Performance Analysis of Cooley-Tukey FFT Algorithmsfor a Many-core
Architecture

Long Chen and Guang R. Gao
Department of Electrical & Computer Engineering
University of Delaware
{lochen, ggao} @capsl.udel.edu

Keywords: Fast Fourier Transform, Performance Analysis,algorithms, programmers may ask the following questions:

Many-core e What is the expected performance of an FFT implemen-

tation programmed in a high-level language for a many-
core architecture?

e How does the performance of a parallel FFT algorithm
change with the problem size?

e How scalable is an FFT algorithm, given a problem size?

Abstract
Given that many-core architectures are becoming the main-
stream framework for high performance computing, it is im-
portant to develop a performance model for many-core ar-
chitectures to assist parallel algorithms design and egpli
tions performance tuning. In this paper, we propose a perforA performance model that can answer these guestions pro-
mance modeling technique for parallel Cooley-Tukey FFT al-vides valuable assistance for designing FFT algorithms on
gorithms, for an abstract many-core architecture thaiucapt many-core systems, and tuning them to achieve the maximum
generic features and parameters of a class of real many-coperformance.
architectures. In this paper, we propose a performance model that esti-
We derive the performance model by determining the cosmates the performance of parallel FFT algorithms for a many-
functions for computation, memory access and synchronizasore architecture. This performance model is targeting for
tion in a parallel FFT algorithm. We have verified our perfor- an abstract many-core architecture that captures gereric f
mance model on the IBM Cyclops-64 (C64) many-core architures and parameters of several real many-core archigsctur
tecture, using both the simulator and a preliminary version Itis therefore applicable for any architecture with simfiza-
its chip. The experimental results demonstrate that ourainod tures. The parallel FFT algorithms we studied in our analysi
can predict the performance trend accurately, with an averare based on the one-dimensional decimation-in-time(DIT)
age relative error of 16%, when running on up to 16 coresCooley-Tukey algorithm [7]. Our model can be easily ex-
The average relative error rate gradually increases to 29%ended to multi-dimensional FFT, which is calculated asta se
when running on up to 64 cores. The experimental resultof one-dimensional FFTs, performed along one dimension at
also reveal that key to performance for this class of manya time. Note that the performance model presented in this pa-
core architectures is using the local memory and highekradiper is based on the nature of FFT: memory access pattern and
algorithms to reduce the memory traffic requirements. computation pattern are fixed in advance. It is thereforéi-app
1 Introduction cable for other algorithms with the same property, but kit
The fast Fourier transform (FFT) is of great use across 40 9éneral numerical algorithms.
large number of fields, including spectral analysis, dataco e evaluate our model on the C64 architecture. Both sim-
pression, partial differential equations, polynomial tipli- ulations and the executions on the real hardware have veri-
cation, and multiplication of large integers [8, 19]. varpp fied the effectiveness of our performance model. The exper-
parallel FFT algorithms have been designed for numerou$nental results also reveal that the memory access delay has
parallel computer systems [14, 18, 22, 1, 23, 4, 20, 25]. a crucial impact on performance of a parallel FFT algorithm
Many-core architectures are state-of-the-art parallst sy for many-core architectures. Therefore programmers ge su
tems that offer massive thread level parallelism, massive o 9ested to optimize use of local memory and higher radix al-
chip memory bandwidth and other novel features. Examgorithms to reduce memory traffic requirements.
ples of such architectures include Intel Terascale [17]dNv The rest of this paper is organized as follows. Section 2
Tesla [21], and IBM Cyclops-64 (C64) [12]. While many- Presents the abstract architecture model. Section 3 gsesen
core architectures are becoming increasingly attractiae p tWo parallel FFT algorithms. The performance model is dis-
forms for high performance computing, it is difficult for pro cussed in Section 4. Section 5 reports experimental results
grammers to fully explore their computing capabilitiestya ©n the C64 architecture. Related work is summarized in Sec-
due to a lack of performance modeling that can assist th#0n 6, and Section 7 concludes with future directions.
design of parallel algorithms and direct applications perf 2 Abstract Architecture Model
mance tuning. For instance, when designing and tuning FFT In this paper, we restrict our analysis to a class of many-
core architectures. We abstract their main architectwal f

tures into a generic form as illustrated in Figure 1. This ab- ! chip |
stract architecture model consists of a large number otiden | LM, !
cal cores/processors, each of whom has one or more process- ! 1
ing elements (PEs), and a three-layer memory hierarchy, i.e :

the local memory (LM), the on-chip global memory (on-chip 3

GM), and the off-chip global memory (off-chip GM). The on- i

chip GMs and off-chip GMs are interleaved to achieve higher ‘

memory bandwidth. The memory hierarchy is explicitly soft- | , P |
| @ Interconnection on-chip GMz |

ware addressable to all cores. An on-chip interconnecgbn n
work connects cores/processors to global memories. All PEs
can access on-chip GMs and off-chip GMs via the network.
An LM may or may not be globally accessed by all PEs, how- | : i
ever, its associated core/PE can access it through somle-“bac @ :

network

door” with very low latency. We simplify the interconneatio * i

network by assuming that the unloaded latency [10] of global ! j
memory accesses, either on on-chip GMs or on off-chip GMs, IR T”::_" **** T *****************
is equal, regardless of the origin or the destination of the a

cess. Instances of such architecture include IBM C64, E€lear
Speed CSX700 [6], etc.

To better understand the performance issues, we chara
terize this abstract model with a set of major architectpaal
rameters, which are summarized in Table 1. These parametesgiddle factors used from the first stage to the last stage, ar
and their denotations will be used in our following discossi stored in array and arrayw, respectively. Note that bit-
While there exist more general parallel machine modelsan threversal permutation needs to be performed on input before
literature with fewer parameters, like LogP [9] and BSP [26] the butterfly computation stages. In this paper, we assuate th
our abstract model (and the corresponding parameters) is dg has already been reordered, and therefore such permutation
veloped for a specific class of state-of-the-art many-core a s not explicitly addressed in our algorithms.

off-chip
GM,

off-chip
GMo_y

Ejgure 1. An abstract many-core architecture model

chitectures. Therefore it involves some low-level detaitsd In N-point SEQ-R2-FFTN = 2!, we denote the data points
we do not claim that this model/analysis can be immediatelyaccessed in thieth butterfly, 1< i < N/2, in the p-th stage,
applied to a large diversity of parallel architectures. 1< p<t, asM(p,i). An interesting memory access pattern
. of SEQ-R2-FFT is captured in the following observation:
Table1. Architectural parameters Observation 3.1 In the p-th stage of SEQ-R2-FFT, data
C | number of cores in one chip points accessed from the a- (2°)-th 1 iteration to the ((a+

P number of PEs in one core . . . a+1)-2¢—1 . . .
M | number of on-chip memory modules 1)-2°~ 1)-th.|terat|on, €, uli:a-gc M(p,i), condiitute &i-
O | number of off-chip memory modules ther one continuous data region, or two separate continuous

bandwidth of a inbound link between a core and the iet- data regions with equal lengths, where c is an integer be-

Bin work, measured in bytes per cycle. tween 0 and log,N/2, and a is another integer between 0O
B bandwidth of a outbound Tink between a core and the and (N/ZC) -1
out : '
network, measured in bytes per cycle. St : ; _
B network bandwidth of the on-chip Tnterconnection net- Due .to th_e space Ilmltat|.0n WE,} omit t.he proof_ of this obse.:r
net | \york, measured in bytes per cycle. _ vathn in th!s paper. Detailed discussion of _thls obseorati
B bandwidith of a single memory module, measured in and its application to our performance modeling can be found
bytes per cycle. in Section 4.3.
w | granularity”of the interleaved memory system, méa- 35 par gl FET Algorithms

sured in bytes

Figure 3 presents a straightforward parallel version of Al-
. gorithm SEQ-R2-FFT, PAR-R2-FFT, which is executed by
3 FFT Algorithms PEe, 0< e< P-C. Barriers are used to ensure the read-after-
In this section, we present two parallel FFT algorithms.\yrite data dependence between stages. Similarly, a paralle
The performance model presented in Section 4 is derived fofadix-4 Cooley-Tukey algorithm, PAR-R4-FFT, is presented
the parallel FFT algorithms presented in this section. in Figure 4. In this algorithmp is a% by 3 array, which is
31 Sequential FFT Algorithm a stacking of twiddle factors and their squares and cubes use

Figure 2 outlines Algorlthm SEQ'RZ'FFT, a Sequentialfrom the first stage to the last stage [19]
radix-2 DIT Cooley-Tukey algorithm. The input data and the

pre-computedong weight vector [3], which is a stacking of 1We regard & = 0 here.

Algorithm SEQ-R2-FFT Algorithm PAR-R4-FFT
Input: aN-point datax, N = 2! Input: aN-point datax, N = 2!
Output: x overwritten with its DFT Output: x overwritten with its DFT
1 n¢e 21 1 n«4-1
2. for p+ 1totdo 2. for p+< 1totdo
3. | 2P 3. | « 4P
4, s 21 4. s 4p1
5. fori<-Oton—1do 5. v+ (s—1)/3
6. k<i/s 6. for i+ eton—1step P-Cdo
7. j < imods 7. k<+i/s
8. T Ws—1+ jl*xkl +j+5] 8. j«i (mods)
9. XK+ j 4]« xKl +j]—T 9. o < Xkl + j]
10. XK+ j] < x[KI + j]+T 10. B+ wv+j,0]-xKl +s+j]
11. endfor 11. Y wv+ j,1] - X[kl + 25+]
12. endfor 12. 8 wv+j,2]- XKl +3s+]
Figure?2. Sequential radix-2 DIT Cooley-Tukey FFT algorithm ﬁ ;0 : g +¥
3 1 -
15. T2+ PB+0
Algorithm PAR-R2-FFT 16. T3 p-3
Input: aN-point datax, N = 2! 17. XK+] To+T2
Output: x overwritten with its DFT 18. XK +5+j] 11 —iT3
19. Xkl +2s+j] + To—T2
1 ne ot-1 20. XKl +3s+ j] 11 +iT3
2. for p« 1totdo 21. endfor
3 | 2P 22. barrier
4. s 2p-1 . 23. endfor
5. for i e/to n—1step P-Cdo Figure4. Parallel radix-4 DIT Cooley-Tukey algorithm
6. k«i/s
7. j<i (mods)
8. T+ ws—1+j]-xkl +j+5 .. .
9. XK + E 49 “Jl[k'_[+ il J,T ! o If not explicitly s_tateo! otherwise, we assume that thread
ifll d>f<[kl +] XK+] +1 private data resides in local memories, and shared data,
. endfor L .
Iy barrier e.g,X, andw reside in global memories.
13 endfor e To further simplify the analysis, we assume that all ar-

Figure3. Parallel radix-2 DIT Cooley-Tukey algorithm chitectural parameters are even numbers. In particular,

N, P, C andW are powers of two.

Note that both Algorithm PAR-R2-FFT and Algorithm Due to the above assumptions, we do not claim that our

PAR-R4-FFT are straightforward parallel version of their s . L

: o performance model can predict the accurate execution time
quential counterparts, and are not optimized for any SPEof an application; rather, we attempt to use this model to
cific architecture. While highly optimized algorithms cdul P ' ’ P

achieve much better performance [5], simple algorithms aréquantltatlvely evaluate the performance impact (trendjlof

beneficial to the illustration of our performance model gorithms and architectural features on many-core systems.
' 4.2 Basic Strategy

4 Performance Estimation Strategy Both Algorithm PAR-R2-FFT and Algorithm PAR-R4-

In this section, we first introduce assumptions that are UsefleT described in Section 3 have an iterative structure. More
throughoutthe paper. We then present the strategy to @6timagyqifically, some synchronization-free computationeatt

the performance of parallel algorithms proposedin Se@ion g reneated in every stage, and a global barrier is enforced

4.1 Assumptions _ _ after each stage to guarantee that all operations in thge sta
In order to simplify the modeling, we take the following | o completed. For example, ad-point PAR-R2-FFT

assumptions. proceeds in logN stages, each of which composed of a

« We assume that each core and memory bank has an infiet of independent butterfly operations evenly distributed
nite incoming buffer and an infinite outgoing buffer out among PEs. Each butterfly operation starts from loading

of the network interface. Therefore, no request/responsfté(vO input data points and a pre-calculated twiddle factor
packet will be dropped. rom the global memory, followed by a computation kernel,

e We assume that the problem sigds much larger than and finally ends Wlt.h stprlng two output points back to
C .__memory. The execution time of sudtrpoint PAR-R2-FFT
the total number of PEs participating in the computation,

i.e., N > P-C, which is often true for most scientific can therefore be calculated by

applications. T logaN Telt.0) + T, Tolt.) O
. . . . = max r, r, r,
e We do not consider the cost associated with the bit- FrT ,; (Te(r,P)+Tu (. P) +Ta (" P
reversal permutation, because it is not directly related to 0<p<P.C

the cost of butterfly operations. Our model can be easily
extended to incorporate this cost, though. where Tc(r, p), Tu(r,p) and Tg(r,p) denote the computa-

tion time, memory access time and synchronization timethe size of the request (in bytes) by the average service rate
respectively, of PEp in stager. The execution time of a (in bytes/cycle).

N-point PAR-R4-FFT can be obtained in a very similar way, In Algorithm PAR-R2-FFT, the longest memory access de-
except that the algorithm proceeds in Jdg stages, and lay occurs when multiple memory loads/stores are issued to
each butterfly operation works on a 4-point input datasetGMs in a burst. Lefl|y andTy denote the time (in cycles) to
For the sake of brevity, we focus our analyses on Algorithmcomplete a burst oP - C load and store requests, one from
PAR-R2-FFT, and only show the difference when necessaryeach PE, respectivelfig andTg can be represented as

Inour abst_ract z_;\rchitecture, all PEs are ide_nti<_:a|. Sinte b P.S P.C-S P.C-S
terfly operations in one stage are evenly distributed among fo = gt —pg g1
PEs, and every butterfly takes the same amount of computa- e T ey
tion time, we can regard diz(r, p) being same for alf and P.C-& P-S
p. We letTc denote the total computation time, i.e., the com- * By T, ! ©)
putation time folN /2 butterfly operations, in each stage. T T
Similarly, Tg(r, p) can be regarded as same for aknd P-S P.C-§ P.C-§
p, since the semantics of a global barrier requires that all T« = Bout —it Bret -t Bm -1 @
PEs wait at the barrier before any of them is allowed to oo ek ey

proceed. We leflg denote the synchronization time imme-
diately after each stage. Further, usfgr) as the short for
max(Tm(r, p)), we can rewrite Equation (1) as

In the above equation§; andS; are the size (in bytes) of
a single request/response, with or without containing tita d
of x or w, respectively. ThenP- S is the total size of load re-

. 7'092NT o N T ogN. T 5 quests issued by a single core, & is the total size of the
FET = 3 Tu(n)+10goN-Te +logoN-Ta @ store requests issued by a single core, or the total sizeeof th
0<p<P.-C response delivered back to a single core. Simil& I - S is

the total size of data to be served for a memory access burst.
By deriving cost functions foify (r), Tc andTg, we can B, the aggregate effective memory bandwidth, denotes the
guantitatively estimate the performance of Algorithm PAR-real achievable memory bandwidth (in bytes/cycle) when a
R2-FFT and PAR-R4-FFT on the abstract architecture modehurst of memory accesses are handled. Note that a memory

4.3 Estimated Memory Latency load travels the network twice for sending the request and
We now derive the cost function for memory access delayeceiving the response, while a memory store travels the net

for Algorithm PAR-R2-FFT. work only once.

Estimated Local Memory L atency Due to varieties of interconnection networks in topol-

As described in Section 2, each PE can access its asso€igy, routing algorithms, switching strategy, and flow cohtr
ated LM through some exclusive “back-door”, without going mechanism, it is hard to induce a general equation for net-
through the network. Hence, we can simply treat the latencyvork delay, hence we focus on a type of interconnection net-
of accessing a PE’s associated LM as a constant. work - crossbar switch - in this paper. The methodology pre-
Estimated Global Memory L atency sented here can be easily extended to other types of networks

In our abstract architecture model, the memory access de- A crossbar switch is one form of the multistage networks
lay of load/store operations issued to GMs is determined byhat allows any input port to communicate with any output
the unloaded latency [10] and contention delays. The unport in one pass through the network [16]. One important
loaded latency is the transmission time under ideal condiproperty of the crossbar switch is it®n-blocking connec-
tions. It is determined by the system design and is fixed for divity within the switch, which allows concurrent connections
given architecture. The contention delay occurs when multibetween multiple input-output pairs with a constant traissm
ple requests compete for some hardware resource. There a@n time per packet, provided that inputs/outputs are ydwa
four types of contention delays in our abstract architectur available during the connections [15]. For a many-core ar-
model: (1) theoutbound delay, when multiple PEs from the chitecture employing a crossbar switch as the interconnec-
same core compete for a shared channel to inject memoitjon network, the components annotated with “network” in
access requests to the network, (2) tieavork delay, when Equation (3) and (4) are constants. Furthermore, under our
multiple memory accesses compete for the network transassumption that every core and memory bank has infinite in-
mission, (3) thememory contention delay, when memory ac- coming and outgoing buffers out of the network interfaces,
cess requests are waiting to be handled by a memory banBjn andBoy: are considered as constants too.
and (4) theinbound delay, when multiple data elements are
loaded to the same core (for memory loads only). Each type #To simplify the expression, we assume that a load resporge atore

of contention delays can be roughly calculated by dividingrequest are of an equal size. In the actual hardware, theyhanagy different
sizes. This fact does not affect our method presented here.

In this paper we focus on the cases wheandw are re- continuous regions oR. This reminds us to transform the
siding in the on-chip GM. Off-chip memory accesses usu-problem of calculatindm «(r) into determining the number
ally involve more complicated hardware behaviors throughof memory banks that are “covered” by those continuous re-
the datapath, and the corresponding analysis will be a@aturgion(s).
extension of the method presented in this paper. We first discuss the case where all accessed elemenrts in

For a many-core architecture employing a crossbar switclduring a burst constitute one continuous region, which hap-
as the interconnection networBy, is an accumulated band- pens during the first log2P - C) stages. Denote the length of
width of accessed memory banks. It is worth to note thasuch continuous region &g, wherel; =2P-C- &, and such
the value ofBy, may be different for memory operations per- region span$%] memory banks. We then have
formed onx an(_jw_, since, in a given stage, different PEs al- Brx(r) = min(M.[ﬂ})-B @
ways access distinct data elementsimvhile they probably w
attempt to load the same twiddle factor framespecially in Next we discuss the case where all accessed elements in
the first several butterfly stages. When multiple PEs access$uring a burst constitute two separate continuous datamegi
the same data, they introduce more contention in memoryith equal lengths, which happens in stagehere log (2P -
banks. This implies that different contention delay mayucc C) < r <log, N. Denote the length of such regionslasand
when accessingandw through the execution. To clarify this denote the distance between two regions (i.e., the distance
point, we denot8n, «(r) as the aggregate effective bandwidth from the start of the first region to the start of the second
for loading/storingduring stage, and denot®n, ,(r) asthe region) aszZ, wherelL, = P-C- S, andZ = 2~1. §. Since
aggregate effective bandwidth for loadingduring stager. both regions are aligned to the memory bank boundary, the
To determine the exact value Bfy,x(r) andBm(r), we as- number of memory banks on which each region spah%l};
sume, without any loss of generality, thedndw are aligned and the number of memory banks “covered” by the distance
to a memory bank boundary. is [V;v]. Note that ifZ is long enough, then the second region

In our analysis, we consider that a PE can issue load/stonaight “fall off” the end of the last memory bank and “wrap
requests in a pipelined way, i.e., one request per machinground” to the start of the first memory bank, as illustrated i
cycle, which is true for modern architectures. A singleFigure 5(c).
radix-2 butterfly operation contains 3 load requests (2xfor If [%1 > M, Bmx(r) is simply M - B, since all memory
and 1 forw), and 2 store requests (faJ. The completion banks will be simultaneously active in serving memory
time of the pipelined requests is determined by when theccess requests in a burst. Otherwise, we have to investigat
last request is finished, i.e., the longest delay. For a lmirst the relative positioning of those two regions. Figure Slesi
radix-2 butterfly operations, we have the following equasio of three possible scenarios. In the figure, the shaded boxes
to compute the latenc¥iq_p, and T p, for a pipelined load represent memory regions, and the dotted arrow lines show

and store, respectively, the wrap-around.

Tiep(Brix.Bro) = 3;"3 _1+2D+3F;31_1 Scenario 1. As shown in Figure 5(a), two regions are
out in not overlapping on memory banks. This occurs _When
outbound inbound (M-W —2Ly) > (Zmod (M-W) —Ly) >0, that is,

n max(zpéc‘sj _1 PéC‘Si “1) & (M-W-Lp) >Zmod (M-W) > L,. In this case, the
mx mo number of covered memory banks[i%ﬂ, and we have
memory 2L,
. .C. Bnx(r)=[+1-B ®)
TepBn) = 28 14p FOS W
o _— Scenario 2. Figure 5(b) shows one kind of overlapping of
outbound memory

two regions. When this scenario happens, it satisfies the
where the constai? is the one way transmission latency of condition 0< Z mod (M-W) < L. The number of covered

the crossbar switch. memory banky = (%M\N)JFLZ], and we have

Deter mining Brx(r) Bmx(r) =min(M,Y)-B ©)

. ,) Scenario 3. Another kind of overlapping is shown in
SinceBm(r) is an accumulated bandwidth of all accessed,;igure 5(c). The second region falls off the end of the

memory banks, the key issue is to determine the number qf ¢; memory bank and wraps around to the first mem-

memory banks accessed in a burst of butterfly operations. R%’ry bank. In this scenarioZ satisfies the condition

call that Observation 3.1 in Section 3 states that data point, " 4 (M-W) > M -W — Lp. The number of covered

accessed from iteratica- 2° to iteration(a+ 1)2°— 1 in one 1 (M-w7<z mod (MW
W

stage constitute either one continuous region or two sépara

memory banks i$%1 +)1, and we have

for a burst of radix-2 butterfly operations, one for each RE, i

Brx = (Tgy 11 w B (0 stager, can be estimated by
Tib(r) = Tid_p(Bmux(r), Bmw(r)) + Tet_p(Bmux(r)) (12)
,,, . . L
777777777777777777777 Since the workload is evenly distributed to all PEs, and
[R . every PE performg identical butterfly operations during
R g each stage, the overall memory latency for Algorithm PAR-
Memory Memory Memol Memory Memory R2_FFT can be apprOXimated as
ba(\)nk belnk baznk Rlainzk ?Aafr logoN logpN
r; Tm(r) = »C r; Tmb (1) (13)
@ With slight modifications to Equations (5) to (13), one can
——— N obtain the overall memory latency for Algorithm PAR-R4-
I ey FFT. For example, to estimate the latency for a pipelined loa
N , for a radix-4 butterfly, instead of having 3 loads for a radlix-
butterfly shown in Equation (5), we simply substitute with 7
MemoryMemoryMemory | MemoryMeman loads i.e_., 4 fox and 3 for@. .
ol 1| 2 M-2 | M-1 4.4 Estimated Computation Time

To estimate the computation time, we examine the gener-
ated instruction sequence of the computation kernel, aad us
a simplified PE model to approximate the execution time, un-
der ideal conditions: no interference from other PEs, no in-
struction fetch delays, and perfect branch prediction.

Since memory latency has already been taken care of in
Memory Memory Memory Memory Memol . . .
bank | bank | bank | -+ | "bank | bank Section 4.3, all memory instructions are removed from the
instruction sequence. The PE model executes the remaining
© instructions in a pipelined way, i.e., one instruction pgale.
is stalled due to data dependence, no later instruction ean b
Deter mining By (r) issued. Special care needs to be taken when any shared hard-

ware resource in a core is competed by PEs. Our PE model

DeterminingBm.,(r) is different from what we have done SimPply “perfect shuffles’P sets of such instructions into a
with Bmx(r), since the number of distinct twiddle factors ac- New sequence, in which all original data dependence relatio

cessed in each stage varies through the execution. Here W&Preserved, and executes this interleaved sequencesiihe e
list two possible scenarios. mated execution time of this interleaved instruction segee

) _ is used as the execution time of a single set on this PE model.
Scenario 1. In the case oP-C- S <W, Bmw(r) is always Gijyen this model and the architecture specification, we can
equal toB, becauseP - C requests ofw always fit into one expresdic as a function oN, P, andC.
memory bank. 45 Estimated Barrier Overhead

Scenario 2. WhenP-C- S > W, Bm(r) can be easily de- Given the complexity and variety of barrier implementa-
termined a8 for the first log & stages, because the number tions, it is difficult to estimatels without knowing the de-

of distinct twiddle factors used in each stage does not ekceelails of the real architecture/software. We thus propose an
W For the rest stage®m(r) is mutually decided by the experiment-based approach in our modeling. This approach
number of memory banks holding the twiddle factors used irmnakes every PE call the barrier function many times, and re-
stager, and the number of requested (distinct) twiddle factorsPorts the average elapsed time per call. In this way, we can

in a burst. This can be generalized as obtain the cost function of the barrier waiting time as a func
Bm_w(r):min(zr—logz(%).P'C‘Sj.M)B 1) tion of P andC.
W 5 Case Study: IBM Cyclops-64
Given Equations (5) to (11)np(r), the memory latency In this section we evaluate our performance model in the

context of the IBM Cyclops-64 (C64) chip architecture.
3Bm_w(r) could be a little bit larger thaB, since the requestedin a burst 51 C64 Chip Architecture

may reside in two consecutive memory banks; the first banétshohly one
twiddle factor, and the next one holds at Ie@gt—l) twiddle factors. How- The C64 architecture is an instance of the abstract archi-

ever, the occurrences are few along the computation, anppreximate it t€cture model proposed in Section 2. A C64 chip contains 80
as the bandwidth of a single bank.

cores. Each core has two single-issue, in-order PEs operdEstimated execution time on each stage. We first want to
ing at a moderate clock race (500MHz), and a floating-pointompare the predicted execution time of each individual-com
unit (FPU) shared by both PEs. The Instruction Set Archi-putation stage (plus the waiting time of the following baryi
tecture (ISA) of C64 supportsoating Multiply-Add instruc- with the experimental result, since its accuracy is the &ind
tions, which can be issued at every cycle. Therefore, the themental requirement for our subsequent analysis. Figur&6 an
oretical peak performance of a C64 chip is 80Gflops. Figure 7 show such comparison when computing%mint

C64 features an explicitly addressable three-level memFFT with Algorithm PAR-R2-FFT and Algorithm PAR-R4-
ory hierarchy, including 160 local memories (LMs), one for FFT, respectively. It can be observed that our performance
each PE, 160 on-chip global memories (GMs), and 4 off-chip
GMs. Both on-chip GMs and off-chip GMs are interleaved by

a 64-byte boundary, and are accessible to all PEs on a chip. 0 ——o—
An LM is also accessible to all PEs, however, its associated o i)
PE can access it with a very low and fixed latency. There is = 27 1o cores experimen)
no data cache in the C64 chip architecture. ol e 4 cores (prectcaton)

All cores and memory banks are connected to an on-chip
pipelined crossbar switch with 3696 ports. In particularly,

3000(

Execution time (cycles)

80 ports are shared by 160 on-chip GM units, and 4 ports 2o0c?

connected to the off-chip GM controllers. Each port can con-

sume one request packet and send up to 8-byte data to the net- T

work/memory in one cycle, while all the other packets wait- |
ing in an associated FIFO queue. An important property of Computation stages !

the crossbar switch is that memory access instructionedssu Figure 6. Execution time of stages, PAR-R2-FFT
by one PE to any on-chip GM (or off-chip GM) bank ex-
perience the same latency in the crossbar. This equalelaten
property makes the on-chip memory model as sequential con-
sistency [30], which implies that no “fence” instruction is 7000 1111111011110 111101 1
required to enforce ordering relation between memory ac-)\e___e\/
cesses. C64 provides no hardware support for context switch
and uses a non-preemptive thread execution model.

As a summary, Table 2 lists major architectural parameters
of C64.Wgy is the granulate of interleaved on-chip GMs.
Since two on-chip GMs share one crossbar switch port, it can
be approximated that there are 80 on-chip GM banks that are
interleaved by a 128-byte boundary.

—*— 64 cores (experiment)

' 64 cores (predication)

16 cores (experiment)

@' 16 cores (predication)
—-6— 4 cores (experiment)

@1 4 cores (predication)
300

Execution time (cycles)

Table2. Summary of C64 architectural parameters gl z mmﬂén s i 5
C up to 64 . . .
P 2 Figure7. Execution time of stages, PAR-R4-FFT
M | 80
o |4 model can predict the time spent on each stage with rela-

Bin 8 bytes/cycle
Bouwt | 8 bytes/cycle
Bne | upto 1140 bytes/cycle

tive accuracy. Both figures show that the predicted time is
1%— 29% higher than the experimental execution time when

B | 8bytesicycle running on up to 16 cores (part of the data are not shown
Wewm | 128 bytes in the figure). This difference is probably caused by our as-
sumption that all instructions in a butterfly calculationsthu
5.2 Evaluationsand Discussions be stalled until all input data points, and the twiddle fasto

In this section, we present a set of extensive evaluations are loaded. In the actual system, however, one instrucéian ¢
the proposed performance model. We compare our estimde executed as soon as all its operands are available atel all i
tions with experimental results obtained from a C64 simula-dependence relation is resolved, hence a long stall exgphecte
tor [11]. The experimental results show an average relativin our model can be avoided.
error of 16%, when running on up to 16 cores. This average It can be also observed that when more cores are used (e.g.,
relative error increases as more cores are used, and itagachup to 64 cores), the predicted time is 5981% lower than the
29% at 64 cores. It is worth to note that similar results wereexperimental execution time (part of the data are not shawn i
obtained on a preliminary version of the real C64 chip. the figure). One possible reason for this difference is tat t

behavior of the crossbar network cannot be accurately capwith the number of cores. As shown in Figure 10, the estima-
tured by the current method under heavy traffic. We expections closely match the experimental results for all thnedop

that this issue could be alleviated by incorporating a more a lem sizes, when running on up to 32 cores. The difference
curate network model into our performance model. between predicted and simulated performance is becoming
rather noticeable, when running on a large number of cores,

Performance impact as the problem size varies. We in- . . .
. . N i.e., up to 29% difference when running on 64 cores. One
vestigate how the predicted execution time and performance™"’ : .) ;
ossible reason is the inaccurate modeling under heawy traf

change as a function of the problem size, when running Olﬁc Figure 11 shows the corresponding speedup curves
varied number of cores. The results of Algorithm PAR-R2-"" '

FFT are summarized in Figure 8 and Figure 9. Both figures
demonstrate that our performance model correctly predicts
the performance trend as the problem size increases, when ssf
compared with the experimental execution time and perfor-
mance. Figure 9 shows that, when running on a large number
of cores (e.g., 64 cores), the performance increases as-the i
crease of the problem size, while it keeps flat when running
on a small number of cores.

—— 2%_point (experiment)
3l B 2¥_point (prediction)
== le—point (experiment)
@ 215 point (prediction)
- 216—point (experiment)
e Zlefpoint (prediction)

o
T

Performance (Gflops)

o

Executation time (cycles)

x 10

-6~ 1core (experiment)

. * lcore (predication)

== 4 cores (experiment)
4 cores (predication)
—— 16 cores (experiment)
4+ 16 cores (predication)
L 64 cores (experiment)
64 cores (predication)

Figure 8. Total execution time versus the problem size,

10 11 12 13

Logz(ProbIem size)

PAR-R2-FFT

14

4 T

Figure 9. Performance versus the problem size, PAR-

FFT

Performance impact as the number of cores varies. We

Performance (Gflops)

5

#. 64 cores (predication)

1 core (experiment)
1 core (predication)
—8— 4 cores (experiment)
¢ 4 cores (predication) e
—— 16 cores (experiment) e
. 16 cores (predication) |
—e— 64 cores (experiment)

10

13
LogZ(Pmblem size)

16

Figure 10.
R2-FFT

10

Number of cores

Performance versus the number of cores, PAR-

64

- 2“fpoint (experiment)
* 2%_point (prediction)
215—p0|nt (experiment)
215—poin((prediction)
=+ 2%_point (experiment)
"o lefpoim (prediction)
— lIdeal

Speedup
5
T

-1 2 4 8 16 32 64
Number of cores

Figure 11. Speedup versus the number of cores, PAR-R2-
FFT

Performance impact asthe algorithm changes. From Fig-

ure 6 we can observe that when running on a large number
of cores, the first several stages take a much longer time than
the rest of stages. A careful investigation into both alionis
indicates that it is probably caused by the contention detey
loading the shared twiddle factors. For example, recall tha

R2_2i*l (1 <i<logzN) distinct twiddle factors are used in the

th stage of Algorithm PAR-R2-FFT. In the first several stages
a large number of PEs compete for loading a small number of
twiddle factors, resulting in intensive contentions. Bhse

our performance model, both the accessing latency and the

now show how the performance for a fixed input size changesontention in the first stages could be greatly reducedcifiea

PE keeps a local copy of twiddle factors in its associated LM. 7
We then revised Algorithm PAR-R2-FFT according to this
idea. We call this revised algorithm PAR-R2LM-FFT. Due to
the limited size of the LM on the C64, in the real implemen-
tation, only twiddle factors used in stage 1 to 6 are stored in
each PE’s associated LM. In the rest of the stages, PEs still
have to load the twiddle factors from GMs. The predicted exe-

Performance (Gflops)

S 1 core (expe_nmenl)
cution time and the experimental execution time of Algarith — < Eii?ié?éi‘égﬁl}"gn)o
. . . cores (prediction,
PAR-R2LM-FFT for a 2%-point FFT are shown in Figure 12. o + 16coes operme | |
Compared with Figure 6, this new algorithm shows signifi- 1 X e b4 cores (paticion)
cant performance improvement in the first 6 stages. However, M M

L i
5 6 7 8

LugA(Prob\em size)

Figure 13. Performance versus the problem size, PAR-R4-

o0 m FET

‘:{ ?ZEPE:)?] significant gain of performance for our FFT algorithm. Inpar

= flfgp‘”pddlm‘)ﬁ 7 ticular, for the problem size of9-point, using more than 16
cores even has a negative performance impact. This is prob-

ably due to the increased memory contention delay and the

longer barrier waiting time.

Execution time (cycles)
8
8

4

Computation stages

350

. . . == 2% point (experiment on C64)
Figure12. Execution time of stages, PAR-R2LM-FFT o 2 it (redicton on Co4%)
3} | =&= 2'°—point (experiment on C64)
. lefpoinl (prediction on C64+)

even in the improved algorithm, memory access operations
still cost about 300%- 500% more time than floating-point
operations in a butterfly. This also explains why the achdeve
performance is far below the theoretic peak performance. On
way to improve the performance is to use algorithms concern-
ing data reuse, like higher radix algorithms , which can oedu
memory traffic significantly. As shown in Figure 13, PAR- ‘ ‘ ‘ ‘ ‘
R4-FFT doubles the performance for various problem size - ! : ‘ : * ® o

Number of cores

system configuration combinations, compared with PAR-R2rigure14. Performance predication for C64+, PAR-R2-FFT
FFT. Our performance model shows that up to 140% perfor-

mance gain could be achieved if a radix-8 FFT algorithm is
used, compared with PAR-R2-FFT. 6 _Related Work

Performance (Gflops)

The most relevant previous work on performance modeling
Performance impact as the architectural parameters of FFT is the work by Cvetanovi€ [27] on an abstract shared
change. Programmers and architects often want to know thememory architecture. The work investigates the impactef th
performance impact of architectural changes to the exjstindata layout on the memory access latency. Closed-form per-
algorithms. To this end, we consider a hypothetical manyformance expressions are derived for the best-case anttwors
core machine, C64+, which has the exact same configuratiorase data layout. This work also approximates that memory
as C64, except that each core now has 4 PEs, instead ofdperations regarding the input samples are issued by all pro
in the original C64 design. We then apply our performancecessors in a burst. Our work differs from this work in several
model with architectural parameters of this C64+ for Algo-ways. First, while no specific algorithm is studied in [27],
rithm PAR-R2-FFT. we present detailed analyses of two parallel FFT algorithms
Figure 14 shows the predicated performance data féf-a 2 together with experimental results on the real system. Sec-
point FFT and a ¥-point FFT. For the purpose of compar- ondly, the former study does not consider the memory traffic
ison we also include the experimental performance data olgenerated for loading the twiddle factors, and it assumes th
tained on C64 for these two problem sizes. From the figure wéhe same network contention is produced during each stage,
can observe that adding more PEs to a core does not yieldwhich may not be realistic for all FFT problems. Our work

investigates both issues, and take into account theirteffec [5]
upon the execution behaviors.

The technique of using instruction count to estimate the 6l
FFT performance is also used in [20], where several FFT al-[7]
gorithms are analyzed for IBM RP3 system. However, the
work treats memory and synchronization delays as constantsg)
Since the memory latency may vary due to the different mem-
ory access patterns through the execution, this assurrgdtion [9]
fects the accuracy of the results. Such issue has been explic
itly taken into account into our analysis.

Due to the increasing complexity of modern architectures!*”!
empirical search has been introduced to find the optimal
optimizations for several domain-specific problems, such al*t
FFTW [13], ATLAS [2], and SPIRAL [24]. However, it is
not clear how this method can be extended to many-core al?
chitectures. Moreover, as reported in [28, 29], carefullijtb
model-driven optimization procedures show comparative of
even better performance than the empirical search.

7 Conclusion and Future Work [14]
The work presented in this paper is an attempt to quantita-
tively analyze the interaction between existing algorighand [15]
the emerging many-core architectures. The model can be fur-
therimproved in several dimension as discussed below. As wigs]

mentioned in Section 4, the analysis of off-chip GM accesses
is a natural extension to the work presented in this papés. Th
is particularly important for the study of explicit data nesv
ment between levels of the memory hierarchy, which is used?l
in many high performance FFT algorithms. It will be inter-
esting to include analyses of such data movement, and thu&!
verify the effectiveness of the existing FFT algorithms for
many-core architectures. This performance model can be i
corporated into an FFT computational framework, as a search
engine to find suitable algorithms and optimal parameters fo,
a given FFT problem. For example, as shown in Section 5, the
performance model could identify the optimal number of PES??
to be used for a given problem. Unlike an empirical search
approach, by examining the properties of the algorithms anéf?
the architecture parameters, this performance model can po
tentially provide faster and more accurate solutions. Lalst
though our analysis presented in this paper is focused on thHel
FFT algorithms, it will be interesting to investigate hoveth
general methodology can be applied to other problems of stat26l
ically defined communication and computation patterng, lik
matrix operations.

References
[1] Computational Arraysfor the Discrete Fourier Transform, 1981.

=
K

(17]

1

(27]

(28]

[2] C.W. Antoine, A. Petitet, and J. J. Dongarra. Automatetpeical optimization
of software and the atlas projedarallel Computing, 27:2001, 2000.

[29]

[3] D.H.Bailey. A high-performance fast Fourier transfoahgorithm for the Cray2.

Journal of Supercomputing, 1:43-60, 1987. [30]

[4] W. Briggs, L. Hart, R. Sweet, and A. O‘'Gallagher. Multijmessor FFT methods.
SAM J. i. Stat. Comput, 8:27-42, January 1987.

L. Chen, Z. Hu, J. Lin, and G. R. Gao. Optimizing the fastrer transform on a
multi-core architecture. 1tPDPS, pages 1-8, 2007.

ClearSpeed. ClearSpeed CSX700.

J. W. Cooley and J. W. Tukey. An algorithm for the machiaécalation of com-
plex fourier seriesMath. Comput., 19:297-301, 1965.

T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leisersbiroduction to Algo-
rithms. McGraw-Hill Higher Education, 2001.

D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. SchaiEe8antos, R. Subramo-
nian, and T. von Eicken. Logp: towards a realistic model oé)@l computation.
SIGPLAN Not., 28(7):1-12, 1993.

D. E. Culler, J. P. Singh, and A. GuptBarallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann Publishers, inc., 1999.

] J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao. FAST: A furwtally accurate

simulation toolset for the Cyclops64 cellular architeetuin MoBS 05.

] M. Denneau and H. S. Warren, Jr. 64-bit Cyclops prirespbf operation part I.

Technical report, IBM Watson Research Center, 2007.

M. Frigo and S. G. Johnson. The design and implememtatié-FTW3.Proceed-
ings of the IEEE, 93(2):216-231, 2005. special issue on “Program Generatio
Optimization, and Platform Adaptation”.

A. G. and P. I. Parallel implementation of 2-d FFT algoms on a hypercube. In
Proc. Parallel Computing Action, Workshop ISPRA, 1990.

J. Hennessy and D. Pattersd@omputer Architecture: A Quantitative Approach,
4th edition. Morgan Kauffman, 2007.

J. L. Hennessy and D. A. PattersdZomputer organization and design (3rd ed.):

the hardware/software interface. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2005.

Intel. Intel develops tera-scale research chips.:Mtiprw.intel.com, Sept. 2006.

S. L. Johnsson and R. L. Krawitz. Cooley-tukey FFT ondbenection machine.
Parallel Computing, 18(11):1201-1221, 1992.

C. V. Loan. Computational framework for the fast Fourier transform. SIAM,
Philadelphia, 1992.

A. Norton and A. J. Silberger. Parallelization and pemiance analysis of the
Cooley-Tukey FFT algorithm for shared-memory architeesud EEE Transac-
tions on Computers, 36(5):581-591, 1987.

Nvidia. NVIDIA Tesla many core parallel supercompugtin

D. M. S. L. Johnsson, R.L. Krawitz and R. Frye. A radix ZIFén the connection
machine. InProceedings of Supercomputing 89, pages 809-819, 1989.

V. Singh, V. Kumar, G. Agha, and C. Tomlinson. Scaldbibf parallel sorting on
mesh multicomputers. IFPPS 91, pages 92-101, 1991.

24] SPIRAL. SPIRAL website. http://www.spiral.net.

P. N. Swarztrauber. Multiprocessor FFTRarallel Computing, 5(1-2):197-210,
1987.

L. G. Valiant. A bridging model for parallel computatio Commun. ACM,
33(8):103-111, 1990.

Zark Cvetanovic. Performance analysis of the FFT algoritm a shared-memory
parallel architecturelBM J. Res. Dev., 31(4):435-451, 1987.

K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingaind P. Stodghill. Is
search really necessary to generate high-performance, [2a85.

K. Yotov, T. Roeder, K. Pingali, J. Gunnels, and F. Gustm. An experimental
comparison of cache-oblivious and cache-conscious progrinSPAA' 07, pages
93-104, New York, NY, USA, 2007. ACM.

Y. Zhang, W. Zhu, F. Chen, Z. Hu, and G. R. Gao. Sequegtalsistency re-
visited: The sufficient conditions and method to reason isterscy model of a
multiprocessor-on-a chip architecture. RDCN2005, page 12, Innsbruck, Aus-
tria, 2005.

