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Abstract

The designs of high-performance processor architec-
tures are moving toward the integration of a large num-
ber of multiple processing cores on a single chip. The
IBM Cyclops-64 (C64) is a petaflop supercomputer built on
multi-core system-on-a-chip technology. Each C64 chip em-
ploys a multistage pipelined crossbar switch as its on-chip
interconnection network to provide high bandwidth and low
latency communication between the 160 thread processing
cores, the on-chip SRAM memory banks, and other compo-
nents.

In this paper, we present a study of the architecture and
performance of the C64 on-chip interconnection network
through simulation. Our experimental results provide ob-
servations on the network behavior: (1) Dedicated chan-
nels can be created between any output port to input port of
the C64 crossbar with latency as low as 7 cycles. The C64
crossbar has the potential reach the full hardware band-
width, and exhibit a non-blocking behavior; (2) The C64
crossbar is a stable network; (3) The network logic design
appears to provide a reasonable opportunity for sharing the
channel bandwidth between traffic in either direction; (4)
A simple circular neighbor arbitration scheme can achieve
competitive performance level comparing to the complex
segmented LRU (Least Recently Used) matrix arbitration
scheme without losing the fairness. (5) Application-driven
benchmarks provide comparable results to synthetic work-
loads.

1 Introduction

The designs of high-performance processor architectures
are moving toward the integration of a large number of mul-

tiple processing cores on a single chip [14]. The perfor-
mance scalability of such chips requires sophisticated inter-
connection network architectures and their behavioral eval-
uation should begin in the logical design and verification
stage. In this paper, a study of the architecture and perfor-
mance of the interconnection network of the IBM Cyclops-
64 (C64) chip are presented.
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Figure 1. Cyclops-64 system Architecture.

The C64 system (Figure 1) is a petaflop supercom-
puter built on multi-core system-on-a-chip (SoC) technol-
ogy, based on a cellular architecture and expected to achieve
over one petaflop peak performance. A maximum configu-
ration of a C64 system consists of 13,824 C64 processing
nodes (1 million processors) connected by a 3D-mesh net-
work [9].

Each node is composed of a C64 chip, external DRAMs
and a small number of external modules. A C64 chip con-
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sists of up to 80 custom-designed 64-bit processors (each
consists of two thread processing cores), 16 shared instruc-
tion caches (I-caches), 160 on-chip embedded SRAM mem-
ory banks and 80 floating point units (FP). It is interesting
to note that there is no data cache on the chip. Instead, each
SRAM bank on the chip can be configured into two lev-
els: global interleaved memory banks (GM) which are uni-
formly addressable, and scratch pad memories (SP) that are
local to individual processors [4].

The C64 chip configuration used in this study integrates
75 processors on a single chip. Each processor contains
two thread units, one floating point unit and two 32KB
SRAM memory banks. Groups of five processors share one
I-Cache. Figure 2 shows the structure of the C64 chip.

The interconnection network embedded in the center of
each chip is a seven stage pipelined crossbar switch with
a large number of ports (96 x 96), which is much larger
than any published design we are aware for SoC architec-
ture. One primary motivation to employ a crossbar switch
in the design of C64 chip architecture was to provide a
uniform memory access model to significantly simplify the
programming inside such a large scale multiprocessor chip.
The ordering property of the crossbar was another valuable
property of our design. We ensure there is a unique path
from an input port to an output port and packets will be de-
livered in order.

The main challenges for the design of the on-chip inter-
connection network were the complication of the network
and the limitation of the die area. A popular concern of
crossbar switch is its quadratic cost in terms of chip area.
In the C64 Chip design, the bandwidth of the crossbar in-
creases linearly with the area, and quadratic with the num-
ber of ports. Besides, a moderate speed clock at 533MHz
employed on the C64 chip leaves plenty room to grow,
which is quite slow by today’s multi-ghz standards. Con-
sequently, with sophisticated architecture and engineering
design, the completed crossbar is only 1.6 mm high and a

little under 17 mm wide (27 mm2). It turns out that the
crossbar is just 6% of the die area (the whole chip is 21 x
22 = 462 mm2)!

To verify the performance of the design of the C64 cross-
bar switch in the logical and verification stage, two sim-
ulators were designed. An empirical analysis of the fully
pipelined C64 crossbar network was conducted. The perfor-
mance analysis was done under fixed channel width, node
size, and topology constraints. Different parameters, such
as workload types, traffic patterns, injection rates and arbi-
tration algorithms, were tested during the performance sim-
ulation.

From the performance analysis, we have observed the
following network behaviors: (1) The C64 on-chip crossbar
has the potential to reach the full hardware bandwidth, and
exhibit a non-blocking behavior1; (2) The C64 crossbar is
a stable network2; (3) The network logic design provides a
reasonable opportunity for sharing the channel bandwidth
between traffic in either direction; (4) Simple arbitration
schemes can achieve competitive performance level com-
paring to other more complicated schemes. (5) Application-
driven benchmarks provide results comparable to synthetic
workloads [18].

The experimental results and performance analysis have
helped the architects for verifying the performance of the
C64 chip interconnection architecture and conducted that
a simple circular neighbor arbitration scheme instead of a
complex segmented matrix arbitration scheme is chosen for
the final design. This topic will be explored in sections 3
and 5 of this paper.

2 Background

A C64 chip consists of many simple, general purpose
RISC style processor cores, shared I-caches, and multi-
ple banks of embedded memory connected via a high-
performance on-chip crossbar switch. A C64 system com-
posed of thousands of C64 processors can achieve over one
petaflop peak performance [8].

Verification and testing is a significant portion of the de-
sign cycle for chip performance analysis. For a pipelined
crossbar network, verification should be conducted for two
reasons: finding unforeseen phenomena that may happen
in the interconnection (such as deadlocks and logic errors),
and verifying the performance of the on-chip interface ar-
chitecture [4].

In this paper, we are interested in the following questions
regarding the C64 crossbar switch architecture:

• Will the C64 crossbar switch deliver the full pipelined

1Any two free ports can be connected, regardless of the settings in the
switch

2The throughput does not degrade beyond the saturation point [5]



bandwidth if the communication traffic does not en-
counter network contention (i.e. non-blocking)?

• Can the C64 crossbar switch maintain its throughput
when the network reaches its saturation (i.e. stable)?

• Can the C64 virtual channel mechanism be effectively
exploited by the sharing between the forward and
backward traffic?

• Can simple hardware arbitration mechanisms be used
to achieve reasonable performance gains?

The rest of this paper will provide answers to these ques-
tions.

3 Architecture of the C64 Crossbar

3.1 An Overview of the C64 Crossbar
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Figure 3. A block diagram of C64 crossbar

A crossbar switch has a physical element for every pos-
sible connection between ports, where every input has a
cross-point with every output [3, 5]. The C64 crossbar is a
96 x 96 buffered crossbar switch in 7 pipelined stages with
input/output queues. It is used to provide communication
between the on-chip processors, SDRAM memory banks
and I-Caches as well as off-chip DRAM memories, I/O de-
vices, A-switches, and host interfaces [12, 16]. It possesses
96 bi-directional routing ports.

Figure 3 is a block diagram of the C64 crossbar switch
where each routing port is presented as a small block. Each
port of the crossbar can connect with the 95 ports and it-
self via its user interface. The user interface consists of an

incoming interface unit (TUnitA) and an outgoing interface
unit (TUnitB). Each port owns a source control unit (Sr-
cCtl), a target control unit (TarCtl), a 96-to-1 multiplexer
(Mux96), a data FIFO (FifoD7), and some registers (not
shown in this figure). In fact, the FifoD7 and their cor-
responding Mux96 in each port are combined into a C64
crossbar core providing a data path for the crossbar (See
Figure 4). The FifoD7 employs two groups of data buffers
store data for two virtual channels individually (not shown
in the figure). A buffer group has 7 buffers with 92 bits
each.

The packets delivered to the destinations through the 7
pipelined stages of the crossbar have a 95-bit fixed length.
In principle, the minimum latency of the crossbar is 7 cycles
assuming one cycle for each stage. A full hardware band-
width of the crossbar is 96 x 95 = 9120 bits/cycle3. The
packets are routed through the C64 crossbar by the SrcCtl of
the source port and the TarCtl of the destination port. Flow
control of the crossbar is implemented using a token pro-
tocol. Furthermore, the C64 crossbar provides two virtual
channels for forwarded traffic (from the source processors
to other destinations), and returned traffic (from other des-
tinations to these processors, in case of a load operation),
respectively. It also supports block transfers.

The C64 crossbar is designed to provide a non-blocking,
stable interconnection network supporting efficient commu-
nication between components on the C64 chip. In the re-
maining part of this section, we will discuss the schemes
used to support this approach, such as the flow control,
routing scheme, virtual channels as well as the arbitration
scheme of the crossbar.

3.2 Flow Control and Routing Scheme

Figure 4 presents a logic channel between connected
source port i and destination port j, which is further divided
into a control path and a data path. A data path between port
i and port j is constructed by the SrcCtl of port i (SrcCtl i)
and the TarCtl of port j (TarCtl j). A control path is built
by the FifoD7 of port i (FifoD7 i) and the Mux96 of port j
(Mux96 j). The routing processes inside the C64 crossbar
are controlled by the SrcCtls and TarCtls.

Each single SrcCtl consists of a data FIFO (Fifo C7),
a small amount of registers, and some control information
generators (not shown in figure). The functions of the Sr-
cCtl are: (1) to generate control information which deter-
mines the operation mode (read/write) for the FifoD7s in
the crossbar core; (2) to manage the data buffers inside each
FifoD7 for input payloads; (3) to send requests to the TarCtl
of the destination ports; (4) to deliver the chosen payloads
to the Mux96s; and (5) to forward the control header to the
TarCtl of the destination ports.

3Fixed 95-bit packets are transferred via each source-destination pair
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Figure 4. A Logic Channel of C64

Each TarCtl consists of an arbiter, several registers and
control information generators (not shown in figure). The
functions of a TarCtl are: (1) to generate control informa-
tion to build a data path between the source port and the
destination port; (2) to select a winner from all requested
source ports; (3) to send back a token to the winning source
port; and (4) to forward indication flags to the destination
port.

The TarCtl at the destination port is used to choose a win-
ner from all requested source ports competed for the same
destination. It builds a data path between the source port
and the target port. The SrcCtl and the TarCtl work together
to route packets from sources to destinations through the
7 stage pipelined crossbar. The stages of the crossbar are
divided by their functions. At each stage, the crossbar per-
forms a specific function to provide a parallel communica-
tion via the crossbar.

Flow control of the C64 crossbar is realized by a token
protocol, which is implemented by a 2-bit token and a token
counter inside the interface of each port (not shown in the
Figure). In this design, the input token counter is initialized
to 7. Once a packet is injected into a port, the counter of its
input token is decremented. Whenever a packet is delivered
to its destination, an acknowledge token is fed back to the
source port and the counter of its input token is incremented.
Whenever the token counter of a port reaches 0, no further
packets are allowed to be injected into this port.

Obviously, the C64 crossbar is a strictly non-blocking
network [5] for both unicast and multicast traffic because
any available output of the crossbar can be connected to
any input by simply setting the output’s multiplexer appro-
priately. At the same time, the crossbar should be a stable
network. Many schemes, such as the buffer group scheme
at each data FIFO, the injection and ejection queues at each
port (See Figure 6), and the token flow control scheme are
used to support this approach. They make it possible for the
crossbar to continue delivering packets beyond the satura-
tion point.

3.3 Arbitration Scheme

The C64 crossbar is a 96-way crossbar with 96 bi-
direction routing ports. Each port needs a 96-to-1 arbiter
for the flow control. Due to the large number of the arbitra-
tion circuits at the on-chip system, the fairness, speed, cost
and memory space will play a very important role in the ar-
chitecture design of the entire system. With this concern, a
complicate segmented matrix arbiter was designed for the
C64 on-chip crossbar.
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Figure 5. Segmented Matrix Arbiter

The arbiter is composed of 31 matrices segmented into
three levels: level 1 with twenty-four 4 x 1 matrix arbiters,
level 2 with six 4 x 1 matrix arbiters, level 3 with one 6 x
1 matrix arbiter (See Figure 5). All of the arbiters are orga-
nized hierarchically: outputs of level one are the inputs of
level two, outputs of level two are the inputs of level three
and the output of level three produces the request winner.
During each cycle, only one winner can be selected at each
port so that the maximum number of winners is 96 per cy-
cle.

Comparing with a pure matrix scheme, the significant
achievement of this design is the great savings in memory
space, which is critical in an on-chip memory scheme. Gen-
erally, for each matrix arbiter with n inputs, n x (n - 1) / 2
bits are required to store the arbitration state. At the 96
arbiters, the required space would be 96 x 96 x 95 / 2 =



437760 bits (430K bits). Whereas, in a 96 segmented ma-
trix arbiter, the required space would be 96 x (30 x (4 x 3 /
2) + 6 x 5 / 2) = 18720 bits (18K bits). Using a segmented
arbiter, 412K bits can be saved for each chip and a great
deal of space can be saved for an entire C64 system.

However, there still existed some questions about the
segmented matrix algorithm:

• Does the segment affect its performance and fairness?

• Does it perform competitively compared with other
common arbitration schemes?

Our simulation results and performance analysis suc-
cessfully answered the questions and conducted the archi-
tects to use a simple circular arbiter to replace the complex
segmented matrix arbiter (See section 5).

3.4 Virtual Channels

In a C64 chip, each ports of the crossbar switch are
shared between a processor and its respective memory bank
(See Figure 6).
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For full and fair utilization of crossbar bandwidth, a bi-
directional mechanism called virtual channeling is provided
to allocate bandwidth both for forward and backward traf-
fic inside the crossbar. This scheme avoids traffic being
blocked by a long block transfer in the other direction at the
same port. If blocking occurs, an unpredictable delay will
occur. At this design, two different packet classes, class 0
and class 1 are used to represent the forward and return data
and types respectively. Both virtual channels share the same
wires but each class has its own internal storage inside the
pipeline stages, which ensure that the two virtual channels
of the same path can transfer bi-directional data in parallel.

4 Experimental Framework

In this section, we introduce an experimental simulation
platform of the C64 used in our performance study.

4.1 Simulation Platform of the C64
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Figure 7. A Simulation Platform of the C64

As shown in Fig 7, the simulation platform consists of
user applications (multithreaded benchmarks), a C64 tool-
chain, and simulators. The C64 tool-chain integrates GNU
CC, an assembler, a linker, and libraries which support C64
instruction set architecture. It provides a basic platform for
early system software development and performance evelu-
ation of the C64 system. The latency accurate simulators are
designed to build software models for the C64 crossbar as
well as other components on the C64 chip. With an accurate
timing model, these simulators are sufficient for capturing,
verifying and analyzing the performance characteristics of
the multi-core on-chip architecture and were used at the de-
sign phase.

4.2 Simulators

The simulators, Csim crossbar and LAST, are used to
evaluate the efficiency of the hardware design and examine
the new multi-core on-chip architecture. These simulators
model the 96-port crossbar switch (the crucial part of the
multi-core on-chip architecture), cycle accurately at the gate
level, but model other parts (i.e the processors and memory
banks, etc) at a functional level. This technique balances
the simulation accuracy and speed. It provides a testbed
for early performance analysis of the cellular architectures.
Figure 8 shows several common parts inside both simula-
tors for the performance testing. Input terminals provide
different traffic and synchronization information by gener-
ating network parameters, packets and control information.
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Figure 8. The C64 Crossbar Simulator

During simulation, incoming packets with particular distri-
bution are generated in each input terminal and injected into
the crossbar at a specific injection rate. The traffic pattern
determines the target address inside each packet. Crossbar
logic is a gate level cycle accurate simulator. It implements
the communication between each source-destination pair on
the crossbar. Output terminals are used to collect and cal-
culate data, detect communication errors, and store test re-
sults. Finally, the data in various counters are analyzed and
the performance results are reported.

These simulations played a very important role in the
logic design process of the interconnection network of the
C64 chip. For example, the simulator has evaluated and
reported the efficiency of the hardware design under differ-
ent arbitration schemes. Based on performance analysis of
the test results, a simple circular arbiter scheme was cho-
sen in the final C64 crossbar switch design instead of the
segmented matrix arbiter. The latter is much more compli-
cated than the former - see sections 3 and 5). The simple
design has been shown not only to meet the cycle time re-
quirements but also with similar fairness. Moreover, it is
much easier to understand and debug.

5 Results

In this section, we present the simulation results of the
C64 crossbar. Section 5.1 summarizes primary results and
our observations. Section 5.2 analyzes latency of the C64
crossbar. Section 5.3 analyzes throughput of the C64 cross-
bar. Section 5.4 verifies the virtual channel scheme with
micro-benchmarks and section 5.5 compares results from
different arbitration schemes.

5.1 A Summary of Primary Results

In this research, we use both synthetic workloads and
application-driven workloads to examine the interconnec-
tion network of the C64 on-chip architecture. The per-
formance metrics, latency and throughput, are plotted as
a function of network parameters, such as traffic patterns,
virtual channel schemes on path, arbitration schemes, and
injection rate. Our experimental results show that:

Observation 1 (See Section 5.2): Dedicated channels
can be created between any output port to input port of the
C64 crossbar with latency as low as 7 cycles. The C64
crossbar can achieve the full hardware bandwidth - i.e. ex-
hibiting a non-blocking behavior [5].

Observation 2 (See Section 5.3): The C64 crossbar can
maintain its throughput without any degradation even when
the traffic load is beyond the saturation point exhibiting sta-
ble network behavior [5].

Observation 3 (See Section 5.4): Although the forward
and backward traffic shares the same channel, the network
logic design provides a reasonable opportunity for sharing
the channel bandwidth between traffic in either direction.
This is important for not giving a high priority only to the
forward traffic because the load operations will generate re-
turn values (resulting in traffics in the reverse direction).

Observation 4 (See Section 5.5): Simple arbitration
schemes can achieve the same or better performance gain
than a complex segmented matrix arbitration scheme with-
out losing the fairness.

Observation 5 (See Section 5.2 and 5.4): Application-
driven benchmarks provide results comparable to synthetic
workloads and constitute great metrics for verifying the de-
sign of the system architecture and analyzing performance
behavior of the entire system.

5.2 Latency of the C64 Crossbar

Experimental results show that for the permutation spa-
tial distributed traffic, the C64 crossbar has zero contention
and both of its minimum and maximum latencies are al-
ways 7 cycles (See Figure 9), regardless of the injection
rate. The results confirm that the C64 crossbar is a strictly
non-blocking circuit-switched network because the permu-
tation of the inputs and outputs can be forwarded without
any conflict [5] and it requests no rearrangement for setting
up dedicated paths between unused inputs and unused out-
puts.

The experimental results also present that without con-
flict in the destination port, the crossbar can be fully
pipelined and reach the full hardware bandwidth. Its overall
latency is caused only by the 7 pipeline stages of the C64
crossbar under our test conditions.
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For uniform random traffic, because of contention, the
latency of the C64 crossbar increases toward infinite at the
saturation point with about 0.6 of the injection rate.

In general, the most accurate way to measure the perfor-
mance of a network is to use application-driven workloads,
which generate sequences of messages applied to the net-
work directly from the intended application [5].

In our experiment, LAST simulator makes it possible to
generate application-driven workloads and to verify the ob-
servations we got from synthetic workloads. A set of multi-
threaded benchmarks were used to test the latency, such as
hello-world, heat-condition, laplace, matrix-multiply, etc.
Their average latency is listed in table 1.

Table 1. Average Latency of Benchmarks
Application Name Average Latency

(Cycles)
hello-world 7.036
matrix-multiply 21.590
heat-conduction 46.391
laplace 59.192

Table 1 show that most of the average latencies of tested
application-driven benchmarks are much bigger than 7 cy-
cles, the minimum latency of the C64 crossbar. It depends
on the number of packets and traffic distribution generated
by the LAST simulator. At the hello-world benchmark, only
2360 forward packets are generated and almost evenly dis-
patched to 77 of the 96 ports. So the possibility of con-
tention is very low and the average latency of hello-world
is very close to the minimum average latency of the C64
crossbar. However, in matrix-multiply benchmark, totally
2986233 forward packets are generated. However 2638187
of them, about 88

5.3 Throughput of the C64 Crossbar

The throughput behavior of a network beyond satura-
tion point characterizes its stability [5]. In our experiments,
throughput is measured at each source-destination pair and
a modeling source queue is used to accurately simulate the
injection rate without the effect of saturation. Figure 10
shows throughput results tested by the same workloads and
traffic patterns as above.
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Figure 10 shows under permutation traffic, the through-
put increases linearly as the injection rate because there is
no contention. When contention exists under random traf-
fic, the throughput of the C64 crossbar increases as the in-
jection rate increases until the saturation point is reached,
which is about 0.6. Beyond saturation point, the through-
put of the C64 crossbar does not degrade as the injection
rate increases further. It confirms that the C64 crossbar is a
stable network.

In order to verify the synthetic workload results with
application-driven workloads, a set of micro benchmarks
was designed. In this benchmark, a number of slave threads
are created by the master thread. All threads write data to
the same array located in the memory bank of port 0. The
program is compiled by the C64 tool chain and executed in
LAST simulator, which generates application-driven work-
loads for the crossbar. Test results (Table 2) show a through-
put comparable to the synthetic workloads.

5.4 Forward and Backward Traffic

In Section 3.5, we described how each port of the cross-
bar has virtual channels of class 0 and class 1 to handle both
forward traffic and backward traffic. They are also able to
execute in parallel.

To verify the advantage of the virtual channels, a multi-
thread micro benchmark was designed and the LAST sim-



Table 2. Results of A Micro-Benchmark
Thread Execution Time Received Throughput
Number (cycles) Packets

2 21979 3986 0.182
10 35970 9803 0.273
20 44945 15909 0.355
40 63324 28345 0.448
60 82036 40782 0.498
80 98762 53143 0.539

100 118721 65632 0.553
120 136291 78075 0.573
150 162688 95944 0.590

ulator was used to simulate all the chip logic and generate
application-driven workloads for the crossbar switch. In the
benchmark, two threads from different processors are as-
signed to execute two loops. In the first test, both loops
keep writing data to the same global array located at mem-
ory bank 0 of port 0. In this situation both loops are trans-
ferring forward traffic. In the second test, we use one loop
to write and the other to read at the same time to the same
array. In this case, both forward and backward traffic are
created at the same port time. The results show that both
cases have similar performance behaviors.

5.5 Arbitration Schemes

To study the performance behavior of different arbitra-
tion schemes, five of them are simulated: pure LRU matrix
(PLRU)4 [5], segmented LRU matrix arbitration schemes
(SLRU), uniform random scheme (RAND)5, circular neigh-
bors scheme (CIRC)6, and fixed priority scheme (WORS)7.
Figure 11 and 12 show the compared results. The fixed
priority scheme is the worst case.

The figures show that the fixed priority arbitration
scheme has the worst performance; circular neighbor
scheme can achieve a little bit better performance gain over
others without losing the fairness; all other three schemes
present very similar performance behaviors under uniform
random traffic which uniformly and randomly generates
packets and chooses destinations.

There are two reasons that could explain why all of four
of the arbitration algorithms have similar performance. Ei-
ther they all are fair arbitration schemes or there is a low
contention probability for a random traffic in the network.

4Implement a least recently severed priority at a matrix scheme
5Choose winner uniform randomly from all requests
6Virtually align the ports in a circle and Choose the winner from the

next request port clockwise or counterclockwise to the port of previous
winner

7Set port 0 to the highest priority and port 95 to the lowest. All others
are in between, respectively
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Let us define, P0 as the probability of getting no packet,
P1 as the probability of getting only one packet at the same
time, n as the input port number and r is the injection rate.
Then we have:

P0 = (1 − r

n
)n (1)

P1 = r (1 − r

n
)n−1 (2)

Pcontention = 1 − P1 − P0 (3)

= 1 − r (1 − r

n
)n−1 − (1 − r

n
)n

We know n = 96 and r = 0 ∼ 1 so that the contention
probability is about 12% at r = 0.6 and it is about 27% at
r = 1.0. It shows that there is at most about one contention
every four packets at each port and there is no remarkable
difference among the four arbitration schemes.



Our experimental results and performance analysis
demonstrated that a simple arbitration scheme can achieve
the same or better performance gain over the complex and
expensive segmented LRU matrix scheme. It inspired ques-
tions about the original logical design of the segmented ma-
trix arbiter of the C64 crossbar. Obviously a simple arbitra-
tion scheme, like circular neighbor arbiter, is much more
cost efficient, easier to understand and design, and more
space efficient. In a circular scheme, the storage size (the
number of latch bits) is linear with the number of ports.

Consequently, a simple circular neighbor arbiter is ap-
plied to the hardware design of the C64 crossbar switch. It
has been proved that the new design can not only make the
cycle time but also is fairer.

6 Related work

Although there are a strong trend moving toward in-
tegration of multi-core processors on a single chip, there
has been few publications of on-chip interconnection de-
sign and performance studies of large-scale multiprocessor-
on-a-chip technology such as the C64 chip architecture re-
ported in this paper.

A number of microprocessor chip vendors, leading by
Intel, AMD and others, have chip design (some already be-
gin appear in the market) that employ a small number of
cores: i.e dual-cores, four cores, etc. However, they usu-
ally a very different architecture model by integrating the
cache-based SMP architecture on a single chip. There are
also a number of work on chip multiprocessors on a big-
ger scale such as Freescale multi-core programmable DSP
(from Freescale Semiconductor, Inc [1]), picoArray (from
picoChip Designs Ltd. [11]), etc., but we do not aware of
any publications on the performance analysis of their inter-
connection network design in the scope of this paper.

There have been some research work on interconnection
network under multiprocessor SoC architectures, such as
the intra-chip switch [2], bus-based architecture [17], and
crossbar-based architecture [13]. Some performance stud-
ies of interconnection networks for multi-core SoC architec-
tures can be found in [13, 14, 17]. For example, Rekesh and
his colleagues presented their study about the area, power,
performance and designs issues for the on-chip interconnec-
tions based on a hypothetical chip multiprocessor [14].

In the past, crossbar switch network has been studied
by a number of researchers including Franklin [10] and
Mudge [15].

In the context of the C64 architecture, there are a number
of performance studies reported [4, 6, 7, 8, 19]. However,
these studies are not specific to the performance aspects of
the C64 crossbar switch network as interested in this paper.

7 Conclusion

This paper presents the performance evaluation of the
interconnection network of the IBM C64 multi-core archi-
tecture. These results show that the architecture of cross-
bar has the potential to deliver full pipelined bandwidth and
exhibit non-blocking and stable behavior under certain traf-
fic patterns. The virtual channel mechanism can efficiently
balance traffic in either direction by multiplexing between
the forward and backward traffic. This study shows, except
the fixed priority arbitration scheme, all four others demon-
strated very similar performance. Our performance analy-
sis for arbitration schemes has inspired the architects of the
C64 on-chip interconnection network to use a simple cir-
cular arbitration scheme to replace the complex segmented
matrix scheme in the hardware design. In fact, it has been
proved that this replacement not only achieves the required
time cycle and performance but also reduces the complex-
ity, cost and storage space. The results from application-
driven workloads contributed a useful metric for verifying
the design of the system architecture and analyzing the per-
formance.

In addition to verification, the network of SoC for high
performance computing should be analyzed by characteriz-
ing the architecture model, network interconnections, and
overall system performance. The C64 crossbar switch ar-
chitecture was simulated by the processing of comparing
and analyzing the simulation results, and precisely present-
ing the observations based on both synthetic workload and
application-driven workload distribution.
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