Tile Percolation: an OpenMP Tile Aware Parallelization
Technique for the Cyclops-64 Multicor e Processor

Ge Gan Xu Wang Joseph Manzano Guang R. Gao

Department of Electrical and Computer Engineering
University of Delaware
Newark, Delaware 19716, U.S.A
{gan,wangxu,jmanzano,ggg@capsl.udel.edu

Abstract. Programming a multicore processor is difficult. It is even more dif-
ficult if the processor has software-managed memory hierarcgytiee IBM
Cyclops-64 (C64). A widely accepted parallel programming solutionniai-
ticore processor is OpenMP. Currently, all OpenMP directives are usdyg to
decompose computation code (such as loop iterations, tasks, codeseetin).
None of them can be used to control data movement, which is cruciald@ @4
performance. In this paper, we propose a technique ctléegercolation This
method provides the programmer with a set of OpenMP pragma direciive
programmer can use these directives to annotate their program toyspéeife
andhowto perform data movement. The compiler will then generate the required
code accordingly. Our method is a semi-automatic code generationaabpre
tended to simplify a programmer’s work. The paper provi@gsan exploration

of the possibility of developing pragma directives for semi-automatic dataem
ment code generation in OpenM) an introduction of techniques used to im-
plement tile percolation including the programming API, the code generation
compiler, and the required runtime support routiriesand an evaluation of tile
percolation with a set of benchmarks. Our experimental results showiéhaer-
colation can make the OpenMP programs run on the C64 chip more effjcien

1 Introduction

OpenMP [1] is thede factostandard for writing parallel programs on shared memory
multiprocessor system. For the IBM Cyclops-64 (C64) preoef2, 3], OpenMP is one
of the top selected programming model. As shown in Figurd, (e C64 chip has
160 homogeneous processing cores. They are connected byat9G-stage, non-
blocking on-chip crossbar switch [4]. The chip has 512KBtrinstion cache but no
data cache. Instead, each core contains a small amount dfiSRRMB in total) that
can be configured into either Scratchpad Memory (SPM), ob&I®emory (GM), or
both in combination. Off-chip DRAM are attached onto thesstzar switch through 4
on-chip DRAM controllers. All memory modules are in the saatglress space and
can be accessed directly by all processing cores [5]. Hawelfferent segment of
the memory address space has different access latency adgidéh. See Figure 1(b)
for the detailed parameters of the C64 memory hierarchygRlguspeaking, the C64
chip is a single-chip shared memory multiprocessor systérarefore, it is easy to land
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Fig. 1. The IBM Cyclops-64 Multicore Processor

OpenMP on the C64 chip [6]. However, due tostdftware-managechemory hierarchy,
making an OpenMP program run efficiently on the C64 chip isanivial task.

Given a processor like C64, it is very important for the Op&hptogram to fully
utilize the on-chip memory resources. This requires thggmmer to insert code in
the program to move data back and forth explicitly betweendh-chip and off-chip
memory. Thus, the program can benefit from the short laterfithe on-chip memory
and the huge on-chip bandwidth. Unfortunately, this woulskenthe C64 multicore
processor more difficult to program. From the OpenMP metluayowe have learned
that it would be very helpful if we could annotate the prograith a set of OpenMP
pragma directives to specify where data movement is beakdicd possible, and let the
compiler generate the required code accordingly. Thissslike using thepar al | el
f or directive to annotate a loop and let the OpenMP compiler gdaghe multi-
threaded code. This would free the programmer from writg@jdus data movement
code.

In this paper, we introductle percolation a tile aware parallelization technique
[7] for the OpenMP programming model. The philosophy behheltile aware paral-
lelization technique is to enable OpenMP programmers nigttbe capability to direct
the compiler to perform computation decomposition, bub dfe power to direct the
compiler to perform data movement. The programmer will bevjgled with a set of
simple OpenMP pragma directives. They can use these diesdth annotate their pro-
gram to instruct the compilavhereand how data movement will be performed. The
compiler will generate the correct computation and dataenmmnt code based on these
annotations. At runtime, a set of routines will be providegeérform the dynamic data
movement operations. This not only makes the programmirtige@64 chip easier, but
also makes sure that the data movement code inserted infrageam is optimized.
Since the major data objects being moved are "sub-blockshiénmulti-dimensional
array, this approach is terméte percolation The major contributions of the paper are
as follows:

1. As far as the authors are aware, this is the first paper pdores the possibility
of using pragma directives for semi-automatic data moveroede generation in
OpenMP.



2. The paper has introduced the techniques used to impletiteitercolation in-
cluding the programming API, the code generation in comp#ad the required
runtime support.

3. We have evaluated tile percolation with a set of benchmatur experimental
results show that tile percolation can make the OpenMP progrrun on the C64
chip more efficiently.

The rest of the paper is organized as follows. In Section 2usea motivating
example to show why tile percolation is necessary. Sectiwill3liscuss how to im-
plement tile percolation in the OpenMP compiler. We presemtexperimental data in
Section 4 and provide our conclusions in Section 5.

2 Motivation

In this section, we use the tiled matrix multiplication coae a motivating example
to demonstrate why writing efficient OpenMP program for thévgare-managed C64
memory hierarchy is not trivial and why a semi-automaticecgéneration approach is
necessary.
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Fig. 2. Tiled Matrix Multiplication: C=Ax B

Figure 2 shows the tiled matrix multiplication codeand the data access pattern
of the kernel loops. On the C64 chip, to make sure that thignara fully utilizes
the on-chip memory resources, the programmers need ta itleemovement code
manually in the source code to move data tiles back and fativden the on-chip and
off-chip memory. Figure 3 shows the examples of the manuadigrted code. In both
examples, no matter how the computations in ¢batrolling loopsare decomposed
among the cores, for the tiling loops, small data tiles argedanto the on-chip SRAM
memory and the associated computations are performed figee 3(a) shows the
naive version, in which the array elements are copied ingodi+-chip memory one
by one. A better version is shown in Figure 3(b), which uéiizhe off-chip memory
bandwidth more efficiently. In both versions, the programsmeed to study the original

! Because of the advantages of theface-to-volumeffect [8], thealgorithm-by-tileapproach
[9,10] is used intensively in developing scientific and engineering deateinstance, the LA-
PACT programs [11, 12] use many level-3 BLAS code [13] to levethgeomputer’s memory
hierarchy, no matter if the memory hierarchy is managed by hardwaseftwvare, or if it is
managed implicitly or explicitly.



0 /+ allocate on-chip nenory x/ 0 /+ allocate on-chip nenory =/

1 AA=(float *)srammalloc(...); 1 AA=(float *)srammalloc(...);

2 BB=(float *)srammalloc(...); 2 BB=(float *)srammalloc(...);

3 CC=(float *)srammalloc(...); 3 cC=(float *)srammalloc(...);

4 4

5 /+ itemby-item menory copy =*/ 5 /+ ncpy: optinized memory copy routine x/

6 for (i=ii;i<mn(ii+b,n);i++) 6 for (i=ii; i<min(ii+b,n); i++)

7 for (j=jjij<min(jj+b,n);j++) 7 nepy(&Cdi-ii][0], &i1[jj]. mn(b, n-jj))

8 for (k=kk;k<m n(kk+b, n); k++){ 8 for (k=kk; k<m n(kk+b,n); k++)

9 AA[i-ii][k-kk] = A[i][K]; 9 nepy(&BB[k-kk][O], & Kk][jj],min(b,n-jj))

10 BB[ k-kk][j-jj] = B[KI[j]; 10 for (i=ii; i<min(ii+b, n); i++)

1% Cqi-iilli-iil = dillils 11 nepy(&AA[i-ii][0], &Ali][ kK], m n(b, n-kk))
12

13 /+ MM perforned on-chip =/ 13 /+ on-chip calculation =/

14 for (i=0;i<mn(b,n-ii);i++) 14 for (i=0; i<mn(b,n-ii); i++)

15 for (j=0;j<min(b,n-jj);j++) 15 for (j=0; j<min(b,n-jj); j++)

16 for (k=0; k<m n(b, n-kk); k++) 16 for (k=0; k<m n(b,n-kk); k++)

17 CAillil+=AA[i][K]*BB[K][j]; || 17 COil[j]1+=AA[i][K]*BB[K][j];

18 /* copy out the results */ 18

19 for (i=ii;i<mn(ii+b,n);i++) 19 /+ copy out the results */

20 for (j=jj;j<min(jj+b,n);j++) 20 for (i=ii; i<mn(ii+b,n); i++)

21 for (k=kk;k<min(kk+b,n);k++) (|21 ncpy(&dil[jj],&di-ii][0],min(b,n-jj))

22 dilljl=Ccdi-iilli-jil; 22

(a) A naive version

(b) An optimized version

Fig. 3. Examples of Manually Inserted Data Movement Code (Pseudo Code)

source code carefully to figure out how to write correct arfitieht data movement
code. They are forced to deal with the convoluted array ir@ddsulation, which makes
their work more complicated.

A simpler approach is to let the compiler to generate theiredudata movement
code automatically. In [14, 15], the authors present tieplémentation of this idea on
the IBM CELL processor. However, in [16], it is revealed ttiz¢ performance of the
automatically generated code is worse than the performainitee manually reformed
code?. The reason is not because the compiler can not generatgtineabcode, but
because the static analysis performed by the compiler isawérful enough to capture
all the beneficial cases (which is a well-told story). Thistiwvades us to develop a
novel semi-automatic approach: the programmer specifeeplite in which efficient
data movement is crucial, while the compiler, accordinggnerates the required high
quality code.

3 TilePercolation

In this section, we will use a simple example to demonstratg to implement tile
percolation. It includes three parts: the programming ARg data movement code
generation in the compiler, and the required runtime suppor

3.1 Programming API

In the design of the programming API for tile percolatiore thllowing criteria should
be considered. First, it must be very simple and easy to we=rfdl, it must be gen-

2 Readers are referred to Figuir2in [16]



eral enough to capture most of the common cases that canttfemftile percolation.

Third, it should not bring much complexity to code genematand should also not
cause too much runtime overhead. According to these @jtdre tile percolation pro-
gramming API is designed as OpenMP pragma directives, wdnielshown in Figure
4(a).

#pragma onp percolate [tile ...]

#pragma onp tile ro (Aljaim(a)s @dim(Aa)> Ldim(a)l--[J2, a2, L2][j1, a1, L1], ...)
WO (B[Edim(B)> bdim(B)> Mdim(B)]--[k2, ba, Ma][k1, b1, M1], ...)
rw (Cllaim(c)s Cdim(c)» Naim(cyl--[l2; c2, N2][l1, c1, N1], ..)

(a) The definition of the tile percolation API

percol ate: Directive name. It specifies a percolation region

tile: Directive name. It specifies a tile region and the tile descriptors

ro: Clause name. It specifies the tiles that are read-only in the current percolation region.
Wo: Clause name. It specifies the tiles that are write-only in the current percolation.regio

rw Clause name. It specifies the tiles that are read and written in the current percolation regi
A B, C Name of the host multi-dimensional data array

Jirkildi: The index variable of the for loop that defines thg dimension of the tile

a;i,bi,ci: Blocking size of thei;;, dimension of the host multi-dimensional array (i4. B, andC).
L;,M; N;: Size of thei.,, dimension of the host multi-dimensional array

dim(..): The dimension of the multi-dimensional array

(b) The explanation of the tile percolation API

Fig. 4. The OpenMP API for tile percolation (C/C++)

The tile percolation API has two new pragma directives;ghecol at e directive
and thet i | e directive. The percolate directive specifiepexrcolation region which
is a block of code. At the beginning of the percolation regiom-chip storage will be
reserved for all data tiles that will be percolated into thechip memory. Then, all or
some of the data tiles accessed in the percolation regidb&ihoved into the on-chip
memory and the corresponding computations will be perfdrihere. At the end of
the percolation region, data tiles that contain the regiiitse computations are written
back to the off-chip memory (if necessary) and the reservednip memory are freed.

The tile directive, on the other hand, provides the detaiéatrmation (type, shape,
size, etc.) of the data tiles that will be percolated intodghechip memory. It is always
contained in a percolation region. The tile directive sfiesiatile region in which
there is a set of or loops delimiting the bounds of the data tiles. In the tileediive,
following the key wordt i | e is a list oftile descriptors The tile descriptors are di-
vided into three groups by the key words, wo, andr w, which are theclausenames
that identify read-only write-only, andread-write data tiles. At the beginning of the
percolation region, data tiles specified in theclause will be copied from the off-chip
memory into the on-chip memory (after the on-chip memorgcation). At the end of
the percolation region, data tiles specified in tiveandwo clauses are copied back to
their home locations in the off-chip memory. For data tilpedfied in ther o clause,
they will be copied into the on-chip memory at the place whbez o clause is speci-
fied. They will not be copied back to the off-chip memory at émel of the percolation



region. The associated code in the percolation region gustad to access the on-chip
data tiles in the computations.

The format of the tile descriptor is similar to the declavatof a multi-dimensional
array variable, except that each of the tile descriptdirsension specifieis a 3-tuple,
not a singleton. The tile descriptor tells the compiler htw tata tile is carved out
from the multi-dimensional data array that hosts it. To médeepaper easy to follow,
we call the multi-dimensional data array that hosts theenurdata tile as ithost array
The tile descriptor contains the complete information @f tiost array. Therefore, the
number of dimension specifiers in the tile descriptor is e as the dimension of the
host array. It is not necessarily the same as the dimensitheafata tile.

For a dimension specifidy;, a;, L;] (see Figure 4(a)),;” is the size of thei;,
dimension of the host array (not the data tile);™is the blocking/tiling size of thé;,
dimension of the host array. This parameter is used to cartéhe data tile from its
host array. Normally, if the dimension of the data tile is Hzene as the dimension of
the host array, 7;” is the index variable of & or loop in the tile region that traverse the
14, dimension of the data tile. If the dimension of the data slemaller than its host
array, the elemeny; in some dimension specifiers becomes trivial. Currentlyfavee
the programmers to put &” there as a place holder to let the compiler know that the
current dimension of the host array has been squashed awlag dimension space of
the data tile. An intuitive example of this case is the exgi@sA[ 0] [i ][ j ] guarded
by loopi and loopj . It actually represents a 2-D plane, although the expradsis 3
dimension specifiers.

The tile descriptor functions like a template and the asgedf or loops instantiate
this template. To make the code generation easy, currenthyjtable tile descriptor
(specified in the w or thewo clause) can only has one instantiation. The read-only
tiles (specified in the o clause) can have multiple instantiations. Example is ginen
Figure 5. To put it in a simple way, roughly, the percolatediive and the tile directive
tell the compilewherethe data tiles will be percolated and the tile descriptoighe
compilerhowthe data tiles are percolated. The code example that shensstge of
the tile percolation API is in Figure 5. The detailed explzrawill be presented in the
next sub-section.

3.2 Code Generation

The code in Figure 5 shows how to use the tile percolation AR&. pragma at line 1 is
the canonicapar al | el f or directive that specifies how the computation iterations
are distributed among the parallel threads. The pragmaeblis a percolate directive
and line 8 is a tile directive. The percolate directive sfiegia percolation region, from
line 6 to 16. The tile directive specifies a tile region, framel 10 to 15, in which there
are there data tiles, represented By ', b, n] [k, b, n]”, "B[ k, b, n] [j, b, n] ",
and"C[i, b, n][]j, b, n]" The first two tiles are read-only and the last one is both
readable and writable in the current percolation regioreyTtirect the compiler to
generate the correct data percolation and computation code

The tile descriptor (i, b, n][], b, n] " specifies a data tile contained in the
host arrayC, a 2Dn x n matrix. In this tile descriptor,C’ provides the name of the
host array, which also tells the compiler the type of the @#aent of the tile.fi” in



1 #pragma onp parallel for collapse(2)
2 for (ii=0; ii<n; ii+=b)

3 for (jj=0; jj<n; jj+=h)

4

5 #pragmae onp percol ate

6

7 for (kk=0; kk<n; kk+=b)

8 #pragma omp tile ro (Ali,b,n][k,b,n],B[k,b,n][j,b,n]) \
9 rw (di,b,n][j,b,n])
10 {

11 for (i=ii; i<mn(ii+b,n); i++)

12 for (j=jj; j<min(jj+b,n); j++)
13 for (k=kk; k<m n(kk+b,n); k++)
14 CilliT+=A[T1][K]I*B[KI[]];

15 }

16 }

17}

Fig. 5. Pseudo Code of the Tile Percolation Example

the dimension specifier tells the size of the each dimenditredost array.B” reveals
how the matrix is tiled. "” and "] ” are two index variables that inform the compiler
that thef or loops at line 11 and 12 are used to construct the data tileeShe lower
and upper bounds of " and ”j " are fixed in the current percolation region, there is only
one instantiation for this tile template (i.e. descriptdifie clause name i’ indicates
that this data tile will be read and written in the currentqodation region. So, it will
be copied into the on-chip memory at line 6, where the peticolaegion starts. It will
also be copied out to off-chip memory at line 16, where thegation region ends.

Similarly, data tile Al i, b, n] [k, b, n] "and "B[ k, b, n] [, b, n] " are con-
tained in host arrayA” and "B”, which are also 2Dr x n matrix. Since both of them are
read-only data tiles, they are copied into the on-chip mgmabtine 8, where they are
specified in the o clause. They do not need to be copied back to the off-chip mgmo
at the end of the percolation region. Because the lower apdrupounds of K" are
changing (line 7), as we may notice, there are multiple mgtions for these two tile
descriptors. All instantiations of the same data tile walise the same memory block
allocated to it. The example is shown in Figure 6.

Figure 6 presents the code generated for the tile percolatiogram in Figure 5.
First, it allocates on-chip memory for all three data tillkse(5 to 7). This is achieved
by calling the runtime routinesr am nal | oc, which is inserted in by the compiler.
The size of the data tile is calculated by multiplying eachioflimension size, which is
obtained from its blocking size. This guarantees that theamg block allocated is big
enough to hold the corresponding data tile. If the memoncalions succeed, the read-
write data tiles will be copied into the on-chip memory byliog) the runtime library
routine_copy2Don (line 16). Otherwise, no data movement happens and thegrogr
execution jumps to the original code (line 12), where corapoihs are performed on
off-chip data tiles (line 36).

The other two read-only data tiles are percolated into thetop memory between
thef or loops at line 18 and 25. This location corresponds to theepiathe original
code where they are specified in the clause. Thd or loops between line 25 and 28
perform matrix multiplication on "AA[1[] ", "_BB[][]”",and"_CC ][] ", which



1{

2 /+ Enter the percolation region.

3 * Allocate on-chip nmenory for all data tiles

4 */

5 _CC=(float *)_sram nall oc(sizeof (float)=*bxb);

6 _AA=(float *)_sramnalloc(sizeof (float)*bxb);

7 _BB=(float *)_sramnalloc(sizeof (float)*bxb);

8

9 if (_CC==NULL || _AA==NULL || _BB==NULL)

10

11 _sram free(_AA); _sramfree(_BB); _sramfree(_COC;

12 goto orig;

13}

14

15 /+ Copy "rw' data tiles fromoff-chip nenmory to on-chip nmenory */
16  _copy2Don(sizeof (float),_CC & n,n,ii,jj,mn(b,n-ii),mn(b,n-jj));
17

18 for (kk=0; kk<n; kk+=b)

19 |

20 /* Copy "ro" data tiles fromoff-chip menory to on-chip nenory =/
21 _copy2Don(si zeof (float), _AA &\ n, n,ii, kk, mn(b,n-ii),mn(b,n-kk));
22 _copy2Don(si zeof (fl oat), _BB, &, n, n, kk, jj, mn(b, n-kk),mn(b,n-jj));
23

24 /* on-chip calculation */

25 for (i=0; i<min(b,n-ii); i++)

26 for (j=0; j<min(b,n-jj); j++)

27 for (k=0; k<m n(b,n-kk); k++)

28 _CCiT[iT+=_AA[T ][ K] *_BB[K][j];

29 }

30

31 /+ copy out the results back to off-chip nenory x/

32 _copy2Doff (sizeof(float),_CC &, n,n,ii,jj,mn(b,n-ii),mn(b,n-jj));
33 _sramfree(_AA); _sramfree(_BB); _sramfree(_CC);

34 goto out;

35

36 orig:

37 /+ Original code with out percolation */

38 C

39 out:

40 }

Fig. 6. Code generation example for tile percolation (Pseudo Code)

are all resided in the on-chip memory. After one kernel comation (line 25 to 28) is
finished, the new instantiation of AA[ ][] " (and also " BB[ ][] ") is copied from
the off-chip memory into the on-chip memory and is storedhingame memory block.
Then it begins the next iteration. Before exiting the peaitioh region, the w data
tile” _CC[ ][] is copied back to its home location in the off-chip memoiipnél 32).
Meanwhile, the on-chip memory storage allocated to all thec@ated data tiles are
freed.

To generate the code like in Figure 6, the compiler needsndlbahree taskq1)
generate code for managing on-chip memd@gy;,generate code for managing memory
copy; (3) adjust the computation code to access on-chip data tilese&Ve the discus-
sion of the first two items to the next sub-section, becausgdhe mostly related to the
runtime. Here, we focus on the third problem.

Adjusting the computation code to access on-chip dataititdsdes two sub-tasks:
(i) calibrate the lower and upper bounds for ehohn loop that is involved in traversing
the elements of the data tiléij) update the tile access expressions accordingly. These



tasks are easy because the data tile is copied as one 2D amayt$ home location
(in which, the elements are physically scattered in meminig) a piece of physically
contiguous memory block (in which, the elements are cornse&juWe only need to
know the base address of the memory block and the size of éaemsion of the data
tile. The value of the tile’s dimension size can be easilyaoted from its tile descriptor.
The base address of the memory block that assigned to thentutata tile can be
obtained from the corresponding runtime function cai(am nal | oc). With this
information, it is easy for the compiler to generate the @drcode. Most of time, we
just perform a kind of simple 1-to-1 replacement. For examible new lower bound of
af or loop is always set to zero and the new upper bound is calcLliatesubtracting
the old lower bound from the old upper bound.

3.3 Runtime Routines and Runtime Support

As we have mentioned in the last section, the tile percalatimtime needs to han-
dle the on-chip memory allocation and the memory copy forpbicolated data tiles.
We provide a set of routines (with clear interface) in thetimg library for the com-
piler. The compiler, accordingly, would insert the reqdirantime function calls in the
program during code generation.

The runtime routinessram mal | oc and_sram f r ee are responsible for al-
locating on-chip memory for the percolated data tiles. Tocalte the correct memory
storage for the tile, we need to know three values: (i) the bemof dimensions of the
tile; (ii) the size of each dimension; and (iii) the type otbkalata element. The number
of dimensions of the tile is the number of non-trivial dimiemsspecifiers in its tile de-
scriptor. The dimension size is always set to the blockiag.sThis guarantees that the
allocated memory block is big enough to hold any instartiatif the tile descriptor.
The type of the data element is obtained from the name of ldnddiscriptor.

For each percolation region, the "all-or-none” policy iopted in memory alloca-
tion. The program either continues execution aéiéof its memory allocation requests
were satisfied, or, iny of its memory allocation request failed, it jumps to the orig
nal code to perform the computations on the off-chip daestiBecause the compiler
guarantees that all memory allocations occur at the beginoii the percolation region
and all memory frees occur at the end of the percolation regi®@ memory allocation
failure would not cause dead lock among the concurrent Ofetiiiveads. This greatly
simplifies design of the runtime support and also simplifeaeogeneration in compiler.

For the memory copy task, we provide the set of runtime restipresented in
Figure 7. Currently, we support tile percolation for 1D-,-2Bnd 3D-array. They can
cover most of the practical cases. Each kind of multi-dinmra array has its own
memory-copy routines (see Figure 7(a)). The routines viighsuffix "on” are used to
copy data tiles from off-chip memory to on-chip memory, \ehithe routines with the
suffix "off” are used to copy data tiles from on-chip memory to off-chignnory. The
parameters that are required in the address calculatidresetmemory-copy routines
are supplied in the argument list. We use the "long argumstiiihstead of the "packed
argument structure” because we try to avoid inserting vesgary dynamic memory
allocation function calls in code generation. We feel thetteyating dynamic memory
allocation code is tricky and error-prone.



_copylDon(sz, _on, _off, D1, x, bl)

_copylDoff (sz, _on, _off, D1, x, bl)

_copy2bon(sz, _on, _off, D1, D2, X, y, b1, b2)
_copy2Dbof f (sz, _on, _of f, D1, D2, X, y, b1, b2)
_copy3Don(sz, _on, _of f, D1, D2, D3, x, Y, z, bl, b2, b3)
_copy3Dof f (sz, _on, _of f, D1, D2, D3, x, Y, z, bl, b2, b3)

(a) The runtime routines for memory copy

_copy[ 1D| 2D| 3D] on:  Runtime routines that copy the off-chip data tile into the on-chip memory
_copy[ 1D 2D| 30] of f : Runtime routines that copy the on-chip data tile back to the off-chip memory

Sz: Size of the element of the data tile;

_on: The address of the on-chip memory block used to hold the percolated data tile;

of f: The address of the home location of the percolated data tile in the off-cdipony;

D1, D2, D3: The size of each dimension of the percolated data tile, from the lowest dioneiosihe
highest dimension;

X, Y, Z: Position of the percolated data tile in the host array. It is represented by ¢hairate
of its first element in the host array, from the lowest dimension to the higivaension;

b1, b2, b3: Blocking size of each dimension of the host array, from the lowest dimertsitime

highest dimension;

(b) The explanation of the runtime routines

Fig. 7. The runtime routines for on-chip and off-chip memory copy

According to our design, there are some assumptions on ttohiprand the off-
chip data tiles. For the on-chip data tile, it must reside @oatiguous memory block.
For the off-chip data tile, it must be a sub-block of a multihdnsional array and the
multi-dimensional array must also reside in a contiguousotg block. Because the
percolated data tile is only a sub-block in its host array/niemory layout is not con-
tiguous. Physically, it consists of many data strips (orgpthat are separated by an
equal distance. Hence, the parameters provided in the amjuiat should be able to
be used to calculate the start address and the size of eachtdptin the tile. With the
above assumptions, itis easy to interpret the argumeiiflise memory-copy routines.
For example, the routinecopy2Don copies a 2D data tile from off-chip memory to
on-chip memory. The argument 6f f ” gives the start address of its host array, (i.e. the
address of the first elementP1” and "D2” tell the dimension size of the array” and
"y” specify the coordinates of the data tile in its host arrdodl ™ and "b2” reveal the
blocking size of each dimension of the host arrdy1l™ and "b2” are the default size
(of each dimension) of the percolated data tile. To handéectitner cases, the routine
will calculate the effective size at runtime. The size of tfaa tile element is shown
in "sz”. With the above information, it is easy for the runtime rioetto calculate the
address and size of each data strip and copy it around witbpttimized library code.
All these arguments are provided in the tile percolatioratives and can be easily
extracted out by the compiler.

In essence, the arguments listed above characterize tit@pand the size of a
data tile and its host array accurately. It doesn’'t matteztivbr this data tile and its host
array are real multi-dimensional array (in the languageesgar not. As long as all the
array access expression are affine functions of the loogesdithey can be declared
(physically) as an 1D array but accessed by the programnagidlly) as a multi-
dimensional array. The compiler will take care of the cont@d indices calculation.



4 Experiments

We evaluated tile percolation with four scientific kernéBAKPY, SASUM, SGEMYV,
and SGEMM) [17] and two NAS benchmarks (EP and MG). The tileplation was
implemented through source-to-source program transfiomand was prototyped in
the Omni compiler [18]. The experiments were conducted erRhST simulator [2],
an execution-driven and binary-compatible C64 simulafth accurate instruction tim-
ing. Figure 1(b) gives the detailed latency numbers of tlaellstore operations when
accessing different memory segments. The preliminary raxjgat results are shown
in Figure 8. Due to the space limit, we only present the perforce speedup of each
testcase.
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Fig. 8. Experiment Results: Comparison of Speedup

After applying tile percolation, the speedup of all tes&saget significant improve-
ment. The greatest improvement happens on SGEMMis testcase hag(n?) floating-
point operations but only acceé¥n?) data. However, without reusing the data that
have been brought into on-chip memory by the previous coatiouls, the program
has very poor scalability. Because it would havé»?) number of memory accesses
going into the off-chip memory. This would quickly exhaulse toff-chip bandwidth.
Without using on-chip memory, its diminishing return ist2e¢ad. After applying the
tile percolation optimization, the number of memory acessBas been reduced to
O(n?(1 + 2n/b)). Its speedup increased from less than 4 to around 12. For tetste
cases, their floating-point computations &rén?) (SGEMV) or O(n) (EP). So their
speedup enhancement is not as big as SGEMM.

3 We use256 x 256 matrix, the data tile ig6 x 16



An interesting finding is that, without applying tile peratibn, most testcases’
speedup diminishing return point is at 16-thread. They &8W3SM, SAXPY, EP, and
MG. The speedup diminishing return point of SGEMYV is 8-tliteahile for SGEMM,
it is 2-thread. For SASUM, its memory accesses and floatoigtmpperations are the
same. This reveals that, without on-chip data reuse, thehyff bandwidth would be
saturated when there are more than running 16 threads.

5 Summary and Conclusions

Writing a parallel program for multicore processor is alseadvery difficult task. It
is even more difficult if the multicore processor has sofsmaranaged memory hier-
archy, like the IBM Cyclops-64 processor. On this kind ofgassor, the programmers
not only need to take care of program parallelization, ba aked to tackle data move-
ment. Although many efforts have been made to develop adiodata movement code
generation, it only proves its efficiency on a limited clabproblems.

In this paper, we have proposed a semi-automatic approatdtaanovement code
generation. This novel approach is termedilespercolation It provides the program-
mers with a set of OpenMP-like directives. The programmansannotate the their pro-
grams with these directives to tell the compidnereandhow data movement should
be performed. Accordingly, the compiler will generate thtimized data movement
code and the correct computation code based on the inf@matovided in the tile
percolation directives. That way, the programmers can gammselves from writing
tedious and error-prone data movement code.

Tile percolation is a kind of OpenM#le aware parallelizatiortechnique [7] devel-
oped for the IBM Cyclops-64 multicore processor. As far &dtthors are aware, this is
the first paper that try to develop pragma directives for dataement code generation
in OpenMP. The tile percolation directives are orthogowathie canonical OpenMP
parallelization directives. The paper shows that the tdecplation directives can be
used together with the traditional OpenMP parallelizatimectives. Meanwhile, they
can also be used independently in the parallel programsewnwith Pthread library.
Experiments conducted on the Cyclops-64 processor shauilthpercolation can en-
hance the utilization of the Cyclops-64 on-chip memory,elhiurns out to improve the
performance and scalability of the programs. This impleiman efficienperformance
porting for OpenMP programs developed for the traditional SMP sgste
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