
DEEP: An Iterative FPGA-based Many-Core Emulation
System for Chip Verification and Architecture Research

Juergen Ributzka, Yuhei Hayashi,
Guang R. Gao

University of Delaware
140 Evans Hall

Newark, DE 19716
{ributzka,hayashi,ggao}@capsl.udel.edu

Fei Chen
ARM Inc.

3711 S. Mopac Expressway
Building 1, Suite 400

Austin, TX 78746
fei.chen@arm.com

ABSTRACT
This paper introduces the Delaware Enhanced Emulation
Platform (DEEP) - a FPGA-based emulation system for
hardware/software co-verification of many-core chip archi-
tectures. This platform exhibits the following three charac-
teristics: fast compilation of logic designs, debugging sup-
port, and affordability. It is based on a novel iterative emu-
lation methodology for hardware design and verification.

We also conducted a logic design and integration of a new
architectural feature that provides Full/Empty bit fine-grain
synchronization for the IBM Cyclops-64 many-core architec-
ture and evaluated its performance against existing synchro-
nization constructs.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Measurement
techniques

General Terms
Design, Verification, Performance

1. INTRODUCTION
Currently, full-system verification still requires an armada

of computers or expensive specialized hardware [1, 4] to
achieve reasonable emulation speed. A cluster of computers
can be made easily available to a larger group of develop-
ers, but the overall emulation speed is still limited. On the
other hand, specialized hardware is much faster, but it is a
scarce resource. Faster and cheaper hardware emulation and
verification systems are needed to mitigate this problem.

The need for better and faster verification frameworks is
growing even stronger with the introduction of new execu-
tion models for massive many-core designs. These models
provide feedback to hardware architects about possible ad-
vantageous features. This results in a symbiotic relationship,
which requires hardware/software co-development method-
ologies. These new methodologies have caught the atten-
tion of many high profile research institutions, including
DARPA, which is funding a project with the main objec-
tive to explore these techniques [2]. Development of such
techniques would greatly benefit from better, faster and af-
fordable emulation systems.

Among the new many-core designs, we have the IBM
Cyclops-64 (C64) many-core architecture. The architecture
consists of 160 homogeneous processing elements called

Thread Units (TUs). These 160 TUs are connected via a
high speed crossbar interconnect and share 4.7 MiB of inter-
nal memory. There are no data caches on this architecture
- only Instruction-Caches (ICs). Moreover, the architecture
has support for hardware based barriers. Finally, all lev-
els of the memory hierarchy are fully software managed and
distributed across three different memory spaces: Scratch
Pad memory, the Global Interleaved SRAM and the off chip
DDR2 memory.

To test the C64 architecture’s hardware features and soft-
ware stack, a custom made FPGA-based emulation system
(DEEP) was created. The emulation system for the C64 ar-
chitecture was specifically designed and built for many-core
architecture emulation and verification. Its unique iterative
approach allows the emulation of huge many-core systems
with a limited set of FPGAs based on a methodology intro-
duced in [6].

The original work behind this paper has covered two dis-
tinct topics: many-core emulation methodologies and archi-
tectural research. However, due to the space limitation, this
short paper will mainly focus on the first topic. For a more
complete coverage of both topics please refer to [5].

The remainder of the paper is structured as following: Sec-
tion 2 explains the emulation system, its emulation method-
ology, and its debugging features. Section 3 evaluates the
implementation of fine-grain synchronization and provides
performance results compared to other synchronization con-
structs. Section 4 gives a overview of related work and Sec-
tion 5 concludes the paper.

2. DEEP: THE EMULATION SYSTEM
In this section we describe the hardware platform, the

emulation methodology and the debugging support of the
Delaware Enhanced Emulation Platform (DEEP). DEEP
has been developed in order to validate the C64 chip’s hard-
ware features and test its software stack. It can be ported to
emulate other many-core architectures too. The major ob-
jectives of DEEP are to support all design and test stages, to
realize good turn-around time for the early stages and high
emulation speed for the later stages of development, to do
the whole chip emulation as well as to provide an efficient
debugging environment.

2.1 DEEP Hardware Platform
The DEEP hardware platform is comprised of a host sys-

tem and a custom made system with a series of highly con-
nected FPGAs. Figure 1 shows the block diagram of DEEP.



Root Board

Processing Board

Host

Interface
(Cyclone 1C4)

User

Logic
(Stratix II 2S90)

Storage

Controller
(Cyclone II 2C35)

User

Logic
(Stratix II 2S90)

Storage

Controller
(Cyclone II 2C35)

SRAMDIMM

SRAMDIMM

Switching Board

Host

Interface
(Cyclone 1C4)

Switch
(Stratix II 2S90)

Switch
(Stratix II 2S90)

10

x 10 x 5

Host

Interface
(Stratix II 2S90)

Host

Interface
(Stratix II 2S90)

Ethernet

Daughter

Board

10

7 3 5

Figure 1: Block Diagram of DEEP: The figure shows
the tree-like connections between the FPGAs and
the different board types - root board, processing
boards, and switching boards.

16 FPGA boards are plugged into the backplane, which
provides not only power, but also the global clock (100
MHz) and interconnection to all FPGA boards. There are
three different type of FPGA boards: root board, process-
ing boards, and switching boards. The root board has two
Altera Stratix II 2S90 FPGAs and a daughter board for
the Ethernet connection to the host system. The Ethernet
daughter board has additional logic, which allows the remote
programming of all FPGAs in the system via Ethernet. The
FPGAs on the root board are used to implement the root
node of a tree. The remaining FPGAs in the system are con-
nected in a tree like fashion to the root board. This allows
the host system to communicate with all FPGAs. The pro-
cessing board has five FPGAs. One Cyclone 1C4 FPGA for
the tree node, two Stratix II 2S90 FPGAs for the user logic,
and two Cyclone II 2C35 FPGAs for interfacing logic to the
DIMMs. These additional FPGAs for the memory interface
are required to refresh the memory while reprogramming
the user logic in the other FPGAs. The switching board has
two Stratix II 2S90 FPGAs, which are used to implement
the switching logic for the emulation system. The process-
ing boards are connected via the backplane to the switching
boards. These connections are used during emulation to
pass data between the different processing boards. The tree
connection is only used by the host for communication with
the FPGAs. Overall, only 20 Stratix II 2S90 FPGAs can be
used for emulating user logic.

2.2 DEEP Emulation Methodology
In order to achieve its main objective, DEEP supports

two different modes: simulation mode and emulation mode.
The simulation mode is a logic processor based logic simu-
lation methodology. In this mode, the original logic design
is translated into logic programs. This means the logic de-
sign, which usually consists of a netlist of gates and memory
cells, is mapped to a series of logic instructions. Therefore,
the logic processors are able to simulate any logic design.
These instructions are executed on a large number of logic
processors on the processing FPGAs. Figure 2 shows the
translation of a logic design into a logic program. DEEP
can quickly generate logic programs from an original logic
design, because only a simple translation from a netlist to
an instruction stream is required. No synthesize is required,

Logic
Processor

Logic
Processor

Flip-flops / Memory

inputs

outputs

Logic
Processor

data
memory

lo
g

ic
p

ro
g

ra
m

instruction

memory

inputs

outputs

FFs

RAMs

temporary
signals

Logic Design Simulation Mode

A B C

E F

I J

LK

G H

D

A

B

C

D

E

F

G

H

I

J

K

L

Figure 2: Simulation Mode: User Logic Design to
Logic Program mapping. The logic primitives (A-
L) shown in the original logic design on the left are
translated into instructions for the logic processor
shown on the right.

because the logic processors do not change. For instance, the
C64 combinatorial logic design (around 43 million gates) can
be translated into logic programs within two minutes. Logic
programs generated from an original design are executed
on a huge number of logic processors (400 in DEEP). Each
processing FPGA has 20 logic processors. One instruction
queue is shared by all logic processors in one FPGA. There
are only 20 processing FPGAs, therefore at most 20 different
submodules in a logic design can be simulated in this system.
If one submodule has more than 20 instances, then multiple
processing FPGAs are utilized for it. The simulation mode
is also available on a general workstation, so logic simula-
tion can be done anywhere without the DEEP hardware,
although the simulation speed is much slower. In case of the
C64 design the average simulation speed of the whole chip is
around 110 cycles/second. We do not have any comparable
numbers for the software version on a workstation, because
we never simulated the whole chip in software. We only
simulated a subset of the C64 chip (only 10 Thread Units),
which is just a 16th of the whole design, with approximately
1 cycle/second.

On the other hand, the emulation mode design is based
on an iterative emulation methodology [6]. Since the whole
many-core architecture design cannot fit into a single FPGA
of DEEP (or any current available FPGA on the market),
the architectural design is separated into submodules. Even
though each submodule fits into one FPGA, a lot of FP-
GAs would be required to implement the entire chip in the
emulation system. In particular, the C64 chip would re-
quire 236 FPGAs to emulate the whole chip logic. Instead
of mapping each submodule to a different FPGA, the em-
ulation system adopts an iterative emulation approach (see
Figure 3). Combinatorial logic equivalent submodules are
implemented on only one (or a few FPGAs), and then iter-
atively utilized to emulate all instances of the submodule.
This emulation methodology drastically reduces the neces-
sary number of FPGAs. Each submodule’s FFs and internal
RAM blocks are isolated from the original logic design. The
content of the FFs and RAMs are independent of each sub-
module’s instance, so they must be stored separately. The
emulation system utilizes internal memories for FFs and ex-
ternal memories for RAM blocks, and only the combinato-
rial logic is implemented in the FPGA. The flow described
above is done by the DEEP software automatically for the
C64 architecture. The partitioning of the full logic design



Flip-flops / Memory

inputs

outputs

Logic Design

Input RAMs
INPUTs 0
INPUTs 1

INPUTs N

Output
RAMs

…

OUTPUTs 0
OUTPUTs 1

OUTPUTs N

…

State RAMs
FFs & Memory Blocks 0
FFs & Memory Blocks 1

FFs & Memory Blocks N

…

Figure 3: Emulation Mode: User Logic Design to
Iterative Emulation mapping. FFs and RAMs are
extracted from the original logic design on the left
and mapped to instance addressable memory blocks
in the FPGA. The combinatorial logic is used itera-
tively in the FPGA.

is currently done manually and other architectures would
require the same manual procedure of partitioning and as-
signing submodules to FPGAs. Because logic design needs
to be synthesized and mapped into FPGAs, it takes much
more preparation time than the simulation mode until the
logic design is ready to be emulated. Since the submodules
can be synthesize in parallel, the whole process takes around
2-3 hours for the C64 chip. However, after the logic design
is mapped into the FPGA, it works as real logic on a FPGA,
even though it is required to emulate the logic iteratively.
In case of the C64 design the average emulation speed of the
whole chip is around 80k cycles/second.

2.3 DEEP Debugging Support
At last we discuss the debugging support in DEEP, which

is available for simulation mode and emulation mode.
In simulation mode, there are two ways to obtain sig-

nals. If inputs, outputs and contents of FFs/RAM blocks of
a submodule need to be observed, the DEEP host can di-
rectly accesses the external memory, where the target data
is stored. For the other signals, additional processing is re-
quired, because all intermediate signals are in the local tem-
porary memory of a logic processor and may be overwritten.
Furthermore, they are also unreachable for the DEEP host.
Additional debugging control logic is required to perform
the following steps: First, the DEEP host sets a breakpoint
in the debugging special-purpose register of the logic proces-
sor. Second, the logic processor starts execution until the
program counter reaches the breakpoint. Third, the debug-
ging control unit issues several logic instructions to move the
value of the signal to the external memory of the FPGA.
Finally, the DEEP host loads the data from the external
memory. For this debugging feature, there are 16 special
purpose registers available. If more than 16 signals in one
submodule are necessary to be observed at the same time,
the DEEP host needs to repeat this process for every set of
16 signals. By utilizing both ways to obtain signals, it is pos-
sible to achieve 100% signal debugging coverage. Moreover,
not only simple signal tracing is possible, but also program
tracing is supported, when a processor is simulated.

In emulation mode debugging support is very useful to lo-
cate bugs in long running benchmarks. There are again two

ways to obtain signals in emulation mode. The first way is
the same as for the simulation mode. Input, outputs, FFs,
etc of a submodule can be directly accessed by the DEEP
host. Unfortunately, in this mode all combinatorial logic is
mapped into the FPGA, so it cannot be observed directly. A
software simulator on the DEEP host is used in conjunction
with the hardware emulator to obtain signals inside com-
binatorial logic. All the required content from the inputs,
FFs and memory blocks of a submodule is obtained by the
DEEP host and the resulting combinatorial signal is calcu-
lated by the simulator. Even though it is technically not
possible to observe all signals inside the FPGA, the missing
signal can still be simulated on the DEEP host to obtain full
signal debugging coverage. Of course also program tracing
is supported in emulation mode if a processor is emulated.

3. CASE STUDY
We used the DEEP platform to enhance the Cyclops-64

architecture with Full/Empty Bit support. In this section
we evaluate the performance benefits of our fine-grain syn-
chronization extension. In particular, we took a closer look
at a wavefront computation-style program. We created a
micro-benchmark, which resembles the data dependencies
of a wavefront computation. Since obeying these dependen-
cies are the critical factor of any wavefront computation, this
micro-benchmark should be able to give us an estimate on
the performance benefits of Full/Empty Bit support versus
traditional synchronization constructs.

Due to the dependence of an element on its previously
computed neighbors, parallel versions of the wavefront ker-
nel require synchronization constructs to ensure correctness.

We implemented the wavefront computation kernel in four
different versions. The different versions are Serial, Bar-
rier, Full/Empty Bit Busy-Wait, and Full/Empty Bit Sleep-
Wakeup. The Full/Empty Bit Busy-Wait version constantly
polls the memory location until the value has been written.
On the other side, the Full/Empty Bit Sleep-Wakeup ver-
sion only tries once to read the value and then goes to sleep.
The producer will wake up the consumer once the value is
available. All kernels were completely hand-coded and opti-
mized in assembly to allow for a fair comparison. We run the
benchmark on the emulation system for problem sizes start-
ing at 16x16 at increments of 16 up to the maximum sup-
ported problem size of 512x512 elements. For each problem
size we run the wavefront benchmark with different num-
bers of threads. Starting from one thread all the way up to
159 threads1 at increments of one. The numbers collected
were measured only for the kernel part of the application
and the speedup was calculated based on the results of the
serial version.

For the barrier version of the benchmark we achieved a
maximal speedup of 24x. Even though the barrier is very
efficient, because it has hardware support, the speedup of
the application is limited. This is due to the weakest link
in the chain, which is the slowest thread. All other threads
have to wait for the slowest thread before they can continue
doing useful work. Using barriers for these kind of work-
loads is not necessarily a good choice and dynamic schedul-
ing approaches have achieved better results. We are aware
of this, but we chose to demonstrate the barrier implementa-

1Only 159 threads can be used, because the OS micro kernel
is running on the first thread unit



tion for two important reasons. First, the barrier is a hard-
ware supported synchronization construct and we wanted to
compare different hardware supported synchronization con-
structs. Second, from a programing point of view the bar-
riers seems to be an easy and efficient construct, because
the work for each thread is the same. We wanted to show
that this thinking cannot be applied anymore to many-core
architectures and that congestion, bank conflicts, etc can
have unpredictable impacts on a threads execution.The Ful-
l/Empty bit versions of the benchmarks achieved much bet-
ter speedups of 60x and 50x respectively. We took a closer
look at both benchmarks by using performance counters. In
summary we can say both versions of the Full/Empty bit
implementation are not memory bound. The busy-wait ver-
sion has a synchronization failure rate of 150%. That means
every synchronizing load operation has to be repeated 1.5
times in average, because the data had not been written yet
by the producer. The sleep-wakeup on the other hand had
a failure rate of only 1-2%. Nevertheless, the busy-wait ap-
proach still achieved better speedups. The second approach
generates less memory operations and also saves power, but
the price is a longer synchronization delay, which hinders
parallelism and therefore performance.

4. RELATED WORK
There have been many logic verification technologies and

products developed in both academia and industry [7, 3].
These technologies have been used to address the many chal-
lenges in the logic verification processes.

The iterative emulation methodology, which is adopted in
the emulation mode of DEEP, was introduced by Dr. Sakane
et al. [6] in 2003. Their emulation system was implemented
into one Xilinx Virtex-II FPGA, because of the limited size
of the verification target. Moreover, there is no debugging
support.

ASIC based logic verification environments and emulation
systems have been developed from many Electrical Design
Automation (EDA) tool vendors. Mentor Graphics Veloce
platform and Cadence Palladimu system are good examples.
The Veloce platform [4] is an ASIC based logic verification
system developed by Mentor Graphics. This hardware accel-
erated logic simulation platform utilizes a custom designed
emulation chip that contains a programmable logic block
for the target logic and a fixed functional block. This fixed
functional block handles signal tracing and interconnecting
operations. The Palladium platforms [1] from Cadence pro-
vide simulation acceleration and in-circuit emulation in a
single system.

The RAMP [7] system developed at Berkeley is a FPGA-
based many-core emulation platform. This system deploys
Xilinx Virtex-II Pro FPGAs on 16-21 BEE2 boards to im-
plement a many-core system composed of 1000 plus cores.
The purpose of this project is to explore the architectural
design space for future many-core computer architectures
and enable early software development and debugging.

A more detailed collection and comparison of related work
is presented in [5].

5. CONCLUSIONS
This short paper presented our emulation platform DEEP

with its simulation mode, emulation mode, and debugging
features. A more detailed explanation of the emulation

methodologies and a full coverage of the fine-grain synchro-
nization architecture research can be found in [5].

We also presented a study on how to enhance a many-core
chip design with a novel architecture feature using the DEEP
framework. In this study, we used the frameworks extensive
debugging capabilities to isolate and fix several bugs in our
design. Finally, we found that by adding fine-grain synchro-
nization to the C64 design, we can get substantial perfor-
mance improvements (60x speedup versus 24x speedup) in
wavefront like applications.

We also observed a shortcoming of DEEP in the connec-
tion between the DEEP host system and the DEEP emula-
tion platform. The current connection uses gigabit Ethernet,
which it is unsuitable for tracing hundreds of cores. This re-
quires more research in compact parallel tracing formats and
better interconnects.

6. ACKNOWLEDGMENTS
Our utmost respect goes to Monty Denneau for creating

such a great architecture. This work would have not been
possible without the support by NSF (CNS-0509332, CSR-
0720531, CCF-0833166, CCF-0702244), and other govern-
ment sponsors.

7. REFERENCES
[1] Cadence. Incisive Palladium Series.

http://www.cadence.com.

[2] DARPA. Ubiquitous High Performance Computing.
https://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-
BAA-10-37/listing.html.

[3] J. Darringer, E. Davidson, D. J. Hathaway,
B. Koenemann, M. Lavin, J. K. Morrell, K. Rahmat,
W. Roesner, E. Schanzenbach, G. Tellez, and
L. Trevillyan. EDA in IBM: Past, Present, and Future.
IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, 22:1476–1497, 2000.

[4] M. Graphics. Veloce SoC Verification System.
http://www.mentor.com.

[5] J. Ributzka, Y. Hayashi, F. Chen, and G. Gao. CAPSL
Technical Memo 103: DEEP: An Iterative FPGA-based
Many-Core Emulation System for Chip Verification and
Architecture Research, December 2010.

[6] H. Sakane, L. Yakay, V. Karna, C. Leung, and G. Gao.
DIMES: An Iterative Emulation Platform for
Multiprocessor-System-on-Chip Designs. In 2003 IEEE
International Conference on Field-Programmable
Technology (FPT), 2003. Proceedings, pages 244–251,
2003.

[7] J. Wawrzynek, D. Patterson, M. Oskin, S. Lu,
C. Kozyrakis, J. Hoe, D. Chiou, and K. Asanovic.
RAMP: Research Accelerator for Multiple Processors.
IEEE Micro, 27:46–57, 2007.


