
Performance Analysis of Cooley-Tukey FFT Algorithms for a Many-core
Architecture

Long Chen and Guang R. Gao
Department of Electrical & Computer Engineering

University of Delaware
{lochen, ggao}@capsl.udel.edu

Keywords: Fast Fourier Transform, Performance Analysis,
Many-core

Abstract
Given that many-core architectures are becoming the main-
stream framework for high performance computing, it is im-
portant to develop a performance model for many-core ar-
chitectures to assist parallel algorithms design and applica-
tions performance tuning. In this paper, we propose a perfor-
mance modeling technique for parallel Cooley-Tukey FFT al-
gorithms, for an abstract many-core architecture that captures
generic features and parameters of a class of real many-core
architectures.

We derive the performance model by determining the cost
functions for computation, memory access and synchroniza-
tion in a parallel FFT algorithm. We have verified our perfor-
mance model on the IBM Cyclops-64 (C64) many-core archi-
tecture, using both the simulator and a preliminary versionof
its chip. The experimental results demonstrate that our model
can predict the performance trend accurately, with an aver-
age relative error of 16%, when running on up to 16 cores.
The average relative error rate gradually increases to 29%,
when running on up to 64 cores. The experimental results
also reveal that key to performance for this class of many-
core architectures is using the local memory and higher radix
algorithms to reduce the memory traffic requirements.

1 Introduction
The fast Fourier transform (FFT) is of great use across a

large number of fields, including spectral analysis, data com-
pression, partial differential equations, polynomial multipli-
cation, and multiplication of large integers [8, 19]. Various
parallel FFT algorithms have been designed for numerous
parallel computer systems [14, 18, 22, 1, 23, 4, 20, 25].

Many-core architectures are state-of-the-art parallel sys-
tems that offer massive thread level parallelism, massive on-
chip memory bandwidth and other novel features. Exam-
ples of such architectures include Intel Terascale [17], Nvidia
Tesla [21], and IBM Cyclops-64 (C64) [12]. While many-
core architectures are becoming increasingly attractive plat-
forms for high performance computing, it is difficult for pro-
grammers to fully explore their computing capabilities, partly
due to a lack of performance modeling that can assist the
design of parallel algorithms and direct applications perfor-
mance tuning. For instance, when designing and tuning FFT

algorithms, programmers may ask the following questions:

• What is the expected performance of an FFT implemen-
tation programmed in a high-level language for a many-
core architecture?
• How does the performance of a parallel FFT algorithm

change with the problem size?
• How scalable is an FFT algorithm, given a problem size?

A performance model that can answer these questions pro-
vides valuable assistance for designing FFT algorithms on
many-core systems, and tuning them to achieve the maximum
performance.

In this paper, we propose a performance model that esti-
mates the performance of parallel FFT algorithms for a many-
core architecture. This performance model is targeting for
an abstract many-core architecture that captures generic fea-
tures and parameters of several real many-core architectures.
It is therefore applicable for any architecture with similar fea-
tures. The parallel FFT algorithms we studied in our analysis
are based on the one-dimensional decimation-in-time(DIT)
Cooley-Tukey algorithm [7]. Our model can be easily ex-
tended to multi-dimensional FFT, which is calculated as a set
of one-dimensional FFTs, performed along one dimension at
a time. Note that the performance model presented in this pa-
per is based on the nature of FFT: memory access pattern and
computation pattern are fixed in advance. It is therefore appli-
cable for other algorithms with the same property, but limited
to general numerical algorithms.

We evaluate our model on the C64 architecture. Both sim-
ulations and the executions on the real hardware have veri-
fied the effectiveness of our performance model. The exper-
imental results also reveal that the memory access delay has
a crucial impact on performance of a parallel FFT algorithm
for many-core architectures. Therefore programmers are sug-
gested to optimize use of local memory and higher radix al-
gorithms to reduce memory traffic requirements.

The rest of this paper is organized as follows. Section 2
presents the abstract architecture model. Section 3 presents
two parallel FFT algorithms. The performance model is dis-
cussed in Section 4. Section 5 reports experimental results
on the C64 architecture. Related work is summarized in Sec-
tion 6, and Section 7 concludes with future directions.

2 Abstract Architecture Model
In this paper, we restrict our analysis to a class of many-

core architectures. We abstract their main architectural fea-



tures into a generic form as illustrated in Figure 1. This ab-
stract architecture model consists of a large number of identi-
cal cores/processors, each of whom has one or more process-
ing elements (PEs), and a three-layer memory hierarchy, i.e.,
the local memory (LM), the on-chip global memory (on-chip
GM), and the off-chip global memory (off-chip GM). The on-
chip GMs and off-chip GMs are interleaved to achieve higher
memory bandwidth. The memory hierarchy is explicitly soft-
ware addressable to all cores. An on-chip interconnection net-
work connects cores/processors to global memories. All PEs
can access on-chip GMs and off-chip GMs via the network.
An LM may or may not be globally accessed by all PEs, how-
ever, its associated core/PE can access it through some “back-
door” with very low latency. We simplify the interconnection
network by assuming that the unloaded latency [10] of global
memory accesses, either on on-chip GMs or on off-chip GMs,
is equal, regardless of the origin or the destination of the ac-
cess. Instances of such architecture include IBM C64, Clear-
Speed CSX700 [6], etc.

To better understand the performance issues, we charac-
terize this abstract model with a set of major architecturalpa-
rameters, which are summarized in Table 1. These parameters
and their denotations will be used in our following discussion.
While there exist more general parallel machine models in the
literature with fewer parameters, like LogP [9] and BSP [26],
our abstract model (and the corresponding parameters) is de-
veloped for a specific class of state-of-the-art many-core ar-
chitectures. Therefore it involves some low-level details, and
we do not claim that this model/analysis can be immediately
applied to a large diversity of parallel architectures.

Table 1. Architectural parameters
C number of cores in one chip
P number of PEs in one core
M number of on-chip memory modules
O number of off-chip memory modules

Bin
bandwidth of a inbound link between a core and the net-
work, measured in bytes per cycle.

Bout
bandwidth of a outbound link between a core and the
network, measured in bytes per cycle.

Bnet
network bandwidth of the on-chip Interconnection net-
work, measured in bytes per cycle.

B
bandwidth of a single memory module, measured in
bytes per cycle.

W
granularity of the interleaved memory system, mea-
sured in bytes

3 FFT Algorithms
In this section, we present two parallel FFT algorithms.

The performance model presented in Section 4 is derived for
the parallel FFT algorithms presented in this section.
3.1 Sequential FFT Algorithm

Figure 2 outlines Algorithm SEQ-R2-FFT, a sequential
radix-2 DIT Cooley-Tukey algorithm. The input data and the
pre-computedlong weight vector [3], which is a stacking of

off−chip off−chip

network

Interconnection

chip

LM0

LM1

on-chip GM2

on-chip GMM−1

GM0 GMO−1

on-chip GM1

on-chip GM0

LMC−1

LM2

CORE0

COREC−1

CORE1

CORE2

Figure 1. An abstract many-core architecture model

twiddle factors used from the first stage to the last stage, are
stored in arrayx and arrayω, respectively. Note that abit-
reversal permutation needs to be performed on input before
the butterfly computation stages. In this paper, we assume that
x has already been reordered, and therefore such permutation
is not explicitly addressed in our algorithms.

In N-point SEQ-R2-FFT,N = 2t , we denote the data points
accessed in thei-th butterfly, 1≤ i ≤ N/2, in thep-th stage,
1≤ p ≤ t, asM(p, i). An interesting memory access pattern
of SEQ-R2-FFT is captured in the following observation:
Observation 3.1 In the p-th stage of SEQ-R2-FFT, data
points accessed from the a · (2c)-th 1 iteration to the ((a+

1) ·2c−1)-th iteration, i.e.,
⋃(a+1)·2c−1

k=a·2c M(p, i), constitute ei-
ther one continuous data region, or two separate continuous
data regions with equal lengths, where c is an integer be-
tween 0 and log2 N/2, and a is another integer between 0
and (N/2c)−1.

Due to the space limitation we omit the proof of this obser-
vation in this paper. Detailed discussion of this observation
and its application to our performance modeling can be found
in Section 4.3.
3.2 Parallel FFT Algorithms

Figure 3 presents a straightforward parallel version of Al-
gorithm SEQ-R2-FFT, PAR-R2-FFT, which is executed by
PE e, 0≤ e < P ·C. Barriers are used to ensure the read-after-
write data dependence between stages. Similarly, a parallel
radix-4 Cooley-Tukey algorithm, PAR-R4-FFT, is presented
in Figure 4. In this algorithm,ω is a N−1

3 by 3 array, which is
a stacking of twiddle factors and their squares and cubes used
from the first stage to the last stage [19].

1We regard 20 = 0 here.



Algorithm SEQ-R2-FFT
Input: a N-point datax, N = 2t

Output: x overwritten with its DFT

1. n← 2t−1

2. for p← 1 to t do
3. l← 2p

4. s← 2p−1

5. for i← 0 to n−1 do
6. k← i/s
7. j← i mods
8. τ← ω[s−1+ j]∗ x[kl + j+ s]
9. x[kl+ j+ s]← x[kl+ j]− τ
10. x[kl+ j]← x[kl+ j]+ τ
11. endfor
12. endfor

Figure 2. Sequential radix-2 DIT Cooley-Tukey FFT algorithm

Algorithm PAR-R2-FFT
Input: a N-point datax, N = 2t

Output: x overwritten with its DFT

1. n← 2t−1

2. for p← 1 to t do
3. l← 2p

4. s← 2p−1

5. for i← e to n−1 step P ·C do
6. k← i/s
7. j← i (mod s)
8. τ← ω[s−1+ j] · x[kl + j+ s]
9. x[kl+ j+ s]← x[kl+ j]− τ
10. x[kl+ j]← x[kl+ j]+ τ
11. endfor
12. barrier
13. endfor

Figure 3. Parallel radix-2 DIT Cooley-Tukey algorithm

Note that both Algorithm PAR-R2-FFT and Algorithm
PAR-R4-FFT are straightforward parallel version of their se-
quential counterparts, and are not optimized for any spe-
cific architecture. While highly optimized algorithms could
achieve much better performance [5], simple algorithms are
beneficial to the illustration of our performance model.

4 Performance Estimation Strategy
In this section, we first introduce assumptions that are used

throughout the paper. We then present the strategy to estimate
the performance of parallel algorithms proposed in Section3.
4.1 Assumptions

In order to simplify the modeling, we take the following
assumptions.

• We assume that each core and memory bank has an infi-
nite incoming buffer and an infinite outgoing buffer out
of the network interface. Therefore, no request/response
packet will be dropped.
• We assume that the problem sizeN is much larger than

the total number of PEs participating in the computation,
i.e., N ≫ P ·C, which is often true for most scientific
applications.
• We do not consider the cost associated with the bit-

reversal permutation, because it is not directly related to
the cost of butterfly operations. Our model can be easily
extended to incorporate this cost, though.

Algorithm PAR-R4-FFT
Input: a N-point datax, N = 2t

Output: x overwritten with its DFT

1. n← 4t−1

2. for p← 1 to t do
3. l← 4p

4. s← 4p−1

5. ν← (s−1)/3
6. for i← e to n−1 step P ·C do
7. k← i/s
8. j← i (mod s)
9. α← x[kl + j]
10. β← ω[v+ j,0] · x[kl + s+ j]
11. γ← ω[v+ j,1] · x[kl +2s+ j]
12. δ← ω[v+ j,2] · x[kl +3s+ j]
13. τ0← α+ γ
14. τ1← α− γ
15. τ2← β+δ
16. τ3← β−δ
17. x[kl+ j]← τ0+ τ2
18. x[kl+ s+ j]← τ1− iτ3
19. x[kl+2s+ j]← τ0− τ2

20. x[kl+3s+ j]← τ1+ iτ3
21. endfor
22. barrier
23. endfor

Figure 4. Parallel radix-4 DIT Cooley-Tukey algorithm

• If not explicitly stated otherwise, we assume that thread
private data resides in local memories, and shared data,
e.g,x, andω reside in global memories.
• To further simplify the analysis, we assume that all ar-

chitectural parameters are even numbers. In particular,
N, P, C andW are powers of two.

Due to the above assumptions, we do not claim that our
performance model can predict the accurate execution time
of an application; rather, we attempt to use this model to
quantitatively evaluate the performance impact (trend) ofal-
gorithms and architectural features on many-core systems.
4.2 Basic Strategy

Both Algorithm PAR-R2-FFT and Algorithm PAR-R4-
FFT described in Section 3 have an iterative structure. More
specifically, some synchronization-free computation pattern
is repeated in every stage, and a global barrier is enforced
after each stage to guarantee that all operations in that stage
have completed. For example, anN-point PAR-R2-FFT
proceeds in log2 N stages, each of which composed of a
set of independent butterfly operations evenly distributed
among PEs. Each butterfly operation starts from loading
two input data points and a pre-calculated twiddle factor
from the global memory, followed by a computation kernel,
and finally ends with storing two output points back to
memory. The execution time of suchN-point PAR-R2-FFT
can therefore be calculated by

TFFT =
log2N

∑
r=1

max(TC(r, p)+TM(r, p)+TB(r, p)) (1)

0≤ p < P ·C

where TC(r, p), TM(r, p) and TB(r, p) denote the computa-



tion time, memory access time and synchronization time,
respectively, of PEp in stager. The execution time of a
N-point PAR-R4-FFT can be obtained in a very similar way,
except that the algorithm proceeds in log4 N stages, and
each butterfly operation works on a 4-point input dataset.
For the sake of brevity, we focus our analyses on Algorithm
PAR-R2-FFT, and only show the difference when necessary.

In our abstract architecture, all PEs are identical. Since but-
terfly operations in one stage are evenly distributed among
PEs, and every butterfly takes the same amount of computa-
tion time, we can regard ofTC(r, p) being same for allr and
p. We letTC denote the total computation time, i.e., the com-
putation time forN/2 butterfly operations, in each stage.

Similarly, TB(r, p) can be regarded as same for allr and
p, since the semantics of a global barrier requires that all
PEs wait at the barrier before any of them is allowed to
proceed. We letTB denote the synchronization time imme-
diately after each stage. Further, usingTM(r) as the short for
max(TM(r, p)), we can rewrite Equation (1) as

TFFT =
log2 N

∑
r=1

TM(r)+ log2 N ·TC + log2 N ·TB (2)

0≤ p < P ·C

By deriving cost functions forTM(r), TC andTB, we can
quantitatively estimate the performance of Algorithm PAR-
R2-FFT and PAR-R4-FFT on the abstract architecture model.
4.3 Estimated Memory Latency

We now derive the cost function for memory access delay
for Algorithm PAR-R2-FFT.
Estimated Local Memory Latency

As described in Section 2, each PE can access its associ-
ated LM through some exclusive “back-door”, without going
through the network. Hence, we can simply treat the latency
of accessing a PE’s associated LM as a constant.
Estimated Global Memory Latency

In our abstract architecture model, the memory access de-
lay of load/store operations issued to GMs is determined by
the unloaded latency [10] and contention delays. The un-
loaded latency is the transmission time under ideal condi-
tions. It is determined by the system design and is fixed for a
given architecture. The contention delay occurs when multi-
ple requests compete for some hardware resource. There are
four types of contention delays in our abstract architecture
model: (1) theoutbound delay, when multiple PEs from the
same core compete for a shared channel to inject memory
access requests to the network, (2) thenetwork delay, when
multiple memory accesses compete for the network trans-
mission, (3) thememory contention delay, when memory ac-
cess requests are waiting to be handled by a memory bank,
and (4) theinbound delay, when multiple data elements are
loaded to the same core (for memory loads only). Each type
of contention delays can be roughly calculated by dividing

the size of the request (in bytes) by the average service rate
(in bytes/cycle).

In Algorithm PAR-R2-FFT, the longest memory access de-
lay occurs when multiple memory loads/stores are issued to
GMs in a burst. LetTld andTst denote the time (in cycles) to
complete a burst ofP ·C load and store requests, one from
each PE, respectively.Tld andTst can be represented as

Tld =
P ·Sr

Bout
−1

︸ ︷︷ ︸

outbound

+
P ·C ·Sr

Bnet
−1

︸ ︷︷ ︸

network

+
P ·C ·Sd

Bm
−1

︸ ︷︷ ︸

memory

+
P ·C ·Sd

Bnet
−1

︸ ︷︷ ︸

network

+
P ·Sd

Bin
−1

︸ ︷︷ ︸

inbound

(3)

Tst =
P ·Sd

Bout
−1

︸ ︷︷ ︸

outbound

+
P ·C ·Sd

Bnet
−1

︸ ︷︷ ︸

network

+
P ·C ·Sd

Bm
−1

︸ ︷︷ ︸

memory

(4)

In the above equations,Sr andSd are the size (in bytes) of
a single request/response, with or without containing the data
of x or ω, respectively2. ThenP ·Sr is the total size of load re-
quests issued by a single core, andP ·Sd is the total size of the
store requests issued by a single core, or the total size of the
response delivered back to a single core. Similarly,P ·C ·Sd is
the total size of data to be served for a memory access burst.
Bm, the aggregate effective memory bandwidth, denotes the
real achievable memory bandwidth (in bytes/cycle) when a
burst of memory accesses are handled. Note that a memory
load travels the network twice for sending the request and
receiving the response, while a memory store travels the net-
work only once.

Due to varieties of interconnection networks in topol-
ogy, routing algorithms, switching strategy, and flow control
mechanism, it is hard to induce a general equation for net-
work delay, hence we focus on a type of interconnection net-
work - crossbar switch - in this paper. The methodology pre-
sented here can be easily extended to other types of networks.

A crossbar switch is one form of the multistage networks
that allows any input port to communicate with any output
port in one pass through the network [16]. One important
property of the crossbar switch is itsnon-blocking connec-
tivity within the switch, which allows concurrent connections
between multiple input-output pairs with a constant transmis-
sion time per packet, provided that inputs/outputs are always
available during the connections [15]. For a many-core ar-
chitecture employing a crossbar switch as the interconnec-
tion network, the components annotated with “network” in
Equation (3) and (4) are constants. Furthermore, under our
assumption that every core and memory bank has infinite in-
coming and outgoing buffers out of the network interfaces,
Bin andBout are considered as constants too.

2To simplify the expression, we assume that a load response and a store
request are of an equal size. In the actual hardware, they mayhave different
sizes. This fact does not affect our method presented here.



In this paper we focus on the cases wherex andω are re-
siding in the on-chip GM. Off-chip memory accesses usu-
ally involve more complicated hardware behaviors through
the datapath, and the corresponding analysis will be a natural
extension of the method presented in this paper.

For a many-core architecture employing a crossbar switch
as the interconnection network,Bm is an accumulated band-
width of accessed memory banks. It is worth to note that
the value ofBm may be different for memory operations per-
formed onx andω, since, in a given stage, different PEs al-
ways access distinct data elements inx, while they probably
attempt to load the same twiddle factor fromω, especially in
the first several butterfly stages. When multiple PEs access
the same data, they introduce more contention in memory
banks. This implies that different contention delay may occur
when accessingx andω through the execution. To clarify this
point, we denoteBm x(r) as the aggregate effective bandwidth
for loading/storingx during stager, and denoteBm ω(r) as the
aggregate effective bandwidth for loadingω during stager.
To determine the exact value ofBm x(r) andBm ω(r), we as-
sume, without any loss of generality, thatx andω are aligned
to a memory bank boundary.

In our analysis, we consider that a PE can issue load/store
requests in a pipelined way, i.e., one request per machine
cycle, which is true for modern architectures. A single
radix-2 butterfly operation contains 3 load requests (2 forx
and 1 forω), and 2 store requests (forx). The completion
time of the pipelined requests is determined by when the
last request is finished, i.e., the longest delay. For a burstof
radix-2 butterfly operations, we have the following equations
to compute the latencyTld p andTst p, for a pipelined load
and store, respectively,

Tld p(Bm x,Bm ω) =
3P ·Sr

Bout
−1

︸ ︷︷ ︸

outbound

+2D+
3P ·Sd

Bin
−1

︸ ︷︷ ︸

inbound

+ max(
2P ·C ·Sd

Bm x
−1,

P ·C ·Sd

Bm ω
−1)

︸ ︷︷ ︸

memory

(5)

Tst p(Bm x) =
2P ·Sd

Bout
−1

︸ ︷︷ ︸

outbound

+D+
2P ·C ·Sd

Bm x
−1

︸ ︷︷ ︸

memory

(6)

where the constantD is the one way transmission latency of
the crossbar switch.

Determining Bm x(r)

SinceBm x(r) is an accumulated bandwidth of all accessed
memory banks, the key issue is to determine the number of
memory banks accessed in a burst of butterfly operations. Re-
call that Observation 3.1 in Section 3 states that data points
accessed from iterationa ·2c to iteration(a+1)2c−1 in one
stage constitute either one continuous region or two separate

continuous regions onx. This reminds us to transform the
problem of calculatingBm x(r) into determining the number
of memory banks that are “covered” by those continuous re-
gion(s).

We first discuss the case where all accessed elements inx
during a burst constitute one continuous region, which hap-
pens during the first log2(2P ·C) stages. Denote the length of
such continuous region asL1, whereL1 = 2P ·C ·Sd , and such
region spans⌈L1

W ⌉memory banks. We then have

Bm x(r) = min(M,⌈
L1

W
⌉) ·B (7)

Next we discuss the case where all accessed elements inx
during a burst constitute two separate continuous data regions
with equal lengths, which happens in stager, where log2(2P ·
C)< r≤ log2 N. Denote the length of such regions asL2, and
denote the distance between two regions (i.e., the distance
from the start of the first region to the start of the second
region) asZ, whereL2 = P ·C · Sd, andZ = 2r−1 · Sd. Since
both regions are aligned to the memory bank boundary, the
number of memory banks on which each region spans is⌈L2

W ⌉,
and the number of memory banks “covered” by the distanceZ
is ⌈ Z

W ⌉. Note that ifZ is long enough, then the second region
might “fall off” the end of the last memory bank and “wrap
around” to the start of the first memory bank, as illustrated in
Figure 5(c).

If ⌈L2
W ⌉ ≥ M, Bm x(r) is simply M · B, since all memory

banks will be simultaneously active in serving memory
access requests in a burst. Otherwise, we have to investigate
the relative positioning of those two regions. Figure 5 lists all
of three possible scenarios. In the figure, the shaded boxes
represent memory regions, and the dotted arrow lines show
the wrap-around.

Scenario 1. As shown in Figure 5(a), two regions are
not overlapping on memory banks. This occurs when
(M · W − 2L2) ≥ (Z mod (M · W ) − L2) ≥ 0, that is,
(M ·W − L2) ≥ Z mod (M ·W ) ≥ L2. In this case, the
number of covered memory banks is⌈2L2

W ⌉, and we have

Bm x(r) = ⌈
2L2

W
⌉ ·B (8)

Scenario 2. Figure 5(b) shows one kind of overlapping of
two regions. When this scenario happens, it satisfies the
condition 0≤ Z mod (M ·W )< L2. The number of covered

memory banksY = ⌈Z mod (M·W )+L2
W ⌉, and we have

Bm x(r) = min(M,Y ) ·B (9)

Scenario 3. Another kind of overlapping is shown in
Figure 5(c). The second region falls off the end of the
last memory bank and wraps around to the first mem-
ory bank. In this scenarioZ satisfies the condition
Z mod (M ·W ) ≥ M ·W − L2. The number of covered

memory banks is⌈L2
W ⌉+ ⌈

M·W−(Z mod (M·W )
W ⌉, and we have



Bm x = (⌈
L2

W
⌉+ ⌈

M ·W − (Z mod (M ·W )

W
⌉) ·B (10)

(a)

... Memory
bank

Memory
bank

Memory
bank

2

Memory
bank

1

Memory
bank

0 M−2 M−1

(b)

... Memory
bank
M−2

Memory
bank

2

Memory
bank

Memory
bank

1

Memory
bank

0 M−1

(c)

... Memory
bank

Memory
bank
M−2

Memory
bank

0

Memory
bank

2

Memory
bank

1 M−1

Figure 5. Relative positioning of two memory regions

Determining Bm ω(r)

DeterminingBm ω(r) is different from what we have done
with Bm x(r), since the number of distinct twiddle factors ac-
cessed in each stage varies through the execution. Here we
list two possible scenarios.

Scenario 1. In the case ofP ·C · Sd ≤W , Bm ω(r) is always
equal toB, becauseP ·C requests ofω always fit into one
memory bank3.

Scenario 2. WhenP ·C · Sd > W , Bm ω(r) can be easily de-
termined asB for the first log2

2W
Sd

stages, because the number
of distinct twiddle factors used in each stage does not exceed
W
Sd

. For the rest stages,Bm ω(r) is mutually decided by the
number of memory banks holding the twiddle factors used in
stager, and the number of requested (distinct) twiddle factors
in a burst. This can be generalized as

Bm ω(r) = min(2
r−log2(

2W
Sd

)
,

P ·C ·Sd

W
,M)B (11)

Given Equations (5) to (11),Tm b(r), the memory latency

3Bm ω(r) could be a little bit larger thanB, since the requestedω in a burst
may reside in two consecutive memory banks; the first bank holds only one
twiddle factor, and the next one holds at least(W

Sd
−1) twiddle factors. How-

ever, the occurrences are few along the computation, and we approximate it
as the bandwidth of a single bank.

for a burst of radix-2 butterfly operations, one for each PE, in
stager, can be estimated by

Tm b(r) = Tld p(Bm x(r),Bm ω(r))+Tst p(Bm x(r)) (12)

Since the workload is evenly distributed to all PEs, and
every PE performs N

2P·C identical butterfly operations during
each stage, the overall memory latency for Algorithm PAR-
R2-FFT can be approximated as

log2 N

∑
r=1

TM(r) =
N

2P ·C

log2 N

∑
r=1

Tm b(r) (13)

With slight modifications to Equations (5) to (13), one can
obtain the overall memory latency for Algorithm PAR-R4-
FFT. For example, to estimate the latency for a pipelined load
for a radix-4 butterfly, instead of having 3 loads for a radix-2
butterfly shown in Equation (5), we simply substitute with 7
loads i.e., 4 forx and 3 forω.
4.4 Estimated Computation Time

To estimate the computation time, we examine the gener-
ated instruction sequence of the computation kernel, and use
a simplified PE model to approximate the execution time, un-
der ideal conditions: no interference from other PEs, no in-
struction fetch delays, and perfect branch prediction.

Since memory latency has already been taken care of in
Section 4.3, all memory instructions are removed from the
instruction sequence. The PE model executes the remaining
instructions in a pipelined way, i.e., one instruction per cycle.
Instructions are executed in-order, such that if one instruction
is stalled due to data dependence, no later instruction can be
issued. Special care needs to be taken when any shared hard-
ware resource in a core is competed by PEs. Our PE model
simply “perfect shuffles”P sets of such instructions into a
new sequence, in which all original data dependence relation
is preserved, and executes this interleaved sequence. The esti-
mated execution time of this interleaved instruction sequence
is used as the execution time of a single set on this PE model.
Given this model and the architecture specification, we can
expressTC as a function ofN, P, andC.
4.5 Estimated Barrier Overhead

Given the complexity and variety of barrier implementa-
tions, it is difficult to estimateTB without knowing the de-
tails of the real architecture/software. We thus propose an
experiment-based approach in our modeling. This approach
makes every PE call the barrier function many times, and re-
ports the average elapsed time per call. In this way, we can
obtain the cost function of the barrier waiting time as a func-
tion of P andC.

5 Case Study: IBM Cyclops-64
In this section we evaluate our performance model in the

context of the IBM Cyclops-64 (C64) chip architecture.
5.1 C64 Chip Architecture

The C64 architecture is an instance of the abstract archi-
tecture model proposed in Section 2. A C64 chip contains 80



cores. Each core has two single-issue, in-order PEs operat-
ing at a moderate clock race (500MHz), and a floating-point
unit (FPU) shared by both PEs. The Instruction Set Archi-
tecture (ISA) of C64 supportsFloating Multiply-Add instruc-
tions, which can be issued at every cycle. Therefore, the the-
oretical peak performance of a C64 chip is 80Gflops.

C64 features an explicitly addressable three-level mem-
ory hierarchy, including 160 local memories (LMs), one for
each PE, 160 on-chip global memories (GMs), and 4 off-chip
GMs. Both on-chip GMs and off-chip GMs are interleaved by
a 64-byte boundary, and are accessible to all PEs on a chip.
An LM is also accessible to all PEs, however, its associated
PE can access it with a very low and fixed latency. There is
no data cache in the C64 chip architecture.

All cores and memory banks are connected to an on-chip
pipelined crossbar switch with 96×96 ports. In particularly,
80 ports are shared by 160 on-chip GM units, and 4 ports
connected to the off-chip GM controllers. Each port can con-
sume one request packet and send up to 8-byte data to the net-
work/memory in one cycle, while all the other packets wait-
ing in an associated FIFO queue. An important property of
the crossbar switch is that memory access instructions issued
by one PE to any on-chip GM (or off-chip GM) bank ex-
perience the same latency in the crossbar. This equal-latency
property makes the on-chip memory model as sequential con-
sistency [30], which implies that no “fence” instruction is
required to enforce ordering relation between memory ac-
cesses. C64 provides no hardware support for context switch,
and uses a non-preemptive thread execution model.

As a summary, Table 2 lists major architectural parameters
of C64.WGM is the granulate of interleaved on-chip GMs.
Since two on-chip GMs share one crossbar switch port, it can
be approximated that there are 80 on-chip GM banks that are
interleaved by a 128-byte boundary.

Table 2. Summary of C64 architectural parameters
C up to 64
P 2
M 80
O 4

Bin 8 bytes/cycle
Bout 8 bytes/cycle
Bnet up to 1140 bytes/cycle

B 8 bytes/cycle
WGM 128 bytes

5.2 Evaluations and Discussions
In this section, we present a set of extensive evaluations of

the proposed performance model. We compare our estima-
tions with experimental results obtained from a C64 simula-
tor [11]. The experimental results show an average relative
error of 16%, when running on up to 16 cores. This average
relative error increases as more cores are used, and it reaches
29% at 64 cores. It is worth to note that similar results were
obtained on a preliminary version of the real C64 chip.

Estimated execution time on each stage. We first want to
compare the predicted execution time of each individual com-
putation stage (plus the waiting time of the following barrier)
with the experimental result, since its accuracy is the funda-
mental requirement for our subsequent analysis. Figure 6 and
Figure 7 show such comparison when computing a 210-point
FFT with Algorithm PAR-R2-FFT and Algorithm PAR-R4-
FFT, respectively. It can be observed that our performance

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

Computation stages

E
xe

cu
tio

n 
tim

e 
(c

yc
le

s)

64 cores (experiment)
64 cores (predication)
16 cores (experiment)
16 cores (predication)
4 cores (experiment)
4 cores (predication)

Figure 6. Execution time of stages, PAR-R2-FFT

1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000

8000

Computation stages

E
xe

cu
tio

n 
tim

e 
(c

yc
le

s)

64 cores (experiment)
64 cores (predication)
16 cores (experiment)
16 cores (predication)
4 cores (experiment)
4 cores (predication)

Figure 7. Execution time of stages, PAR-R4-FFT

model can predict the time spent on each stage with rela-
tive accuracy. Both figures show that the predicted time is
1%−29% higher than the experimental execution time when
running on up to 16 cores (part of the data are not shown
in the figure). This difference is probably caused by our as-
sumption that all instructions in a butterfly calculation must
be stalled until all input data points, and the twiddle factors
are loaded. In the actual system, however, one instruction can
be executed as soon as all its operands are available and all its
dependence relation is resolved, hence a long stall expected
in our model can be avoided.

It can be also observed that when more cores are used (e.g.,
up to 64 cores), the predicted time is 5%−31% lower than the
experimental execution time (part of the data are not shown in
the figure). One possible reason for this difference is that the



behavior of the crossbar network cannot be accurately cap-
tured by the current method under heavy traffic. We expect
that this issue could be alleviated by incorporating a more ac-
curate network model into our performance model.

Performance impact as the problem size varies. We in-
vestigate how the predicted execution time and performance
change as a function of the problem size, when running on
varied number of cores. The results of Algorithm PAR-R2-
FFT are summarized in Figure 8 and Figure 9. Both figures
demonstrate that our performance model correctly predicts
the performance trend as the problem size increases, when
compared with the experimental execution time and perfor-
mance. Figure 9 shows that, when running on a large number
of cores (e.g., 64 cores), the performance increases as the in-
crease of the problem size, while it keeps flat when running
on a small number of cores.

10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5
x 10

7

Log
2
(Problem size)

E
xe

cu
ta

tio
n 

tim
e 

(c
yc

le
s)

1core (experiment)
1core (predication)
4 cores (experiment)
4 cores (predication)
16 cores (experiment)
16 cores (predication)
64 cores (experiment)
64 cores (predication)

Figure 8. Total execution time versus the problem size,
PAR-R2-FFT

10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5

3

3.5

4

Log
2
(Problem size)

P
er

fo
rm

an
ce

 (
G

flo
ps

)

1 core (experiment)
1 core (predication)
4 cores (experiment)
4 cores (predication)
16 cores (experiment)
16 cores (predication)
64 cores (experiment)
64 cores (predication)

Figure 9. Performance versus the problem size, PAR-R2-
FFT

Performance impact as the number of cores varies. We
now show how the performance for a fixed input size changes

with the number of cores. As shown in Figure 10, the estima-
tions closely match the experimental results for all three prob-
lem sizes, when running on up to 32 cores. The difference
between predicted and simulated performance is becoming
rather noticeable, when running on a large number of cores,
i.e., up to 29% difference when running on 64 cores. One
possible reason is the inaccurate modeling under heavy traf-
fic. Figure 11 shows the corresponding speedup curves.

1 2 4 8 16 32 64
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of cores

214−point (experiment)
214−point (prediction)
215−point (experiment)
215−point (prediction)
216−point (experiment)
216−point (prediction)

P
er

fo
rm

an
ce

 (
G

flo
ps

)

Figure 10. Performance versus the number of cores, PAR-
R2-FFT

1 2 4 8 16 32 64
10

0

10
1

10
2

Number of cores

S
p

ee
d

u
p

214−point (experiment)
214−point (prediction)
215−point (experiment)
215−point (prediction)
216−point (experiment)
216−point (prediction)
Ideal

Figure 11. Speedup versus the number of cores, PAR-R2-
FFT

Performance impact as the algorithm changes. From Fig-
ure 6 we can observe that when running on a large number
of cores, the first several stages take a much longer time than
the rest of stages. A careful investigation into both algorithms
indicates that it is probably caused by the contention delayon
loading the shared twiddle factors. For example, recall that
2i−1 (1≤ i≤ log2N) distinct twiddle factors are used in thei-
th stage of Algorithm PAR-R2-FFT. In the first several stages
a large number of PEs compete for loading a small number of
twiddle factors, resulting in intensive contentions. Based on
our performance model, both the accessing latency and the
contention in the first stages could be greatly reduced, if each



PE keeps a local copy of twiddle factors in its associated LM.
We then revised Algorithm PAR-R2-FFT according to this
idea. We call this revised algorithm PAR-R2LM-FFT. Due to
the limited size of the LM on the C64, in the real implemen-
tation, only twiddle factors used in stage 1 to 6 are stored in
each PE’s associated LM. In the rest of the stages, PEs still
have to load the twiddle factors from GMs. The predicted exe-
cution time and the experimental execution time of Algorithm
PAR-R2LM-FFT for a 210-point FFT are shown in Figure 12.
Compared with Figure 6, this new algorithm shows signifi-
cant performance improvement in the first 6 stages. However,

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

Computation stages

E
xe

cu
tio

n 
tim

e 
(c

yc
le

s)

64 cores (experiment)
64 cores (prediction)
16 cores (experiment)
16 cores (prediction)
4 cores (experiment)
4 cores (prediction)

Figure 12. Execution time of stages, PAR-R2LM-FFT

even in the improved algorithm, memory access operations
still cost about 300%−500% more time than floating-point
operations in a butterfly. This also explains why the achieved
performance is far below the theoretic peak performance. One
way to improve the performance is to use algorithms concern-
ing data reuse, like higher radix algorithms , which can reduce
memory traffic significantly. As shown in Figure 13, PAR-
R4-FFT doubles the performance for various problem size -
system configuration combinations, compared with PAR-R2-
FFT. Our performance model shows that up to 140% perfor-
mance gain could be achieved if a radix-8 FFT algorithm is
used, compared with PAR-R2-FFT.

Performance impact as the architectural parameters
change. Programmers and architects often want to know the
performance impact of architectural changes to the existing
algorithms. To this end, we consider a hypothetical many-
core machine, C64+, which has the exact same configuration
as C64, except that each core now has 4 PEs, instead of 2
in the original C64 design. We then apply our performance
model with architectural parameters of this C64+ for Algo-
rithm PAR-R2-FFT.

Figure 14 shows the predicated performance data for a 210-
point FFT and a 216-point FFT. For the purpose of compar-
ison we also include the experimental performance data ob-
tained on C64 for these two problem sizes. From the figure we
can observe that adding more PEs to a core does not yield a

5 6 7 8
0

1

2

3

4

5

6

7

Log
4
(Problem size)

P
er

fo
rm

an
ce

 (
G

flo
ps

)

1 core (experiment)
1 core (prediction)
4 cores (experiment)
4 cores (prediction)
16 cores (experiment)
16 cores (prediction)
64 cores (experiment)
64 cores (prediction)

Figure 13. Performance versus the problem size, PAR-R4-
FFT

significant gain of performance for our FFT algorithm. In par-
ticular, for the problem size of 210-point, using more than 16
cores even has a negative performance impact. This is prob-
ably due to the increased memory contention delay and the
longer barrier waiting time.

1 2 4 8 16 32 64
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of cores

P
er

fo
rm

an
ce

 (
G

flo
ps

)

210−point (experiment on C64)
210−point (prediction on C64+)
216−point (experiment on C64)
216−point (prediction on C64+)

Figure 14. Performance predication for C64+, PAR-R2-FFT

6 Related Work
The most relevant previous work on performance modeling

of FFT is the work by Cvetanović [27] on an abstract shared
memory architecture. The work investigates the impact of the
data layout on the memory access latency. Closed-form per-
formance expressions are derived for the best-case and worst-
case data layout. This work also approximates that memory
operations regarding the input samples are issued by all pro-
cessors in a burst. Our work differs from this work in several
ways. First, while no specific algorithm is studied in [27],
we present detailed analyses of two parallel FFT algorithms,
together with experimental results on the real system. Sec-
ondly, the former study does not consider the memory traffic
generated for loading the twiddle factors, and it assumes that
the same network contention is produced during each stage,
which may not be realistic for all FFT problems. Our work



investigates both issues, and take into account their effects
upon the execution behaviors.

The technique of using instruction count to estimate the
FFT performance is also used in [20], where several FFT al-
gorithms are analyzed for IBM RP3 system. However, the
work treats memory and synchronization delays as constants.
Since the memory latency may vary due to the different mem-
ory access patterns through the execution, this assumptionaf-
fects the accuracy of the results. Such issue has been explic-
itly taken into account into our analysis.

Due to the increasing complexity of modern architectures,
empirical search has been introduced to find the optimal
optimizations for several domain-specific problems, such as
FFTW [13], ATLAS [2], and SPIRAL [24]. However, it is
not clear how this method can be extended to many-core ar-
chitectures. Moreover, as reported in [28, 29], carefully built
model-driven optimization procedures show comparative or
even better performance than the empirical search.

7 Conclusion and Future Work
The work presented in this paper is an attempt to quantita-

tively analyze the interaction between existing algorithms and
the emerging many-core architectures. The model can be fur-
ther improved in several dimension as discussed below. As we
mentioned in Section 4, the analysis of off-chip GM accesses
is a natural extension to the work presented in this paper. This
is particularly important for the study of explicit data move-
ment between levels of the memory hierarchy, which is used
in many high performance FFT algorithms. It will be inter-
esting to include analyses of such data movement, and thus
verify the effectiveness of the existing FFT algorithms for
many-core architectures. This performance model can be in-
corporated into an FFT computational framework, as a search
engine to find suitable algorithms and optimal parameters for
a given FFT problem. For example, as shown in Section 5, the
performance model could identify the optimal number of PEs
to be used for a given problem. Unlike an empirical search
approach, by examining the properties of the algorithms and
the architecture parameters, this performance model can po-
tentially provide faster and more accurate solutions. Last, al-
though our analysis presented in this paper is focused on the
FFT algorithms, it will be interesting to investigate how the
general methodology can be applied to other problems of stat-
ically defined communication and computation patterns, like
matrix operations.

References
[1] Computational Arrays for the Discrete Fourier Transform, 1981.

[2] C. W. Antoine, A. Petitet, and J. J. Dongarra. Automated empirical optimization
of software and the atlas project.Parallel Computing, 27:2001, 2000.

[3] D. H. Bailey. A high-performance fast Fourier transformalgorithm for the Cray2.
Journal of Supercomputing, 1:43–60, 1987.

[4] W. Briggs, L. Hart, R. Sweet, and A. O‘Gallagher. Multiprocessor FFT methods.
SIAM J. Sci. Stat. Comput, 8:27–42, January 1987.

[5] L. Chen, Z. Hu, J. Lin, and G. R. Gao. Optimizing the fast fourier transform on a
multi-core architecture. InIPDPS, pages 1–8, 2007.

[6] ClearSpeed. ClearSpeed CSX700.

[7] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of com-
plex fourier series.Math. Comput., 19:297–301, 1965.

[8] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.Introduction to Algo-
rithms. McGraw-Hill Higher Education, 2001.

[9] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramo-
nian, and T. von Eicken. Logp: towards a realistic model of parallel computation.
SIGPLAN Not., 28(7):1–12, 1993.

[10] D. E. Culler, J. P. Singh, and A. Gupta.Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann Publishers, inc., 1999.

[11] J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao. FAST: A functionally accurate
simulation toolset for the Cyclops64 cellular architecture. InMoBS’05.

[12] M. Denneau and H. S. Warren, Jr. 64-bit Cyclops principles of operation part I.
Technical report, IBM Watson Research Center, 2007.

[13] M. Frigo and S. G. Johnson. The design and implementation of FFTW3.Proceed-
ings of the IEEE, 93(2):216–231, 2005. special issue on “Program Generation,
Optimization, and Platform Adaptation”.

[14] A. G. and P. I. Parallel implementation of 2-d FFT algorithms on a hypercube. In
Proc. Parallel Computing Action, Workshop ISPRA, 1990.

[15] J. Hennessy and D. Patterson.Computer Architecture: A Quantitative Approach,
4th edition. Morgan Kauffman, 2007.

[16] J. L. Hennessy and D. A. Patterson.Computer organization and design (3rd ed.):
the hardware/software interface. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2005.

[17] Intel. Intel develops tera-scale research chips. http://www.intel.com, Sept. 2006.

[18] S. L. Johnsson and R. L. Krawitz. Cooley-tukey FFT on theconnection machine.
Parallel Computing, 18(11):1201–1221, 1992.

[19] C. V. Loan. Computational framework for the fast Fourier transform. SIAM,
Philadelphia, 1992.

[20] A. Norton and A. J. Silberger. Parallelization and performance analysis of the
Cooley-Tukey FFT algorithm for shared-memory architectures. IEEE Transac-
tions on Computers, 36(5):581–591, 1987.

[21] Nvidia. NVIDIA Tesla many core parallel supercomputing.

[22] D. M. S. L. Johnsson, R.L. Krawitz and R. Frye. A radix 2 FFT on the connection
machine. InProceedings of Supercomputing 89, pages 809–819, 1989.

[23] V. Singh, V. Kumar, G. Agha, and C. Tomlinson. Scalability of parallel sorting on
mesh multicomputers. InIPPS’91, pages 92–101, 1991.

[24] SPIRAL. SPIRAL website. http://www.spiral.net.

[25] P. N. Swarztrauber. Multiprocessor FFTs.Parallel Computing, 5(1-2):197–210,
1987.

[26] L. G. Valiant. A bridging model for parallel computation. Commun. ACM,
33(8):103–111, 1990.

[27] Žark Cvetanović. Performance analysis of the FFT algorithm on a shared-memory
parallel architecture.IBM J. Res. Dev., 31(4):435–451, 1987.

[28] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, and P. Stodghill. Is
search really necessary to generate high-performance blas?, 2005.

[29] K. Yotov, T. Roeder, K. Pingali, J. Gunnels, and F. Gustavson. An experimental
comparison of cache-oblivious and cache-conscious programs. InSPAA’07, pages
93–104, New York, NY, USA, 2007. ACM.

[30] Y. Zhang, W. Zhu, F. Chen, Z. Hu, and G. R. Gao. Sequentialconsistency re-
visited: The sufficient conditions and method to reason consistency model of a
multiprocessor-on-a chip architecture. InPDCN2005, page 12, Innsbruck, Aus-
tria, 2005.


