because the compiler can not generate the optimal code, but
because the static analysis performed by the compiler is notpowerful enough to capture
all the beneficial cases (which is a well-told story). This motivates us to develop a
novel semi-automatic approach: the programmer specifies the place in which efficient
data movement is crucial, while the compiler, accordingly,generates the required high
quality code.

3 Tile Percolation

In this section, we will use a simple example to demonstrate how to implement tile
percolation. It includes three parts: the programming API,the data movement code
generation in the compiler, and the required runtime support.

3.1 Programming API

In the design of the programming API for tile percolation, the following criteria should
be considered. First, it must be very simple and easy to use. Second, it must be gen-

2 Readers are referred to Figure12 in [16]



eral enough to capture most of the common cases that can benefit from tile percolation.
Third, it should not bring much complexity to code generation and should also not
cause too much runtime overhead. According to these criteria, the tile percolation pro-
gramming API is designed as OpenMP pragma directives, whichare shown in Figure
4(a).

#pragma omp percolate [tile ...]
#pragma omp tile ro (A[jdim(A), adim(A), Ldim(A)]..[j2, a2, L2][j1, a1, L1], ...)

wo (B[kdim(B), bdim(B), Mdim(B)]..[k2, b2, M2][k1, b1, M1], ...)
rw (C[ldim(C), cdim(C), Ndim(C)]..[l2, c2, N2][l1, c1, N1], ...)

(a) The definition of the tile percolation API

percolate: Directive name. It specifies a percolation region
tile: Directive name. It specifies a tile region and the tile descriptors
ro: Clause name. It specifies the tiles that are read-only in the current percolation region.
wo: Clause name. It specifies the tiles that are write-only in the current percolation region.
rw: Clause name. It specifies the tiles that are read and written in the current percolation region.
A,B,C: Name of the host multi-dimensional data array
ji,ki,li: The index variable of the for loop that defines theith dimension of the tile
ai,bi,ci: Blocking size of theith dimension of the host multi-dimensional array (i.e.A, B, andC).
Li,Mi,Ni: Size of theith dimension of the host multi-dimensional array
dim(..): The dimension of the multi-dimensional array

(b) The explanation of the tile percolation API

Fig. 4. The OpenMP API for tile percolation (C/C++)

The tile percolation API has two new pragma directives: thepercolate directive
and thetile directive. The percolate directive specifies apercolation region, which
is a block of code. At the beginning of the percolation region, on-chip storage will be
reserved for all data tiles that will be percolated into the on-chip memory. Then, all or
some of the data tiles accessed in the percolation region will be moved into the on-chip
memory and the corresponding computations will be performed there. At the end of
the percolation region, data tiles that contain the resultsof the computations are written
back to the off-chip memory (if necessary) and the reserved on-chip memory are freed.

The tile directive, on the other hand, provides the detailedinformation (type, shape,
size, etc.) of the data tiles that will be percolated into theon-chip memory. It is always
contained in a percolation region. The tile directive specifies a tile region, in which
there is a set offor loops delimiting the bounds of the data tiles. In the tile directive,
following the key wordtile is a list of tile descriptors. The tile descriptors are di-
vided into three groups by the key wordsro, wo, andrw, which are theclausenames
that identify read-only, write-only, andread-writedata tiles. At the beginning of the
percolation region, data tiles specified in therw clause will be copied from the off-chip
memory into the on-chip memory (after the on-chip memory allocation). At the end of
the percolation region, data tiles specified in therw andwo clauses are copied back to
their home locations in the off-chip memory. For data tiles specified in thero clause,
they will be copied into the on-chip memory at the place wherethero clause is speci-
fied. They will not be copied back to the off-chip memory at theend of the percolation



region. The associated code in the percolation region are adjusted to access the on-chip
data tiles in the computations.

The format of the tile descriptor is similar to the declaration of a multi-dimensional
array variable, except that each of the tile descriptor’sdimension specifieris a 3-tuple,
not a singleton. The tile descriptor tells the compiler how the data tile is carved out
from the multi-dimensional data array that hosts it. To makethe paper easy to follow,
we call the multi-dimensional data array that hosts the current data tile as itshost array.
The tile descriptor contains the complete information of the host array. Therefore, the
number of dimension specifiers in the tile descriptor is the same as the dimension of the
host array. It is not necessarily the same as the dimension ofthe data tile.

For a dimension specifier[ji, ai, Li] (see Figure 4(a)), ”Li” is the size of theith
dimension of the host array (not the data tile). ”ai” is the blocking/tiling size of theith
dimension of the host array. This parameter is used to carve out the data tile from its
host array. Normally, if the dimension of the data tile is thesame as the dimension of
the host array, ”ji” is the index variable of afor loop in the tile region that traverse the
ith dimension of the data tile. If the dimension of the data tile is smaller than its host
array, the elementji in some dimension specifiers becomes trivial. Currently, weforce
the programmers to put a ”∗” there as a place holder to let the compiler know that the
current dimension of the host array has been squashed away inthe dimension space of
the data tile. An intuitive example of this case is the expressionA[0][i][j] guarded
by loopi and loopj. It actually represents a 2-D plane, although the expression has 3
dimension specifiers.

The tile descriptor functions like a template and the associatedfor loops instantiate
this template. To make the code generation easy, currently,a writable tile descriptor
(specified in therw or thewo clause) can only has one instantiation. The read-only
tiles (specified in thero clause) can have multiple instantiations. Example is givenin
Figure 5. To put it in a simple way, roughly, the percolate directive and the tile directive
tell the compilerwherethe data tiles will be percolated and the tile descriptors tell the
compilerhow the data tiles are percolated. The code example that shows the usage of
the tile percolation API is in Figure 5. The detailed explanation will be presented in the
next sub-section.

3.2 Code Generation

The code in Figure 5 shows how to use the tile percolation API.The pragma at line 1 is
the canonicalparallel for directive that specifies how the computation iterations
are distributed among the parallel threads. The pragma at line 5 is a percolate directive
and line 8 is a tile directive. The percolate directive specifies a percolation region, from
line 6 to 16. The tile directive specifies a tile region, from line 10 to 15, in which there
are there data tiles, represented by ”A[i,b,n][k,b,n]”, ” B[k,b,n][j,b,n]”,
and ”C[i,b,n][j,b,n]”. The first two tiles are read-only and the last one is both
readable and writable in the current percolation region. They direct the compiler to
generate the correct data percolation and computation code.

The tile descriptor ”C[i,b,n][j,b,n]” specifies a data tile contained in the
host arrayC, a 2Dn × n matrix. In this tile descriptor, ”C” provides the name of the
host array, which also tells the compiler the type of the dataelement of the tile. ”n” in



1 #pragma omp parallel for collapse(2)
2 for (ii=0; ii<n; ii+=b)
3 for (jj=0; jj<n; jj+=b)
4 {
5 #pragma omp percolate
6 {
7 for (kk=0; kk<n; kk+=b)
8 #pragma omp tile ro (A[i,b,n][k,b,n],B[k,b,n][j,b,n]) \
9 rw (C[i,b,n][j,b,n])

10 {
11 for (i=ii; i<min(ii+b,n); i++)
12 for (j=jj; j<min(jj+b,n); j++)
13 for (k=kk; k<min(kk+b,n); k++)
14 C[i][j]+=A[i][k]*B[k][j];
15 }
16 }
17 }

Fig. 5. Pseudo Code of the Tile Percolation Example

the dimension specifier tells the size of the each dimension of the host array. ”b” reveals
how the matrix is tiled. ”i” and ”j” are two index variables that inform the compiler
that thefor loops at line 11 and 12 are used to construct the data tile. Since the lower
and upper bounds of ”i” and ”j” are fixed in the current percolation region, there is only
one instantiation for this tile template (i.e. descriptor). The clause name ”rw” indicates
that this data tile will be read and written in the current percolation region. So, it will
be copied into the on-chip memory at line 6, where the percolation region starts. It will
also be copied out to off-chip memory at line 16, where the percolation region ends.

Similarly, data tile ”A[i,b,n][k,b,n]” and ”B[k,b,n][j,b,n]” are con-
tained in host array ”A” and ”B”, which are also 2Dn×n matrix. Since both of them are
read-only data tiles, they are copied into the on-chip memory at line 8, where they are
specified in thero clause. They do not need to be copied back to the off-chip memory
at the end of the percolation region. Because the lower and upper bounds of ”k” are
changing (line 7), as we may notice, there are multiple instantiations for these two tile
descriptors. All instantiations of the same data tile will reuse the same memory block
allocated to it. The example is shown in Figure 6.

Figure 6 presents the code generated for the tile percolation program in Figure 5.
First, it allocates on-chip memory for all three data tiles (line 5 to 7). This is achieved
by calling the runtime routine_sram_malloc, which is inserted in by the compiler.
The size of the data tile is calculated by multiplying each ofits dimension size, which is
obtained from its blocking size. This guarantees that the memory block allocated is big
enough to hold the corresponding data tile. If the memory allocations succeed, the read-
write data tiles will be copied into the on-chip memory by calling the runtime library
routine_copy2Don (line 16). Otherwise, no data movement happens and the program
execution jumps to the original code (line 12), where computations are performed on
off-chip data tiles (line 36).

The other two read-only data tiles are percolated into the on-chip memory between
thefor loops at line 18 and 25. This location corresponds to the place in the original
code where they are specified in thero clause. Thefor loops between line 25 and 28
perform matrix multiplication on ”_AA[][]”, ” _BB[][]”, and ”_CC[][]”, which



1 {
2 /* Enter the percolation region.
3 * Allocate on-chip memory for all data tiles
4 */
5 _CC=(float *)_sram_malloc(sizeof(float)*b*b);
6 _AA=(float *)_sram_malloc(sizeof(float)*b*b);
7 _BB=(float *)_sram_malloc(sizeof(float)*b*b);
8
9 if (_CC==NULL || _AA==NULL || _BB==NULL)

10 {
11 _sram_free(_AA); _sram_free(_BB); _sram_free(_CC);
12 goto orig;
13 }
14
15 /* Copy "rw" data tiles from off-chip memory to on-chip memory */
16 _copy2Don(sizeof(float),_CC,&C,n,n,ii,jj,min(b,n-ii),min(b,n-jj));
17
18 for (kk=0; kk<n; kk+=b)
19 {
20 /* Copy "ro" data tiles from off-chip memory to on-chip memory */
21 _copy2Don(sizeof(float),_AA,&A,n,n,ii,kk,min(b,n-ii),min(b,n-kk));
22 _copy2Don(sizeof(float),_BB,&B,n,n,kk,jj,min(b,n-kk),min(b,n-jj));
23
24 /* on-chip calculation */
25 for (i=0; i<min(b,n-ii); i++)
26 for (j=0; j<min(b,n-jj); j++)
27 for (k=0; k<min(b,n-kk); k++)
28 _CC[i][j]+=_AA[i][k]*_BB[k][j];
29 }
30
31 /* copy out the results back to off-chip memory */
32 _copy2Doff(sizeof(float),_CC,&C,n,n,ii,jj,min(b,n-ii),min(b,n-jj));
33 _sram_free(_AA); _sram_free(_BB); _sram_free(_CC);
34 goto out;
35
36 orig:
37 /* Original code with out percolation */
38 ...
39 out:
40 }

Fig. 6. Code generation example for tile percolation (Pseudo Code)

are all resided in the on-chip memory. After one kernel computation (line 25 to 28) is
finished, the new instantiation of ”_AA[][]” (and also ”_BB[][]”) is copied from
the off-chip memory into the on-chip memory and is stored in the same memory block.
Then it begins the next iteration. Before exiting the percolation region, therw data
tile ”_CC[][]” is copied back to its home location in the off-chip memory (line 32).
Meanwhile, the on-chip memory storage allocated to all the percolated data tiles are
freed.

To generate the code like in Figure 6, the compiler needs to handle three tasks:(1)
generate code for managing on-chip memory;(2) generate code for managing memory
copy;(3) adjust the computation code to access on-chip data tiles. Weleave the discus-
sion of the first two items to the next sub-section, because they are mostly related to the
runtime. Here, we focus on the third problem.

Adjusting the computation code to access on-chip data tilesincludes two sub-tasks:
(i) calibrate the lower and upper bounds for eachfor loop that is involved in traversing
the elements of the data tile;(ii) update the tile access expressions accordingly. These



tasks are easy because the data tile is copied as one 2D array from its home location
(in which, the elements are physically scattered in memory)into a piece of physically
contiguous memory block (in which, the elements are consecutive). We only need to
know the base address of the memory block and the size of each dimension of the data
tile. The value of the tile’s dimension size can be easily obtained from its tile descriptor.
The base address of the memory block that assigned to the current data tile can be
obtained from the corresponding runtime function call (_sram_malloc). With this
information, it is easy for the compiler to generate the correct code. Most of time, we
just perform a kind of simple 1-to-1 replacement. For example, the new lower bound of
afor loop is always set to zero and the new upper bound is calculated by subtracting
the old lower bound from the old upper bound.

3.3 Runtime Routines and Runtime Support

As we have mentioned in the last section, the tile percolation runtime needs to han-
dle the on-chip memory allocation and the memory copy for thepercolated data tiles.
We provide a set of routines (with clear interface) in the runtime library for the com-
piler. The compiler, accordingly, would insert the required runtime function calls in the
program during code generation.

The runtime routines_sram_malloc and_sram_free are responsible for al-
locating on-chip memory for the percolated data tiles. To allocate the correct memory
storage for the tile, we need to know three values: (i) the number of dimensions of the
tile; (ii) the size of each dimension; and (iii) the type of each data element. The number
of dimensions of the tile is the number of non-trivial dimension specifiers in its tile de-
scriptor. The dimension size is always set to the blocking size. This guarantees that the
allocated memory block is big enough to hold any instantiation of the tile descriptor.
The type of the data element is obtained from the name of the tile descriptor.

For each percolation region, the ”all-or-none” policy is adopted in memory alloca-
tion. The program either continues execution afterall of its memory allocation requests
were satisfied, or, ifanyof its memory allocation request failed, it jumps to the origi-
nal code to perform the computations on the off-chip data tiles. Because the compiler
guarantees that all memory allocations occur at the beginning of the percolation region
and all memory frees occur at the end of the percolation region, the memory allocation
failure would not cause dead lock among the concurrent OpenMP threads. This greatly
simplifies design of the runtime support and also simplifies code generation in compiler.

For the memory copy task, we provide the set of runtime routines presented in
Figure 7. Currently, we support tile percolation for 1D-, 2D-, and 3D-array. They can
cover most of the practical cases. Each kind of multi-dimensional array has its own
memory-copy routines (see Figure 7(a)). The routines with the suffix ”on” are used to
copy data tiles from off-chip memory to on-chip memory, while the routines with the
suffix ”off” are used to copy data tiles from on-chip memory to off-chip memory. The
parameters that are required in the address calculation in these memory-copy routines
are supplied in the argument list. We use the ”long argument list” instead of the ”packed
argument structure” because we try to avoid inserting unnecessary dynamic memory
allocation function calls in code generation. We feel that generating dynamic memory
allocation code is tricky and error-prone.



_copy1Don(sz,_on,_off,D1,x,b1)
_copy1Doff(sz,_on,_off,D1,x,b1)
_copy2Don(sz,_on,_off,D1,D2,x,y,b1,b2)
_copy2Doff(sz,_on,_off,D1,D2,x,y,b1,b2)
_copy3Don(sz,_on,_off,D1,D2,D3,x,y,z,b1,b2,b3)
_copy3Doff(sz,_on,_off,D1,D2,D3,x,y,z,b1,b2,b3)
...

(a) The runtime routines for memory copy

_copy[1D|2D|3D]on: Runtime routines that copy the off-chip data tile into the on-chip memory;
_copy[1D|2D|3D]off: Runtime routines that copy the on-chip data tile back to the off-chip memory;
sz: Size of the element of the data tile;
on: The address of the on-chip memory block used to hold the percolated data tile;
off: The address of the home location of the percolated data tile in the off-chip memory;
D1,D2,D3: The size of each dimension of the percolated data tile, from the lowest dimension to the

highest dimension;
x,y,z: Position of the percolated data tile in the host array. It is represented by the coordinate

of its first element in the host array, from the lowest dimension to the highest dimension;
b1,b2,b3: Blocking size of each dimension of the host array, from the lowest dimensionto the

highest dimension;

(b) The explanation of the runtime routines

Fig. 7. The runtime routines for on-chip and off-chip memory copy

According to our design, there are some assumptions on the on-chip and the off-
chip data tiles. For the on-chip data tile, it must reside in acontiguous memory block.
For the off-chip data tile, it must be a sub-block of a multi-dimensional array and the
multi-dimensional array must also reside in a contiguous memory block. Because the
percolated data tile is only a sub-block in its host array, its memory layout is not con-
tiguous. Physically, it consists of many data strips (or rows) that are separated by an
equal distance. Hence, the parameters provided in the argument list should be able to
be used to calculate the start address and the size of each data strip in the tile. With the
above assumptions, it is easy to interpret the argument listof the memory-copy routines.
For example, the routine_copy2Don copies a 2D data tile from off-chip memory to
on-chip memory. The argument ”_off” gives the start address of its host array, (i.e. the
address of the first element). ”D1” and ”D2” tell the dimension size of the array. ”x” and
”y” specify the coordinates of the data tile in its host array. ”b1” and ”b2” reveal the
blocking size of each dimension of the host array. ”b1” and ”b2” are the default size
(of each dimension) of the percolated data tile. To handle the corner cases, the routine
will calculate the effective size at runtime. The size of thedata tile element is shown
in ”sz”. With the above information, it is easy for the runtime routine to calculate the
address and size of each data strip and copy it around with theoptimized library code.
All these arguments are provided in the tile percolation directives and can be easily
extracted out by the compiler.

In essence, the arguments listed above characterize the position and the size of a
data tile and its host array accurately. It doesn’t matter whether this data tile and its host
array are real multi-dimensional array (in the language sense) or not. As long as all the
array access expression are affine functions of the loop indices, they can be declared
(physically) as an 1D array but accessed by the programmers (logically) as a multi-
dimensional array. The compiler will take care of the convoluted indices calculation.



4 Experiments

We evaluated tile percolation with four scientific kernels (SAXPY, SASUM, SGEMV,
and SGEMM) [17] and two NAS benchmarks (EP and MG). The tile percolation was
implemented through source-to-source program transformation and was prototyped in
the Omni compiler [18]. The experiments were conducted on the FAST simulator [2],
an execution-driven and binary-compatible C64 simulator with accurate instruction tim-
ing. Figure 1(b) gives the detailed latency numbers of the load/store operations when
accessing different memory segments. The preliminary experiment results are shown
in Figure 8. Due to the space limit, we only present the performance speedup of each
testcase.
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Fig. 8. Experiment Results: Comparison of Speedup

After applying tile percolation, the speedup of all testcases get significant improve-
ment. The greatest improvement happens on SGEMM3. This testcase hasO(n3) floating-
point operations but only accessO(n2) data. However, without reusing the data that
have been brought into on-chip memory by the previous computations, the program
has very poor scalability. Because it would haveO(n3) number of memory accesses
going into the off-chip memory. This would quickly exhaust the off-chip bandwidth.
Without using on-chip memory, its diminishing return is 2-thread. After applying the
tile percolation optimization, the number of memory accesses has been reduced to
O(n2(1 + 2n/b)). Its speedup increased from less than 4 to around 12. For other test-
cases, their floating-point computations areO(n2) (SGEMV) or O(n) (EP). So their
speedup enhancement is not as big as SGEMM.

3 We use256 × 256 matrix, the data tile is16 × 16



An interesting finding is that, without applying tile percolation, most testcases’
speedup diminishing return point is at 16-thread. They are SASUM, SAXPY, EP, and
MG. The speedup diminishing return point of SGEMV is 8-thread, while for SGEMM,
it is 2-thread. For SASUM, its memory accesses and floating-point operations are the
same. This reveals that, without on-chip data reuse, the off-chip bandwidth would be
saturated when there are more than running 16 threads.

5 Summary and Conclusions

Writing a parallel program for multicore processor is already a very difficult task. It
is even more difficult if the multicore processor has software managed memory hier-
archy, like the IBM Cyclops-64 processor. On this kind of processor, the programmers
not only need to take care of program parallelization, but also need to tackle data move-
ment. Although many efforts have been made to develop automatic data movement code
generation, it only proves its efficiency on a limited class of problems.

In this paper, we have proposed a semi-automatic approach todata movement code
generation. This novel approach is termed astile percolation. It provides the program-
mers with a set of OpenMP-like directives. The programmers can annotate the their pro-
grams with these directives to tell the compilerwhereandhowdata movement should
be performed. Accordingly, the compiler will generate the optimized data movement
code and the correct computation code based on the information provided in the tile
percolation directives. That way, the programmers can savethemselves from writing
tedious and error-prone data movement code.

Tile percolation is a kind of OpenMPtile aware parallelizationtechnique [7] devel-
oped for the IBM Cyclops-64 multicore processor. As far as the authors are aware, this is
the first paper that try to develop pragma directives for datamovement code generation
in OpenMP. The tile percolation directives are orthogonal to the canonical OpenMP
parallelization directives. The paper shows that the tile percolation directives can be
used together with the traditional OpenMP parallelizationdirectives. Meanwhile, they
can also be used independently in the parallel programs written with Pthread library.
Experiments conducted on the Cyclops-64 processor show that tile percolation can en-
hance the utilization of the Cyclops-64 on-chip memory, which turns out to improve the
performance and scalability of the programs. This implements an efficientperformance
porting for OpenMP programs developed for the traditional SMP system.
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