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Abstract. Tiling is widely used by compilers and programmer to optimize sci-
entific and engineering code for better performance. Many paratigramming
languages support tile/tiling directly through first-class language cotstauc
library routines. However, the current OpenMP programming langusagjle
oblivious, although it is thede facto standard for writing parallel programs on
shared memory systems. In this paper, we introdilesaware parallelization

into OpenMP. We proposile reduction, an OpenMP tile aware parallelization
technique that allows reduction to be performed on multi-dimensionaysarra
The paper has three contributiorga) it is the first paper that proposes and dis-
cusses tile aware parallelization in OpenMP. We argue that, it is not only nec-
essary but also possible to have tile aware parallelization in Opei(iy)Rhe
paper introduces the methods used to implement tile reduction, including-the r
quired OpenMP API extension and the associated code generation (o

we have applied tile reduction on a set of benchmarks. The experinrestals
show that tile reduction can make parallelization more natural and flexibiet |
only can expose more parallelism in a program, but also can improvetis da
locality.

1 Introduction

Tiling [1] [2] has been used as an effective compiler optingztechnique to generate
high performance scientific codes. Tiling not only can inyardata locality for both the
sequential and parallel programs [3] , but also can help dhepder to maximize par-
allelism and minimize synchronization [4] for programsmirg on parallel machines.
Thus, sometimes, it is used by the programmers to hand-hgiiescientific programs
to get better performance.

Tiling is essentially a program design paradigm. It is a redttepresentation for
many important data objects that are heavily used in séier@ind engineering algo-
rithms. Scientific code that is written with the concept dé/tiling in mind usually
looks concise and clear, and thus is much easier to unddratahless error prone.

Due to these advantages, it is desirable to provide certginlavel language con-
structs in the programming languages to support tilegilmprogram design directly.
To meet this requirement, researchers have proposed sadiggigns in many paral-
lel programming languages or sublanguages. The exampikslsnHPF[5], UPCJ[6],



X10[7], ZPL[8], CAF[9], Titanium[10], and HTA[11], whicht@ among the most popu-
lar parallel languages. However, it is interesting to finttbat, in the current OpenMP
APIs, no directive or clause can be used to annotate dagatile carry such information
to the OpenMP compiler. In other words, the current OpenMig@mming language
is tile oblivious, although it is thede facto standard for writing parallel programs on
shared memory systems.

In this paper, we propogde aware parallelization for the OpenMP programming
language. Its purpose is to enhance the OpenMP API with theem of tile/tiling
so that more data parallelism can be exposed to the OpenMPpileonBesides grant-
ing greater flexibility to the OpenMP compiler to perform raatata parallelization,
it brings better data locality into the code. This is achielsy extending the cur-
rent OpenMP directives, clauses, and runtime routinesntooducing new language
constructs into OpenMP. Our first effort in this directiontésmedtile reduction, an
OpenMP tile aware parallelization technique that allowsajal reduction to be per-
formed on multi-dimensional arrays.

Reduction is a form of recursive calculation that use matiterally associative
and commutative operators to "aggregate” a set of data. ®ieducan be performed
in parallel to improve performance. For this reason, mawgmmming languages and
sub-languages support parallel reduction. Some exampesrRC [12], MPI [13], ZPL
[14], and OpenMP [15]. According to the current OpenMP ARdddfication, reduction
can only be performed on "named scalar” variables. It cafmeoapplied on multi-
dimensional arrays. We call this kind of reductistalar reduction. In this paper, we
introduce a new technique calléidie reduction, which evolves the current reduction
parallelization from scalar variables to multi-dimensibarrays. We have extended the
traditionalr educt i on clause to allow the programmers to annotate their code where
tile reduction can be applied. We have also developed theirestjcode generation
technique to interpret the nemeduct i on clause and generate the required parallel
code accordingly. The major contributions of this paper are

1. As far as the authors are aware, this is the first paper tbabpes and discusses
tile aware parallelization in OpenMP. We argue that, it i$ ooly necessary but
also possible to have tile aware parallelization techréqué®penMP

2. The paper introduces tile reduction, an OpenMP tile awarallelization technique
that applies reduction on multi-dimensional arrays. Wewlis the methods used
to implement tile reduction, including the required Open”® extension and the
associated code generation technique.

3. We evaluate the tile reduction technique with a set of bevarks. The experimen-
tal results show that using tile reduction can make the cadellglization more
natural and flexible. It not only can expose more parallelisthe program but
also can improve its data locality.

The rest of the paper is organized as follows. In Section 2yseea motivating ex-
ample to show why tile reduction is necessary. Section 3disituss how to implement
tile reduction in the OpenMP compiler. We present our expental data in Section 4
and make our conclusions in Section 5.



2 Motivation
In this section, we use the "histogram reduction” [16] codean example to demon-

strate the limits of the current OpenMP reduction clause.vilealso use the same
example to show the advantages of extenduaiar reduction to tile reduction.

[i] [00] (04 [10] [11]

l'ong long A[1[2][2]; k=0 32Bytes
L 1 o
1 for (k=1; k<10000000; k++) 2
2 for (i=0; i<2; i++) 3
3 for (j=0; j<2; j++) 4
4 ALOITTITLj] += ALKI[iT[]] 5
(a) Original Histogram Reduction Code (b) The 3D Diagram (c) As Memory Layout

Fig. 1. The Histogram Reduction Example

Figure 1(a) shows the code of the histogram reduction progiidhe code works
onAl][1[], a 3-dimensional array with each element containing ant8-bgng
| ong. It aggregates all elements along thelimension and stores the results in the
2x2 tile AT O] [1[] . The diagram in Figure 1(b) shows these operations. We assum
that the cache line size is 32 bytes and that the the arragristsin a row-major order in
the memory. Therefore, elements with the sdnmordinate can be fed into the same
cache line, as shown in Figure 1(c). There are three nestgd ia the code. Each loop
traverses one of thie, j , k dimension of the array. Data dependence only exit in loop
k because of the recursive calculation.

0 for (k=1; k<10000000; k++) 0 for (k=1; k<10000000; k++)
1 #pragma onp parallel for 1 #pragma onp parallel for collapse(2)
2 for (i=0; i<2; i++) 2 for (i=0; i<2; i++)
3 for (j=0; j<2; j++) 3 for (j=0; j<2; j++)
4 ALOILTTLI] += ALKITTTLI] || 4 ALOI[T][]] += ALKI[T][]]
(a) Parallelize loop "i" (b) Parallelize loop "i” and "j" using the collapse clause

Fig. 2. Parallelize the Histogram Reduction Program Without Changing the Code

Given the code in Figure 1(a), there are many different waysatallelize it. How-
ever, due to the data dependence in lagmve cannot parallelize this loop. Therefore,
without changing the code, we can only parallelize l@ogndj , as shown in Figure
2(a) and 2(b). It is obvious that there are trivial workloaudl dittle parallelism in loop
i and loop . Thus, itis not worthwhile to parallelize these two loopgrewhile using
thecol | apse clause (supported in OpenMP 3.0 [15]).

To get a larger workload and more parallelism, we can intarge the loops man-
ually before parallelizing the code, as shown in Figure Figure 3(a) and 3(b), the
workload that can be assigned to the threads is large endlgybever, the available
parallelism is still very small (only supports two or fourrmurrent threads). Figure



0 #pragma onp parallel for 0 #pragma onp parallel for collapse(2)
1 for (j=0; j<2; j+4+) 1 for (j=0; j<2; j++)
2 for (i=0; i<2; i++) 2 for (i=0; i<2; i++)
3 for (k=1; k<10000000; k++) 3 for (k=1; k<10000000; k++)
4 ALOI[jTLI] += ALKI[jT[I] [|4 ALOI[jI[T] += ALKI[jI[i]
(a) Parallelize the outer loop (b) Parallelize the outer two loops
0 #pragma onp parallel for private(sum collapse(2)
1 for (j=0; j<2; j++) [i,j] [00] [01] [10] [11]
2 for (i=0; i<2; i++) { k=0 T |
3 sum = 0; 1
4 #pragma onp parallel for shared(sum) reduction(+:sum
5 for (k=0; k<10000000; k++) 2
6 sum += A[K][j][i] 3
7 ALOI[j][i] = sum 4
8 } 5

(c) Nested parallelization to harvest more parallelism (d) Data access pattern

Fig. 3. More Parallelization for Histogram Reduction Code

3(c) shows a better solution. In Figure 3(c), a negtadal | el f or directive is used
to parallelize the recursive addition using theduct i on clause (with trivial code
change). Although the code in Figure 3(c) can leverage adll$eof parallelism in the
program, its strided data access pattern would cause a mmegter of unnecessary
cache misses, as shown in Figure 3(d). Code in Figure 3(aBérdhave the same
data locality problem. Apparently, the current OpenMP [yalization techniques can-
not harvest the maximum parallelism and data locality indbde at the same time.
They suffer from either insufficient parallelism or pooral&icality.

[ij] [00] [01] [10] [11]

g bd WNE o

(a) Schema of tile reduction (b) Better locality

Fig. 4. The Ideal Parallelization Schema for the Histogram Reduction Code

The ideal parallelization is shown in Figure 4. Logicallyetrecursive addition can
be viewed as being performed on an arragwe® data tiles. In theory, these tiles can be
added together in parallel by multiple threads, as showrnguarE 4(a). In this way, the
code can achieve both the maximum parallelism and the b&sialzlity (see Figure
4(b)). Besides, from the programmers’ angle, this is thetmatural way to perform
parallelization on this piece of code. However, the cur@péenMP specification does
not provide any mechanism to support such kind of paralébn. This motivates us
to extend the traditionacalar reduction tdtile reduction.



3 TileReduction

In this section, we will discuss the techniques used to implat tile reduction. They
include the extended OpenMP programming interface ancetipgined code generation
design. The related runtime support will be mentioned whesded.

3.1 Programming Interface Extension

In order to support tile reduction, we need to extend thessur®penMP programming
interface. The extension was made based on three critdrit, F must be able to
cover most of the common cases of tile reduction code. Sedbmaust be simple
and easy to use and provide the programmers with the maxiendtbifity. Third, the
extension should not complicate the code generation of fren®P compiler and the
OpenMP runtime. Figure 5(a) shows the OpenMP API (C/C++gmesibn we proposed
for ther educt i on clause. Figure 5(b) gives a simple example that uses thadede
reduct i on clause to parallelize the tile reduction code.

reduction(operator : T[j, Lx, Ux]...[j2, L2, Us][j1, L1, U1])

T: Tile name

k: Dimension of the tile

ji: the loop index that is used in the traversal of th& dimension of the tile
L;: the lower bound ofj;

U,: the strict upper bound of;

(a) OpenMP API (C/C++) extension for theduct i on clause

int B[2][2] = {{0,0},{0,0}};

0 #pragma onp parallel for reduction(+: B[j,0,2][i,0,2])
1 for (k=0; k<10000000; k++)

2 for (j=0; j<2; j++)

3 for (i=0; i<2; i++)

4

BLjI[I] += ALKI[j][1]

(b) Simple example using the extended API

Fig.5. OpenMP API (C/C++) extension and a simple example code

Compared with the current OpenMP API specification, thesd#ffice is in théi st
construct. In addition to the "named scalar” variables, W@\athe programmers to put
a "multi-dimensional array” in théi st construct. This "multi-dimensional array” is
not a real array data structure in the language sense. Itasguéage construct that
conveys important information to the OpenMP compiler. listhe compiler the shape,
the size, and the element type of the tile and how its elenagatgaversed by the loops.

To make the paper easy to follow, we call the tile under radaais thereduction
tile; the "multi-dimensional array” in théi st construct as théile descriptor; and
the loops involved in performing "one” recursive calcubetias thereduction kernel



loops. For the example in Figure 5(B) the reduction tile i8[ ] [ ] , the tile descriptor
isB[j,0,2][i,0,2], and the reduction kernel loops are theandi loops (hot
including thek loop, i.e., the parallelized loop). In our design, the shaffibe reduction
tile must be a rectangle or a high-dimensional rectangl@ngie or other shapes are
not yet supported. The exact shape and size of the redudgaré determined by the
tile descriptor.

The format of the tile descriptor is shown in Figure 5(a).dshwo parts: thdile
name (i.e., T) and thedimension descriptor (i.e., [k, Lk, Uk]..-[52, L2, Uz][j1, L1, U1)).
Tile name must be the same as the multi-dimensional arragblaron which the re-
cursive calculations are performed. For the example inr€i§b), this corresponds to
the name of théhsvariable in line 4, which i8. It tells the OpenMP compiler the data
type of the tile element, which must be a built-in scalar tyfiee dimension descriptor,
on the other hand, is an array of 3-tuples. Each 3-tuple spomeds to one dimension of
the tile and stores important information of that dimensibimese 3-tuples are listed in
the dimension descriptor in descendant order (higher déioarfirst). Each 3-tuple has
three elements: loop index variable, upper bound expnesaitd lower bound expres-
sion. The loop index variable identifies a loop in the redutikernel loops. Since stride
accesses are not allowed, the loop stride is alviags it is omitted from the tuple. The
size of thek-dimensional tile is calculated from equation (1).

(Uk — Lk) X (U2 — LQ) X (Ul — Ll) (1)

The information stored in the tile descriptor is very imaortfor the OpenMP compiler
to generate correct parallel code.

Theoper at or, as usual, must be a mathematically associative and cortiveuta
operator that performs the recursive calculation. In ourant example, it is a+".

0 #pragna onp parallel for reduction(+: Alj,0,2][i,0,2])
1 for (k=1; k<10000000; k++)

2 for (j=0; j<2; j++)
3 for (i=0; i<2; i++)
4 ALOI[jI[T] += ALKI[jI[i]

Fig. 6. Tile reduction: tile is part of a bigger multi-dimensional array

The reduction tile is not required to be a standalone miurftiethsional array. In-
stead, it can be part of another larger multi-dimensionayai-or example, in the code
in Figure 6, the reduction tile iI8[ O] [j][1] (f = {0,1},7 = {0,1}). Itisa2 x 2
slice cut out from the 3-dimensional arrAy] [1[1;

Besides, as we have mentioned before, the lower and uppedbduthe dimension
descriptor are expressions. They are not required to beaamass Generally, the lower
and upper bounds can be a function of other variables, asdsertfje result of the

! Index variable k starts from zero because array B[][] is used to #eraccumulation results,
otherwise it starts from one.



function can be decided at runtime. Figure 7 shows such angeaThe code in Figure
7 is a blocked matrix multiplication program. Itis easy te Heat there is an opportunity
to apply tile reduction on the loop in line 3, i.e., thk loop. The diagram on the right
hand side gives an intuitive illustration. In this examples reduction tiles are blocks
cut out from a big2 x 2 matrix (C[ ] [ ] ). Therefore, the lower and upper bounds of the
reduction tiles are not fixed values. In addition, the ma@ix [ ] might not be able to
be evenly blocked. So, the tiles located at the margin of thirmare usually smaller
than the tiles located inside of the matrix. Thus, the siZé¢hereduction tiles are not
necessarily the same. All these information is reflectedhénlower and upper bound
expressions (or functions) in the dimension descriptonrédwer, there is a restriction
for the lower bound and upper bound expressions. They shatlde functions of any
index variable in the reduction kernel loops, i.e., they @t@ogonal. This is to make
sure that the shape of the reduction tile is a rectangle gir-timensional rectangle.

0 for (ii=0; ii<n; ii+=b)

1 for (jj=0; jj<n; jj+=b)

2 #pragne parallel for reduction(+: \ C A B

ql,ll,mﬂ(||+b,ﬂ)][],]j,mn(]]+b,n)]) 0o 1 2 3 4 0 1 2 3 4 0o 1 2 3 a4

3  for (kk=0; kk<n; kk+=b) ° o °

4 for (i=ii; i<mn(ii+b,n); i++) ! ! !

5 for (j=jj; j<min(jj+b,n); j++) 2 =2 x2

6 for (k=kk; k<m n(kk+b,n); k++) 3 3 3

7 Cillj1+=A[T][KI«B[K][j]; . . .

Fig. 7. Tile reduction: upper and lower bounds are functions

An interesting observation of this example code is that thalmer of the reduction
kernel loops (which i8, from line 4 to line 6) is not the same as the dimension of the
reduction tile (which i2). Generally, we do not require the number of the reduction
kernel loops to be the same as the dimension of the redudgoie only require that
the operations performed by the code in the reduction késopk can be viewed as one
associative and commutatimaacro operation performed on the entire reduction tile.

3.2 Code Generation

Since tile reduction is derived from scalar reduction, igle generation shares the
same framework as scalar reduction. Thus, we illustratectite generation for tile
reduction under the same framework as scalar reduction sexdhe code generation
for scalar reduction as a reference. Generally, the coderggon needs to deal with
the following problems:

1. Distribute the iterations of the parallelized loop amtmgthreads;

2. Allocate memory for the private copy of the tile used in litxal recursive calcula-
tion;

3. Perform the local recursive calculation which is spedifig the reduction kernel
loops;



4. Update the global copy of the reduction tile;

Figure 8 shows the code generated for the tile reduction pbeam Figure 7. To make
the paper easy to follow, we present the pseudo C code in tiefig

0

1 /* statically partition the iteration space anong the threads */

2 numthr = _ _builtin_onp_get_numthreads ();

3 thr_id = __builtin_onp_get_thread_num ();

4 chunk_size = (((n+(b-1))/(b-1))%umthr) == 0 ? \
(((n+(b-21))/(b-1))/numthr) : (((n+(b-1))/(b-1))/numthr)+1;

5 |b = chunk_size * thr_id; /* |ower bound x/

6 ub = mn((lb+chunk_size),n); /* upper bound =*/

7

8 /* allocate menory for private tile */

9 private_tile = (int *)__builtin_onmp_nenory_alloc( \
(min(ii+b,n)-ii)*(mn(jj+b,n)-jj)*sizeof(int));

10

11 /=* local tile reduction: serial */
12 for (kk=lb; kk<ub; kk+=b)

13 for (i=ii; i<min(ii+b,n), i++)

14 for (j=jj; j<min(jj+b,n), j++)

15 for (k=kk; k<m n(kk+b, n), kk++)

16 private_tile[i-ii][j-jj] += Ali]l[k]*B[Kk][j]
17

18 /=* update the global reduction tile */
19 _ _builtin_onp_atonmic_start ();

20 for (i=ii; i<min(ii+b,n), i++)

21 for (j=jj; j<min(jj+b,n), j++)

22 qillj] += private_tile[i-ii][j-jijl;
23 __builtin_onp_atonic_end ();

24

25 free(private_tile);

26

Fig. 8. Pseudo code generated for the matrix multiplication example to performdiletion

As we have mentioned at the beginning of Section 3.1, we tgwvtid complicat-
ing the code generation when we were developing the extefisicher educt i on
clause. A good example is the code generation for distributie iterations of the par-
allelized loop among the dynamic threads. Actually, thig pathe code generation for
tile reduction is the same as that for scalar reduction.

In the tile reduction program, the reduction kernel loops loa viewed as a single
statement that performs the recursive calculation, whédihé same as its counterpart
in the scalar reduction program. So, from the angle of itemadistribution, the scalar
reduction code and the tile reduction code are logicallystirae. Therefore, the method
used to generate iteration distribution code for scalanctdn can also be used to gen-
erate iteration distribution code for tile reduction. ltedo’t matter whictschedul e
policy (st ati ¢, dynami c, gui ded, orrunt i ne) is deployed.

In Figure 8, we use thet at i ¢ scheduling policy as an example. In the code from
line 2 to line 6, the iterations of thiek loop (line 3 in Figure 7) are evenly distributed
among the threads. The iterations of the loop are divideddhtinks and each chunk is
assigned to one dynamic thread. The iteration chunk as$igrtbe thread is delimited



by the lower bound variablel b" and the upper bound variabteub” , which are
determined by thé¢hread number of the owner thread. This piece of code only deals
with the parallelized loop and the user specified OpenMPrpeters. It does not even
need to look into the code of the reduction kernel loops. Thithe same for other
schedule policies.

In line 9, the OpenMP runtime routine allocates memory fa the private tile
(private_tile), which is a 2-dimensional array. This private tile is ussdthe
thread as a temporary storage to perform the local sequéigiaeduction. Its size
is calculated from the parameters specified in the dimerdéseriptor (see equation
1). Its element data type is inferred from the tile name. il information is obtained
from the extendededuct i on clause.

The local sequential tile reduction is performed in the civdm line 12 to line 16.
This piece of code is almost the same copy as the originaleseigi program (line
3 to line 7 in Figure 7) except two places. In line 12, the lowed upper bounds of
the loop are changed td b" and" ub". This is to restrict the range of the iteration
space in the chunk assigned to the current thread. Besiésgil6, we replace the
original reduction tile with the private tile and updateiitdices. This index calibration
is required because the global reduction tile is cut out feolbigger multi-dimensional
array, while the private tile is a standalone array. Thisgief code performs local tile
reduction sequentially, as in the original un-parallaizede.

After finishing the local tile reduction, the thread must afathe global reduction
tile. The code is shown in line 19 to line 23. The runtime mes4 in lines 19 & 23
ensure atomic access to the global reduction tile. The loofise 20 and line 21 are
extracted from theeduction kernel loops. Only the loops listed in thele descriptor are
selected. So, the lodpin the reduction kernel loops is not included. Thevariable of
the statement in line 22 is the same variable as in the otigode (line 7 in Figure 7).
However, therhs variable has been replaced with the private tile, in whighitidices
have been updated.

From the code in Figure 8, itis easy to see that the code gamefar the tile reduc-
tion is as easy as that for the traditional scalar reductibeanwhile, no extra runtime
supports is required. These advantages make the impletioentd tile reduction in
the OpenMP compiler very easy. In the next section, we wékpnt the experimental
results of applying the tile reduction on several typicaidiamarks.

4 Experiments

We have applied tile reduction on three benchmarks: the 8 giam reduction, matrix-
matrix multiplication and matrix-vector multiplicatiorThe required code generation
was implemented through source-to-source transformatimhwas prototyped in the
Omni-1.6 OpenMP compiler [17]. The machine used in the @rpats has 4 Intel

Dual-Core Xeon (Paxville) chips, which are clocked at 3.0zGHach core has Hy-

perThreading (HT) enabled. Therefore, the machine canéged as a 16-processor
shared memory parallel computer. Each chip has 4MB L2 c&2ii® (each core) and

each core has 16KB L1 cache.
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Fig. 9. Comparison of the speedup and execution time between the prograltelga@ with tile
reduction and the program parallelized with the standard OpenMP pragma.

Figure 9 shows the experimental data of the three benchm@hiescurve graphs
on the left column display the speedup of the benchmark progmparallelized either
through the tile reduction clause (w/ tile reduction) orotingh the standard OpenMP
APIs (w/o tile reduction). The bar charts on the right colukemonstrate the difference
of the absolute execution time between the correspondiograms (w/ and w/o tile

reduction) of the same set of benchmarks.



Figure 9(b) shows great performance enhancement if welpézalthe 2D his-
togram reduction benchmark with the tile reduction claenerally, compared with
the program parallelized with standard OpenMP pragma,libelate execution time of
the tile reduction version decreased ab@ffo and its speedup on 8 threads increased
from 1.5 to 4.5. The performance gain comes from the improved data localitych
owes to the tile reduction optimization. Without using tiluction, the 2D histogram
reduction program exhibit very poor scalability (shown iiguéte 3). The tile reduc-
tion parallelization successfully rectifies the data asgesttern and thus significantly
improves its scalability. However, no matter what kind ofiopzations are used, this
benchmark stops scaling beyond 8 threads. This is becatise lofige number of mem-
ory references in the code, which results in that its peréoroe is finally restricted by
the bandwidth of the shared memory bus.

The same phenomena are also observed in the matrix-matfiiplication bench-
mark (see Figure 9(c) and 9(d)). Tile reduction can alsoeese its execution time
and improve its scalability. However, the magnitude of teefgrmance enhancement
caused by tile reduction is not as big as that of the 2D histogreduction benchmark.
This is also the same for the scalability enhancement. Tasoreis that the data lo-
cality of the tiled matrix-matrix multiplication progrars better than the 2D histogram
reduction benchmark. Therefore, the performance gain filemeduction in the matrix
multiplication program is less than that in the 2D histogrraahuction program. On av-
erage, the execution time decreasatl after applying tile reduction and its speedup
increased fron2.15 to 3.18 on 8 threads and frorh 26 to 3.32 on 16 threads.

For the matrix-vector multiplication case, the performamnhancement brought
about by tile reduction is smaller than that of the previaus benchmarks. The reason
is the same as the previous one. Moreover, compared withttiee two benchmarks,
there are less data memory references in this benchmarkh&mrogram'’s perfor-
mance degrades a little bit when it runs with 8 or 16 threadiés | because of the
synchronization overhead caused by the code in line 19 amil 2gure 8. In average,
its execution time decreas€d8%.

5 Summary and Conclusions

In this paper, we introduced the concept of tile aware paliadition for OpenMP. Mean-
while, we developed the first tile aware parallelizatiorht@que - tile reduction, and
illustrated the details of code generation for the tile atun clause. We also designed
a series of experiments to evaluate the tile reduction igalen From the experimen-
tal results and our experience of parallelizing the bencksave have the following
conclusions:

1. As a building block of the tile aware parallelization thgdile reduction brings
more opportunities to parallelize dense matrix applicetio

2. For some benchmarks, tile aware parallelization is a materal and intuitive way
to reason about the best parallelization decision.

3. Tile reduction not only can improve data locality for sopregrams, but also can
expose more parallelism.



6 Reated Work

Parallel reduction operations are supported in many hnalbgramming languages.
They include C**[18], SAC [19], ZPL [16], UPC [12], and MPI 8l. Most of them sup-
port user-defined reduction operations, either througguage constructs or through
library routines. User-defined reduction operation presid flexible way to implement
tile reduction. However, programmers need to change bath stauctures and algo-
rithms, which, sometimes, is not a tirivial job.

Another piece of work that we need to mention is [20]. In [2Bf authors pro-
pose to extend the OpenMPduct i on clause to parallelize C++ generic algorithms.
They propose to support user-defined types, overloadeaimpsrand function objects
in the same way as the built-ins supported in the current ®paneduct i on clause.
Their work is very close to that presented in this paper. Hanave study the reduction
problem from a different angle. We propose tile reductionraes of the tile aware paral-
lelizing technique for OpenMP, while [20] proposes useiiraml reduction operation to
complete their OpenMP extensions for parallelizing genidsiraries. In our tile aware
parallelization technique, we are concerned with the datttjon, locality and a more
flexible and efficient way to parallelize dense matrix pragsawritten in cannonical C
syntax, while the purpose of [20] is to allow people to palak programs written in
modern C++ idioms such aterators and function objects, which are not cannonical
C syntax. Second, due to the non-trivial dynamic overheath@fyeneric techniques,
generic libraries are not widely used in programming higtfggenance scientific and
engineering algorithms. Finally, there are no experimetdta in [20].

7 Future Work

Tile reduction is one of the building block of the tile awalalleization technique de-
veloped for OpenMP. One of our future work is to develop mampelizing techniques
(like tile reduction) such that OpenMP compiler can "redaghdata tiles and allow its
runtime library to manipulate them. Our goal is to add tileaeswarallelizing directives
or clauses into the OpenMP programming interface. The parmto evolve OpenMP
into an appropriate programming model for many-core prameswith explicitly man-
aged memory hierarchy [21], e.g. the IBM CELL [22] and the IEMclops-64 [23]
processor.
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