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Abstract—Optimization of parallel applications under new
many-core architectures is challenging even for regular applica-
tions. Successful strategies inherited from previous generations
of parallel or serial architectures just return incremental
gains in performance and further optimization and tuning are
required. We argue that conservative static optimizations are
not the best fit for modern many-core architectures. The limited
advantages of static techniques come from the new scenarios
present in many-cores: Plenty of thread units sharing several
resources under different coordination mechanisms.

We point out that scheduling and data movement across the
memory hierarchy are extremely important in the performance
of applications. In particular, we found that scheduling of data
movement operations significantly impact performance.

To overcome those difficulties, we took advantage of the
fine-grain synchronization primitives of many-cores to define
percolation operations in order to schedule data movement
properly. In addition, we have fused percolation operations
with dynamic scheduling into a dynamic percolation approach.

We used Dense Matrix Multiplication on a modern many-
core to illustrate how our proposed techniques are able to
increase the performance under these new environments. In our
study on the IBM Cyclops-64, we raised the performance from
44 GFLOPS (out of 80 GFLOPS possible) to 70.0 GFLOPS
(operands in on-chip memory) and 65.6 GFLOPS (operands
in off-chip memory). The success of our approach also resulted
in excellent power efficiency: 1.09 GFLOPS/Watt and 993
MFLOPS/Watt when the input data resided in on-chip and
off-chip memory respectively.

I. INTRODUCTION

This paper presents a comprehensive case of study that
shows how to obtain high performance in modern many-core
processors. This study is important because it addresses a sit-
uation arising on many-core architectures and not previously
encountered in multi-core architectures, or other systems

Early results of this research were published as a short paper in Computer
Frontiers 2012 under the tile “Dynamic Percolation: A Case of Study on
the Shortcomings of Traditional Optimization in Many-core Architectures”.
This paper extends the content of our previous publication

such as clusters or shared memory processors. Many-cores
provide an environment where hardware resources are un-
complicated and abundant. Large numbers of thread units are
present, on-chip memory can be user-managed, automatic
data cache may not be present and hardware support for
synchronization is available. In summary, the environment
is different, and it requires a new optimization paradigm.

We have observed that the use of traditional optimization
techniques does not result in the best performance in many-
core architectures. As an example, we take the simple case
of dense matrix multiplication (DMM) running on a modern
many-core architecture such as the IBM Cyclops-64 pro-
cessor (C64) [8]; the extensive efforts toward optimization
of this important kernel only resulted in a disappointing
performance of 44.12 GFLOPS (out of 80 GFLOPS) pos-
sible [19], [17]. This far-from-optimal performance was not
the result of lack of trying. The study presented by Garcia
explored a broad range of optimization strategies: Multi-
ple levels of tiling were employed, instruction scheduling,
register allocation and instruction selection was done by
hand, the code was written in assembly, pipelining was used,
synchronization was optimized through the use of hand-
written assembly primitives and so on.

The study presented by Garcia ultimately shows that peak
performance could not be achieved by static techniques
alone, even for simple, highly parallel and regular programs
such as matrix multiply.

Being surprised by Garcia’s early results in Matrix Mul-
tiply, we analyzed their experiments to find why their
methodical approach failed to achieve peak performance.
Through extensive profiling, we have seen that static plans
are bound to fail to achieve peak performance in many-
core architectures. Mainly, this happens because it is not
possible to statically create a plan that efficiently schedules
data movement and computation at the right times. The
reason is that small variations in the execution of tasks (or



even individual instructions) voids the possibility of making
optimal scheduling decisions a-priory. Even the best policies
for scheduling frequently resulted in data movement being
scheduled too late or when main memory bandwidth was
not available because another data movement operation did
not finish on time. In any case, the result is the same: time
and resources were wasted, leading to poor performance.

To solve the difficulties in the data movement and schedul-
ing, we took advantage of the fine-grain synchronization
primitives available in many-core architectures. We propose
Percolation; percolation is the process by which data is
moved across the levels of the memory hierarchy to meet
locality requirements for computation but as opposed to data
prefetching, computation tasks are not scheduled until the
percolation operation has not finished, e.g. there is explicit
synchronization between data movement tasks and com-
putation tasks. In addition, percolation operations consider
restrictions to available resources such as bandwidth or on-
chip memory space.

In addition, we found that Percolation and dynamic
scheduling can be fused together in what we call Dynamic
Percolation which dynamically schedules data percolation
at an appropriate time so that (1) data is available when the
computation needs it and (2) the percolation operation is
done when enough memory bandwidth is available.

This paper describes the process that ultimately led to a
successful optimization of parallel applications, we examine
in detail a simple but challenging benchmark: the Dense Ma-
trix Multiplication (DMM). We describe how we introduced
percolation operations and how we used dynamic percolation
to complete the optimization process. After the optimization
of DMM on C64 using the proposed techniques, the per-
formance increases to 70.0 GFLOPS (87.5% the theoretical
peak performance) and 65.6 GFLOPs (82% of the theoretical
peak performance) when the input data for DMM resided in
on-chip and off-chip memory respectively. These results are
far from any other benchmark implemented on the Cyclops-
64 processor [17], [5], [23], [6].

In addition, our success with dynamic percolation also
enabled us to achieve impressive results in power efficiency,
reaching 1.09 GFLOPS/Watt (operands in SRAM) and 0.993
GFLOPS/Watt (operands in DRAM)

The paper is organized as follows: Section II presents
relevant background information. Section III defines the
problem addressed in this paper. Section IV shows the
optimizations for tasks and scheduling we propose. Section
V presents our results and talks about the effectiveness of our
approach. Section VI presents other related work in the field.
Finally, Section VII presents our conclusions and possible
directions for our future work.

Cyclops 64 Chip 

… 

DDR2  

Controller 

Off-Chip 

Memory 

DDR2  

Controller 

Off-Chip 

Memory 

DDR2  

Controller 

Off-Chip 

Memory 

DDR2  

Controller 

Off-Chip 

Memory 

Host 
Interface 

A 

Switch 

3D Mesh 

FPGA 

Gigabit  

Ethernet 

Control 

Network 

Blade 

FPU 

SRAM SP 

Processor  1 

TU TU 

SP 

FPU 

SRAM SP 

Processor  2 

TU TU 

SP 

FPU 

SRAM SP 

Processor  80 

TU TU 

SP 

Crossbar Network 

HD 

Figure 1: C64 Chip Architecture

II. BACKGROUND

A. The IBM Cyclops-64 Architecture

Cyclops-64 (C64) [8], [17] is a homogeneous many-
core system on a chip architecture designed by IBM. A
C64 chip is an aggregation of 160 simple MIMD Thread
Units (TU), a design that will share many features with
future architectures. As such, it is an excellent and tangible
testbed to both expose and provide insight into the future
problems that many-core architectures must surmount in
order to maintain high performance and power efficiency.

A C64 chip contains 80 processors, each one of them
containing 2 Thread Units (TU), a floating point unit (FPU),
two on-chip SRAM memory banks of 30KB each, and a port
to the on-chip interconnect. The TUs must share both the on-
chip network port and floating point unit, allowing for better
utilization of these resources. Amongst every 5 processor
cores is an I-cache of 32 KB for storing code. The off-chip
DRAM memory, which is typically 1GB, can be accessed
through 4 DDR2 DRAM controllers, each interfacing 64-bit
channels running at 500MHz, providing a total bandwidth
of 16 GB/s or 100 MB/s per TU in the system. A 96-port
crossbar network (CBN) with a bandwidth of 4GB/s per
port connects all TUs and on-chip memory banks [8]. A
C64 node can be seen in Figure 1.

A C64 chip has an explicit three-level memory hierarchy:
scratchpad memory, on-chip SRAM, off-chip DRAM. There
is no automatic data cache. All on-chip memory is user-
managed. The scratchpad memory (SP) is a configured
portion of each on-chip SRAM bank which can be accessed
with very low latency by its associated TU. The remaining
sections of on-chip SRAM banks comprise the on-chip inter-
leaved global memory (GM), which is uniformly accessible
from all TUs. For floating-point performance, C64 can issue
one double precision “Fused Multiply and Add” instruction
per cycle per processor, for a total performance of 80
GFLOPS per chip when running at 500MHz. In addition, the
C64 instruction set architecture incorporates efficient support
for hardware barriers and atomic in-memory operations.
Each memory controller has an ALU that allows it to
execute atomic operations in 3 clock cycles directly inside
the memory controller (both SRAM and DRAM), without
help from a thread unit.



B. Limitations of modern many-cores

Bandwidth is the bottleneck for most naively-
implemented algorithms in general purpose many-core
architectures such as GPUs [4], [25], the new Intel Xeon
Phi [24] and The IBM Cyclops-64 [8].

We use a simple observation on the C64 architecture to
illustrate this problem of modern many-cores. Achieving 80
GFLOPS (the peak performance of C64) in a processor run-
ning at 500 MHz requires execution of 80 Fused-Multiply-
Add instructions per cycle. A naive implementation that
loads and stores the results of such operations from and
to off-chip memory will require to load 160 operands and
store 80 operands per cycle (assuming perfect pipelining of
the operations to hide latency). Naive implementations will
be likely limited by off-chip memory bandwidth given the
limitations of off-chip memory controllers, each allowing
a single memory operation per cycle (e.g. C64 only has 4
off-chip memory controllers).

On-chip memory can be used to reduce the requirements
on off-chip memory bandwidth. Optimized algorithms usu-
ally rely on partial computations done in on-chip memory
and registers. Tiling techniques exploit the locality of data,
reusing data as much as possible. Studies in this area are
extensive for GPUs [9], [30], Intel Xeon Phi [10] and
IBM Cyclops-64 [17], [5], [23] to alleviate the problem
of memory bandwidth. Such approaches frequently require
tiling at all levels of the memory hierarchy inside the chip
(e.g. Garcia et al. [17] showed the necessity of SRAM tiling
and Register tiling for Matrix Multiply).

C. Static Scheduling and Data Partitioning

Scheduling is an important optimization for programs
once the bottleneck of memory bandwidth has been re-
moved through tiling. Scheduling presents challenges in
itself since it requires assignment of work to processors
at the appropriate time, taking into account issues such
as availability of resources and availability of data. The
scheduling problem is complicated by the fact that the tasks
scheduled to each processor are not necessarily identical.
The problem seems simpler for regular and embarrassingly
parallel applications, where the amount of data can be dis-
tributed uniformly between TUs, expecting similar execution
times. Two main factors under the scenario imposed by
many-core architectures decrease the expected performance
of this static approach to the point of making it impractical
even for regular applications. These two factors are: 1)
shared resources and 2) size and shape of tiles.

Shared resources such as function units or bandwidth are
a source of imbalance even with tasks that perform similar
computations over the same amount of data. As a result,
tasks may have different execution times due to competition
for shared resources. This factor is critical on many-cores,
where shared resources are abundant at different levels with
diverse arbitration schemes.

Partition for TU=4 Partition for TU=9

Figure 2: The figure illustrates the problem of partitioning.
Tiles of 3× 3 are optimum-sized and they result in the best
performance. However, as the number of Thread Units (TUs)
increase, the number of optimum-sized tiles decrease. In the
Figure, a matrix of 15 × 15 results in 16 optimum-sized
tiles when using 4 TUs, but only 9 optimum-sized tiles are
available when using 9 TUs.

The size and shape of the tiles greatly influence the
performance of an application. Numerous publications for
all kind of many-cores have been devoted to the discussion
of what is the optimal tile that must be used for particular
problems [29], [9], [18], [26], [17], [5], [23]. Usually, criteria
to select a good tile size is that which maximizes the ratio of
computation to memory operations given some constraints
such as available memory, the desired parallelism, or the
number of processing units in a chip. Although tiling ef-
fectively improves the efficiency of the computation, it is
not always possible to place all of a problem’s data into
tiles since it is frequent that the problem dimensions are
not a multiple of the tile size. For that reason, in general,
problems result in a combination of optimal-sized tiles and
non-optimal-sized tiles.

For example, a previous study by Garcia et al. [17],
showed that the best strategy to compute a matrix multi-
plication on many-cores with software managed memory
hierarchies was to divide the computation uniformly between
blocks according to the number of TUs and partition these
blocks into optimal-sized tiles if possible, even if such a
partition left some non-optimal-sized tiles. Although the
idea of partitioning a problem into equal work for all the
TUs works well, it may still result in some non-optimal-
sized tiles left because the problem size is not necessarily a
multiple of the tile size used. These remaining non-optimal-
sized tiles result in poor performance during execution. Two
factors exacerbate the presence of slow non-optimal tiles: 1)
an increased number of TUs working in parallel and 2) a
limited amount of on-chip shared memory available to host
the data. These two conditions are evident on a many-core
environment and they will ultimately limit the ability of an
application to reach peak performance [16]. Figure 2 shows
a simple example where the amount of data that belongs to
non-optimum-sized tiles (in light yellow and red) increases
when the number of TUs increases and the amount of data
shared is limited.



III. PROBLEM STATEMENT

The objective of our study is to find the reasons for the
failure of previous approaches in optimization of programs
for many-core architectures. A blanket statement about what
is exactly the problem in a general case is unfeasible.
Instead, we decided to start by looking at a case of study
that involves several features in common to a large family
of problems in high performance computing. We think that
the solutions proposed are broad enough to be applied to the
optimization of a large class of programs.

We analyze in detail the case of Dense Matrix Multi-
plication (DMM). DMM is a highly regular and embar-
rassingly parallel, it is used extensively as a major kernel
in HPC. Despite multiple effort for optimizing this kernel,
the optimization of DMM under new many-cores is still an
open question. As an example, after extensive optimizations
in C64, the maximum performance reached is below 45
GFLOPS (out of 80 GFLOPS) [17].

The general questions that our inquiries address are (1)
What scheduling and data movement strategy enables high
performance under the constraints given by the available
resources? (2) What is a good technique to achieve load-
balancing? and (3) When should data movement be sched-
uled to prevent computations from stalling due to lack of
data?

And in particular, we have undertaken activities that
are representative of the problem that we want to solve.
We have used Dense Matrix Multiply to understand the
challenges posed by each one of the previous questions and
we have worked on various issues found: (1) How can high
performance be achieved for large problem sizes through
the use of on-chip memory? (2) How and when should data
movement be scheduled?

We used DMM (C = A × B) for matrices with size
m ×m. We propose a separation of the problem into two
orthogonal subproblems: (1) optimizing Matrix Multiply in
on-chip memory moving explicitly operands between on-
chip memory and Registers and (2) moving explicitly data
between off-chip memory and on-chip memory.

To extend the matrices to off-chip memory we simply
partition matrices A, B and C into n×n blocks Ai,k, Bk,j

and Ci,j that fit in on-chip memory. We assume explicit
data movement on the memory hierarchy without DMA
engines. Instead we will use Thread Units and the same
mechanism for synchronization used for computation, it will
allow simplicity between the synchronization of computation
and data movement. Each block of C is calculated by

Ci,j =

m
n −1∑
k=0

Ai,k ·Bk,j (1)

Considering the limitation of bandwidth in the crossbar
and the unpredictable effects of resource sharing, we must

devise a schedule that considers both computation and data
movement efficiently.

IV. DYNAMIC SCHEDULING:
SCALABILITY AND PERCOLATION

This section will explain our findings and solution to the
questions raised on Section III. As explained before, a DMM
with operands on off-chip memory will require two kind
of tasks: Data movement tasks and computation tasks. Our
analysis will follow a bottom-up approach:

1) Optimization of DMM in on-chip memory. Two major
aspects are studied and solutions proposed: an op-
timized computation task with proper percolation of
operands between on-chip memory and Registers and
a load balanced scheduler with low overhead.

2) Optimization of DMM in off-chip memory. The main
aspect studied here is a load balanced scheduler that
effectively overlaps data movement and computation
tasks using dynamic percolation

A. Scalability and Percolation of DMM in on-chip memory

We already have pointed out the disadvantages of Static
Scheduling (SS) from the many-core perspective, and we
will explain how Dynamic Scheduling (DS) can improve
performance over SS using a register tile as a computational
unit of work. After that, we will explore the percolation
process of operands between on-chip memory and Registers
among other techniques for the optimization of the compu-
tation task.

1) Dynamic Scheduling for Computation Tasks: SS is
suboptimal because it does not consider two main sources
of imbalance in a many-core environment: 1) The amount
of work is a function of how the block is tiled and what
fraction of tiles does not have optimum size. 2) Possible
stalls due to arbitration of shared resources.

The problem of predicting and modeling resource sharing
is challenging for SS. A static block partition aggravates the
problems, especially when the number of processors (P )
is increased. Despite the simplicity and regular behavior in
computation and data access of DMM, the use of static
techniques is not enough to overcome these problems.
DS is a feasible solution able to alleviate the scalability
problems of SS if their overhead is managed properly. We
propose a distributed scheduling system approach where
the computation of optimum size tiles in matrix C are
scheduled dynamically using atomic in-memory operations,
particularly atomic addition. A pseudo-code is presented on
Figure 3.

The proposed DS has the following advantages over SS:
1) A carefully designed DS can be managed with low

overhead using atomic in-memory operations, specif-
ically, atomic increment/decrement. In-memory oper-
ations can complete in very few cycles (e.g. 3 cycles
on C64 if they are pipelined properly), allowing more



01: // Globals
02: int TotalNumTasks
03: int TaskIndex = 0
04: ...
05: // DS running on each Processor
06: int i
07: i = AtomicAdd(&TaskIndex, 1)
08: while i<TotalNumTasks do
09: ComputeTile(i)
10: i = AtomicAdd(&TaskIndex, 1)
11: end while
12: ...

Figure 3: Code Fragment for a DS implementation

requests to be completed per unit of time and avoiding
unnecessary roundtrips to memory [21].

2) The dynamic approach load-balances optimally in
the presence of stalls due to arbitration of shared
resources, increasing the efficiency by keeping all
threads working.

3) Since the work unit is the optimal size tile, the number
of non-optimum size tiles is minimized and it does not
depend on the number of processors P .

The first and second advantages suggest that DS will have
a better performance than SS and the maximum performance
will be reached when the amount of data is big enough to
feed all processors in parallel.

The third advantage implies that DS will overcome SS es-
pecially when the size of matrix m is limited or the number
of processors P increases. Modern many-core architectures
include in-memory computation capabilities allowing little
contention and overhead due to the use of DS as described
in Figure 3.

Due to the advantages explained before, it is feasible to
expect a better scalability when using DS for a broad range
of values of m and P .

2) Percolation in the computation task: Most of the time
is spent computing tiles. Therefore, computation deserves
special attention. A high performance tiling for DMM used
in many-cores with software managed memory hierarchies
computes a single tile c of size L1 × L2 using the outer
product of tiles a and b of sizes L1 × 1 and 1 × L2

respectively, allowing maximum reuse of elements in a and b
tiles and fitting a, b and c in registers. Instruction scheduling
could be used to partially hide the latencies incurred while
moving the operands a and b from on-chip memory to
registers but it is not enough [17].

A proper interleaving of task is required to avoid stalls
due to data movement. We propose percolation as a fea-
sible solution. Percolation is the process by which data
is moved across the levels of the memory hierarchy to
meet locality requirements for computation but as opposed
to data prefetching, computation tasks are not scheduled
until the percolation operation has not finished, e.g. there is
explicit synchronization between data movement tasks and
computation tasks.

S1: c[1..L1][1..L2] = 0
S2: for k = 1 to m, k ++
S3: a[1..L1][1] = A[i..i+ L1][k]
S4: b[1][1..L2] = B[k][j..j + L2]
S5: c[1..L1][1..L2]+ = a[1..L1][1]× b[1][1..L2]
S : end for
S6: C[i..i+ L1][j..j + L2] = c[1..L1][1..L2]

Figure 4: Computation of a tile C with size L1×L2 without
Percolation

S1 : c[1..L1][1..L2] = 0
S2 : a[1..L1][1] = A[i..i+ L1][1]
S3 : b[1][1..L2] = B[1][j..j + L2]
S4 : for k = 1 to m, k ++
S5 : a[1..L1][2] = A[i..i+ L1][k + 1]
S6 : b[2][1..L2] = B[k + 1][j..j + L2]
S7 : c[1..L1][1..L2]+ = a[1..L1][1]× b[1][1..L2]
S8 : k ++, if k == m then break
S9 : a[1..L1][1] = A[i..i+ L1][k + 1]
S10: b[1][1..L2] = B[k + 1][j..j + L2]
S11: c[1..L1][1..L2]+ = a[1..L1][2]× b[2][1..L2]
S : end for
S12: C[i..i+ L1][j..j + L2] = c[1..L1][1..L2]

Figure 5: Computation of a tile C with size L1 × L2 with
Percolation

Figure 4 shows the pseudo-code for calculating one tile
C of size L1×L2 without Percolation. Uppercase variables
are arrays in shared on-chip memory and lowercase variables
are arrays of the same operand allocated in registers. Inside
the for loop, there are two tasks: Data movement (S3−S4)
and computation (S5). To eliminate stalls due to latency, we
percolate operands a and b into registers using loop unrolling
in the calculation of the tile. Figure 5 show the pseudo-code
with Percolation (PC).

With proper percolation of data between on-chip memory
and registers we can significantly increase the time between
the issue of loads for operands a and b and computations
where they are required. A basic analysis of the unrolled
loop show us that the required number of registers increases
from L1+L2+L1 ·L2 without percolation to 2(L1+L2)+
L1 · L2 with percolation. In the general case, the number
of iterations unrolled depends on the latency of memory
operations.

For the particular case of C64, the optimum tile is L1 =
L2 = 6 [17]. It has been shown that this tiling consumes
a bandwidth below crossbar saturation. Of the available 63
register of C64, 5 registers are used for pointer and indexes
leaving 58 registers for computation. A careful live variable
analysis shows that registers used to store a and b vectors in
one iteration can be reused in another iteration. Therefore,
we were able to retain a 6×6 tile without spilling registers.

Instruction-cache misses will produce costly stalls in the
execution while instructions are accessed from main mem-
ory. The case for many-core architectures imposes additional
constrains because I-caches are shared. Executing the same
code by the processors that share the same I-cache is
desirable. For the particular case of DMM, the most used



1 : Initialize Ci,j to 0 on SRAM

2 : Compute the block Ci,j =
∑m

n
−1

k=0 Ai,k ·Bk,j.
This can be subdivided in 2 subtasks:

2a: Copy Ai,k and Bk,j from DRAM to SRAM.
2b: Compute a partial Ci,j and accumulate.
3 : Copy Back the block Ci,j calculated.

Figure 6: Tasks for computing one block Ci,j ∈ C

code is the dynamic scheduler and the code for computing
a tile. Two well know strategies can be applied to minimize
I-cache misses. The first one is to align the functions of
the DS and Tile computation with the I-Cache block size,
minimizing the number of cache blocks for that code. The
second one is to apply Instruction Percolation (IP), which
can be done by executing the DS and Tile computation code
prior to the execution of the whole DMM, allocating that
code in the shared I-Caches, and reducing the excessive
number of I-misses on the first iterations.

B. Dynamic Percolation

A highly optimized DMM algorithm in on-chip memory is
limited by the size of operands it can handle (e.g. matrices
of 400 × 400). In this section, we extend DMM into off-
chip memory by blocking at on-chip memory level and
using our percolated DMM algorithm. We assume that the
target many-core architecture has no hardware mechanisms
for transferring data blocks (e.g. DMA engines or Caches).
Then, we use Thread Units (TUs) to transfer the data.
These data movement TUs must be orchestrated with the
computational TUs in order to enforce data dependencies:
the computation cannot be done before the matrices are
loaded and a matrix result cannot be stored until work using
it is completed. Further, TUs working on data movement
need to help with computation if there is no data to move.

A straightforward static schedule for the DMM algorithm
detailed in section III would synchronize tasks using barriers
and would parallelize each task. To compute the whole
matrix C, the tasks detailed in Figure 6 would be executed
m2

n2 times.
Although task 2b is implemented efficiently, as described

in section IV-A, a direct implementation of task 2, with
barriers between tasks 2a and 2b, would waste resources
while TUs are waiting on barriers. Further, it would be
inefficient for all TUs to copy data concurrently given the
limited off-chip memory bandwidth. A dynamic scheduling
approach can replace the barriers with finer-grained signals
while still enforcing data dependencies.

We define Dynamic Percolation, where the assignment of
data movement tasks and computation tasks is done dynam-
ically. There are two types of threads: Helper Threads and
Computation Threads. Helper Threads (HT) are in charge
of the data movement tasks and Computation Threads (CT)
are in charge of the computation tasks. Computation and
data movement tasks are overlapped by a pipelined schema
using on-chip memory (e.g. buffers F1 and F2). Moreover,

the distribution of computation tasks and data movement
tasks changes dynamically. Dynamic Percolation follows a
simple set of rules for creation and issue of tasks based on
their dependencies. These rules help the dynamic scheduler
to keep threads working efficiently on a computation task or
a data movement task. The rules are as follow:

1) Task Creation rules:

a) A set of computation tasks on buffer F1 is
created and ready to be fired when all the data
movement tasks for buffer F1 are complete. The
same is true of buffer F2.

b) A set of data movement tasks for buffer F1 is
created and ready to be fired when computation
is complete for the data buffer F1. The same is
true of buffer F2.

2) Task Issue rules:

a) A set of tasks (computation or data movement) is
scheduled dynamically between the threads that
belong to a set of that type of task (CT or HT).

b) When a HT has finished and all data movement
tasks of a buffer have been issued, the HT
becomes a CT for the current actively computed
buffer.

c) There is a maximum number of HT that can
run in parallel to avoid contention on off-chip
memory.

d) When a CT has finished and all tasks of that set
(e.g. on buffer F1) have been issued, it becomes
a HT for the set of data movement tasks on
that buffer (e.g. on buffer F1) if the maximum
number of HT has not been reached. Otherwise
it becomes a CT for the next set of computation
tasks (e.g. on buffer F2).

The Dynamic Scheduler for each set of tasks can be
implemented efficiently by using atomic in-memory oper-
ations, specifically, in-memory atomic addition. The main
advantage of this implementation is the low overhead given
by the low latency of in-memory operations compared with
an atomic operation that required to load the data, to perform
the operation and to save back. Under normal conditions
(e.g. no unexpected failures of any components in the chip)
a possible scenario for stalls is given by rule 2d: a CT stalls
when it becomes a CT of the next set of computation tasks
(e.g. buffer F2) while the buffer’s data movement tasks (e.g.
buffer F2) have not finished. This condition can be easy
solved if the size of the HT set is large enough to guarantee
that the data movement tasks finish before their associated
computation tasks. This parameter is architecture dependent
and it is related to the compute/bandwidth ratio and the
size of on-chip buffers. An optimistic estimation is given
by eq. (2), where NHT is the maximum number of helper
threads:
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Figure 7: Dynamic Percolation for Computation of one block Ci,j
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Figure 8: Dynamic Percolation for Computation of matrix C
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There are two basic structures common to several algo-
rithms where Dynamic Percolation can be applied. The first
structure is Copy - Compute and the second one is Copy
- Compute - Copy Back. These structures can be applied
hierarchically without restriction. DMM is a good case to
expose the advantage of Dynamic Percolation because the
algorithm exposes both structures on a hierarchical fashion.
The tasks in Figure 6 can be classified into two groups: 1)
Computation tasks (2b) and 2) Data movement tasks (1, 2a,
3). Also, there is a hierarchy of tasks. At the highest level,
tasks 1−3 are related with blocks Ci,j (Initialize, Compute,
Copy Back) while at the next level down, tasks 2a and 2b are
specific for computing one block Ci,j using several blocks
Ai,k and Bk,j (Copy, Compute). We will analyze each level
separately, starting with the inner level: tasks for computing
a block Ci,j , and continuing with the outer level: tasks for
computing the whole matrix C.

Computation of one block Ci,j : Data is percolated as
shown in Figure 7. Tasks 2a map to the data movement
tasks and tasks 2b map to the computation tasks. In the

initialization step, we create the first set of data movement
tasks and create the second set when all data movement tasks
in first set have been issued.

Computation of matrix C: Computing the whole matrix
involves a Hierarchical Dynamic Percolation, where tasks
2 are a subset of the percolation model for tasks 1 - 3
as shown in Figure 8. However, at this level, all tasks in
task 2 are considered computation tasks. There are two data
movement tasks (1 and 3) where task 1 of the next outer
loop iteration is dependent on task 3 of the current iteration.
In the initialization step, we only initialize Ci,j and do not
copy it back until the first computation task is completed.

Under the assumption that the number of HTs at both
levels have been chosen properly to do the data movement
tasks in less time than the computation tasks, the Dynamic
Percolation for MM not only allows runtime redistribution
between helper threads and computational threads to achieve
better utilization of TUs, but also its dynamic behavior can
efficiently manage the unpredictable effects of resource shar-
ing (e.g. arbitration of crossbar network ports and limited
off-chip bandwidth). This is a challenging problem on many-
core architectures that, as discussed previously, SS cannot
overcome.

The performance of the off-chip memory DMM with



respect to the on-chip memory DMM is expected to be
slightly lower because now some threads are not doing
computation and the cost of data movement has to be
included. This cost depends on the maximum number of
HTs allowed at each task level, the bandwidth for memory
transfers, and the size of blocks on SRAM.

V. EXPERIMENTAL EVALUATION

We have implemented and tested the techniques exposed
across this paper using the DMM as an example. The opti-
mization of DMM exposes all the challenges and difficulties
we addressed through Percolation and Dynamic Percolation
in section IV. For our evaluation, we used the C64 archi-
tecture described in section II-A. The software managed
memory hierarchy, hundreds of independent hardware TUs
and plenty of shared resources are a good fit to test the
advantages of the techniques proposed given the difficulties
to optimize applications under these new type of many-cores.

First, we used the on-chip memory algorithm to compare
the scalability of SS vs. DS without percolation operations.
Figure 9 shows that the performance of SS is drastically
decreased for smaller matrices with respect to DS. In gen-
eral, SS always has lower performance than DS. The low
performance of SS for small matrices is a major limitation
to the off-chip memory algorithm because the use of extra
buffers limits even more the size of them inside on-chip
memory.

Figure 10 shows the scalability of SS and DS in terms
of number of TUs. While DS scales near to linear for big
matrices (e.g. the maximum size that fits in on-chip memory
is m = 486) and sustains an increased performance even
when the size is drastically reduced (e.g. m = 100), SS
cannot follow the same rate of improvement and decreases
its performance if the matrix size is small and the number of
threads increases. Also, Figure 10 shows the results of the
progressive improvements made for the computation task
unit (the register tile). The latency of memory operations
is hidden again, avoiding register spilling and resulting in
an speedup of 25%. The maximum performance after the
improvements is 70.00GFLOPS with matrices of 486× 486
using 156 TUs: 87.50% of the theoretical peak performance
of C64. 4 TUs are reserved for communication with other
chips and the execution of the runtime.

Using the already optimized DMM in on-chip SRAM,
a fully parallel DMM that uses off-chip DRAM was im-
plemented without overlapping computation tasks and data
movement tasks. Also, we implemented the Dynamic Per-
colation proposed using the optimized computation task and
24 HTs. Their performance for different number of threads
is shown on Figure 11. Furthermore, the data movement
tasks where also optimized for the known on-chip block size
and the efficient transposition of matrix A required by the
computation tasks. As a result, only 8 HTs were needed,
increasing the performance due to the larger number of
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TUs available for computation. The maximum performance
provided by the dynamic percolation and the optimized com-
putation tasks and data movement tasks is 65.63GFLOPS
with matrices of 6336 × 6336 using 156 TUs: 82.02% of
the theoretical peak performance of C64. Also we provide
evidence of the power-efficiency of our implementation,
reaching 1.0 GFLOPS/W for this case.

Finally, the impact of the maximum number of HTs is
shown in Figure 12 for a matrix of size 5280 × 5280
using 156 TUs. Clearly, when the data movement tasks
are not optimized, more HTs are required. Otherwise, the
data movement task takes longer than its computational task
associated causing the computation to stall. In addition, if
the HTs increase too much, the bandwidth saturation will
decrease slightly the performance.

VI. RELATED WORK

Work that is directly related to this research has been
detailed in section IV. From the many-core architecture
side, static approaches have also been proposed for regular
applications on linear algebra and signal processing. These
applications have shown significant speedup but they are far
from the peak performance [6], [23]. Also, percolation has
been been studied and applied on irregular applications [27],
[28]. Other studies have been focused on semi-automatic
mechanisms for doing percolation at tile-level [13].

For other parallel architectures (e.g. CellBE, GPGPU,
Intel), extensive work has been done for the optimization
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of linear algebra applications exploiting patterns in the
algorithms but missing architectural parameters [20], [12].
Most of the implementations have used tuned versions of
specialized libraries/subroutines provided by the vendors
(e.g. GEMM/BLAS, CUBLAS, MKL) [7], [11], [3].

Other studies have been focused on models that capture
performance-relevant aspects of the hierarchical nature of
computer memory. Among those, we found the Uniform
Memory Hierarchy (UMH) model or the Parallel Memory
Hierarchy (PMH) model [1], [2], the increase of shared
resources inside a single chip have made unfeasible to model
many-cores with high accuracy using an scalable framework.

This publication does not study in deep the impact in
energy efficiency but parallel efforts made at University
of Delaware have shown an scalable and simple energy
consumption model for modern many-cores [15] and how
similar techniques can be used to improve energy effi-
ciency [14].

VII. CONCLUSIONS AND FUTURE WORK

We have analyzed some of the difficulties on modern
many-core architectures to reach high performance using
static techniques. To overcome those difficulties, we took
advantage of the fine-grain synchronization primitives of
many-cores to define percolation operations in order to
schedule data movement properly. In addition we have

fused percolation operations with dynamic scheduling into
a dynamic percolation approach.

We have shown that a carefully designed Dynamic Per-
colation using in-memory operations effectively reduces the
overhead during execution.

We report experimental results of our methods on a real
C64 chip achieving 70.0 and 65.6 GFLOPS for DMM
with operands in on-chip and off-chip memory respectively:
87.5% and 82% of the theoretical peak performance of 80
GFLOPs. Also, we provide evidence of the power efficiency
of our implementation, reaching 1.09 GFLOPS/W and 993
MFLOPS/W when matrices are on SRAM and DRAM
respectively.

Future work will extend percolation to multiple chips and
other applications using a dataflow inspired execution model
and runtime system [22].
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