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Abstract The Fresh Breeze memory model and sys-

tem architecture is proposed as an approach to achiev-

ing significant improvements by supporting fine-grain

management of memory and processing resources and

utilizing a global shared name space for all processors

and computation tasks. Scheduling of tasks and stor-

age allocation are done by hardware realizations, elim-

inating nearly all operating system execution cycles for

data access, task scheduling and security. In particular,

the Fresh Breeze memory model uses trees of fixed-size

chunks of memory to represent all data objects.

The main contribution of this paper includes: (1) a

programming API for the Fresh Breeze memory model

on a modern many-core architecture; (2) an experimen-

tal implementation of the API through simulation by

using the FAST simulator for the Cyclops 64 many-

core chip; (3) simulation results that demonstrate that

(a) Fine-grain hardware-implemented resource manage-

ment mechanisms can support massive parallelism and

high processor utilization through the latency-hiding

properties of multi-tasking; and (b) hardware imple-

Jack B. Dennis
Stata Center, MIT, Room 32-G868, 32 Vassar Street, Cam-
bridge, MA 02139
Tel.: +1-(617)253-6856
Fax: +1-(617)253-6652
E-mail: dennis@csail.mit.edu

Guang R. Gao
140 Evans Hall, University of Delaware, Newark, DE 19716
Tel.: +1-(302)831-8218
Fax: +1-(302)831-4316
E-mail: ggao@capsl.udel.edu

Xiao X. Meng
140 Evans Hall, University of Delaware, Newark, DE 19716
Tel.: +1-(302)831-6534
Fax: +1-(302)831-4316
E-mail: meng@capsl.udel.edu

mentation of a work stealing scheme incorporated in

our simulation can effectively distribute tasks over the

processors of a many-core parallel computer.
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1 Introduction

The Fresh Breeze memory model and system architec-

ture [1, 2] is proposed to provide a system-wide one-

level store supporting fine-grain resource management

of processing and memory resources that is compliant

with the capability model for implementing privacy and

security [3–5]. In the Fresh Breeze vision, Figure 1, the
entire memory hierarchy is treated as a unified one-

level store, from processor cache memories through the

main memory and on to the disk storage units. A sin-

gle naming scheme is used throughout the hierarchy,

a handle uniquely identifies a fixed-size chunk of pro-

gram or data. Memory allocation and data transfer is

performed entirely by hardware mechanisms so there is

zero involvement of operating system software in data

access and management.

The handles of the Fresh Breeze memory model are

equivalent to capabilities [3–6], providing a basis for re-

alizing advanced security and privacy properties in a

Fresh Breeze system.

The Fresh Breeze vision also includes hardware im-

plementation of activity scheduling, which is simplified

by use of a memory model that provides a uniform view

of memory throughout all jobs and processors of a mas-

sively parallel computer system. The combination of the

chunk-based memory model and hardware for fine-grain

processor switching will provide an ability for modular
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composition of parallel programs well beyond what is

possible with any existing computer system.

The main contribution of this paper includes:

1. A programming API for the Fresh Breeze memory

model on a modern many-core architecture.

2. An experimental implementation of the API through

simulation by using the FAST simulator for the Cy-

clops 64 many-core chip. It is a real chip in pro-

duction use since 2008, and the performance of the

FAST simulator has been calibrated against the real

chip through various measurements under a collab-

oration between the chip design team at IBM and

the system software team at ETI.

3. Simulation results that demonstrate that (a) Fine-

grain hardware-implemented resource management

mechanisms can support massive parallelism and

high processor utilization through the latency-hiding

properties of multi-tasking; and (b) hardware imple-

mentation of a work stealing scheme incorporated in

our simulation can effectively distribute tasks over

the processors of a many-core parallel computer.

Synopsis: In Section 2 the Fresh Breeze memory

model is presented. Section 3 describes the program-

ming API of the Fresh Breeze memory model. A vision

of future computer system organization utilizing Fresh

Breeze principles is provided in Section 4 and discussed.

Sections 5 through 7 describe the experimental imple-

mentation of the Fresh Breeze API using the Cyclops

64 simulation software. Section 8 presents results and a

discussion of their significance.

2 The Fresh Breeze Memory Model

In the Fresh Breeze Memory Model [3][20] information

objects and data structures are represented using fixed

size chunks, which are 128 bytes in the present design.

Each chunk has a unique 64-bit identifier, a capability,

that serves to locate the chunk within the storage sys-

tem, and is a globally valid reference or handle to the

chunk. Each chunk can then hold up to 16 elements that

are either a 64-bit data or handle. A collection of chunks

organized as a directed acyclic graph (DAG) can repre-

sent structured information as illustrated in Figure 1.

For example, a three-level tree of chunks could repre-

sent an array of 16 * 16 * 16 elements. Data objects

and data structures may be represented by unbounded

trees of chunks.

The Fresh Breeze memory model is a write-once

model meaning that chunks may be created and written

by a user of the memory model, but access to a chunk

is not permitted for more than one computing activity

(task) until it is rendered read-only. The life-cycle of a

Fig. 1: Data objects as trees of chunks.

chunk may be summarized as follows: (1) A chunk is

acquired by a producer task from the memory system;

(2) The chunk is then written and sealed by the pro-

ducer task; (3) Once sealed, the chunk is shared with

consumer tasks; (4) When usage of the chunk becomes

low, it will be evicted from higher levels of the memory

hierarchy until it only resides in the lowest level; (5) It

is deleted once no references to the chunk exist.

One benefit of a write-once memory model is that

cache memories may be used without coherency issues:

Several computing tasks running in separate parts of a

system may access data with no concern that it might

be stale. Adopting the write-once property leads to a

functional view of memory: A computing step involves

accessing existing data values and creating fresh mem-

ory chunks to receive results. To work effectively, very

efficient mechanisms for allocating memory and collect-

ing chunks that no longer contain accessible data are

required. Use of a fixed-size unit of memory allocation

and the write-once principle makes this feasible. It also

permits use of low-overhead reference counts to identify

garbage chunks for reclaiming their memory.

The Fresh Breeze memory model provides a global

addressing environment, a virtual one-level store, shared

by all user jobs and all processors of a many-core com-

puting system. It can extend to the entirety of on-

line storage, replacing the separate access to files and

databases of conventional systems.

3 API of the Fresh Breeze Memory Model

To map and demonstrate the fresh breeze memory model

on a modern many-core chip architecture and systems,

we have proposed and designed an instruction level ap-

plication programming interface (API). It expresses the

program execution concurrency [7] in a way similar to

the spawn/join model of Cilk [8] parallel programming.
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Fig. 2: Fresh Breeze parallelism using Spawn and Join.

The basic unit of parallelism is the task, which is the

activity of performing a single execution of a function

instantiation, corresponding typically to a single call

of a Java method. As shown in Figure 2 a task may

spawn one or more worker tasks executing independent

instances of the same or different functions. Worker

tasks may read data objects (scalar values or capa-

bilities) from their parent task, and each worker task

contributes the results of its activity to the parent task

using a join mechanism [7]. Through repeated use of

this scheme, a program can generate an arbitrary hi-

erarchy of concurrent tasks corresponding to available

parallelism in the computation being performed. The

spawn/join mechanism is implemented by special ma-

chine level instructions of the Fresh Breeze API.

To illustrate, consider the dot product computation

which is the focus of the experiments reported in this

paper. The complete computation consists of construct-

ing two vectors and then computing their dot product.

Straightforward code for this computation may be writ-

ten as follows:

vector BuildVector (long length, long seed) {
long[] vector = new long[length];

for (int i = 0; i < length; i++)

vector [i] = generate (length, seed);

return vector;

}
long DotProduct (

long[] vector a,

long[] vector b,

long length) {
long sum = 0;

for (int i = 0; i < length; i++)

sum += vector a[i] * vector b[i];

return sum;

}
void main () {

long length = N;

long[] vector a = BuildVector (length, seed a);

long[] vector b = BuildVector (length, seed b);

long result = DotProduct (

vector a, vector b, length);

}

For execution by a Fresh Breeze computer, this code

will be compiled into machine code that uses the chunk-

based memory model and instructions for spawning and

joining tasks. A pseudo-code version of the Fresh Breeze

machine code for the DotProduct method of the Fun-

Java program given above follows. The handle data type

is used for the capability codes of chunks.

long DotProductMain (

handle vector a,

handle vector b,

long length) {
// Calculate tree size

long tree size = ... ;

DotProduct (vector a, vector b, length, tree size);

return result;

}
void DotProduct (

handle vector a,

handle vector b,

long length),

long tree size) {
chunk chunk a = chunk read (vector a);

chunk chunk b = chunk read (vector b);

if (tree size > CHUNK SIZE) {
// Process internal nodes

chunk join ticket =

join init (count, DotProductDone, count);

for (int idx = 0; idx < count; idx++) {
// Calculate node size and subtree size

node size = ... ;

tree size = ... ;

spawn one (idx, DotProduct (

chunk a[idx], chunk b[idx], size, tree size) );

} exit ();

} else {
// Process a leaf node

long sum = 0;

for (int idx = 0; idx < count, idx++ ) {
sum += chunk a[idx] * chunk a[idx];

}
join update (sum);

}
}
void DotProductDone (int count) {

handle data = join fetch ();

chunk join data = chunk read [idx];
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Fig. 3: Vision of a massively parallel Fresh Breeze sys-

tem.

long sum = 0;

for (int idx = 0; idx < count; idx++) {
sum += join data [idx];

}
join update (sum);

}

The phrases spawn init, spawn one, join fetch

and join update are the special Fresh Breeze instruc-

tions to support concurrency. The instruction spawn init

creates a join ticket that holds a join counter and the

name of a function that defines the task for execution

by a worker; spawn one creates a new task for exe-

cution with the specified index; join fetch is used af-

ter a join chunk has been filled by worker tasks us-

ing the join update instruction. It provides the han-

dle of the (now filled) join data chunk. Execution of a

join update causes a worker task to quit, turning the

processor to other tasks.

4 Computer System Structure and the

Memory Hierarchy

The envisioned organization of a Fresh Breeze computer

system is illustrated in Figure 3. The main components

are a multitude of many-core processing chips coupled

to a multi-level off-chip storage system. Each many-core

processing chip uses processor cores similar to those of

the Cyclops 64 chip [9], coupled to the top levels of a

memory hierarchy consisting of L1 instruction and data

cache memories at each processor, and a shared on-chip

L2 cache.

Many-Core Chip. The distinguishing features of

the many-core processor chip are:

– The cache memories are organized around chunks

instead of typical cache lines, to benefit from the lo-

cality provided by the chunk-based memory model.

– There is no TLB because capabilities (handles) are

held in chunks and in processor registers.

– Processor registers will be tagged to flag those hold-

ing capabilities.

– A new load/store unit will be used to provide creat-

ing (writing) and reading execute support for mem-

ory chunks.

Storage System. The Storage System is a hierar-

chical memory system in which the higher levels (closer

to the processors) cache data chunks actively involved

in on-going computations [10].

In Figure 3, two off-chip storage levels are illustrated

for simplicity; the architecture may be extended to fur-

ther levels as demanded by the device technology avail-

able and the storage capacity required by a system.

There is no relation of the 64-bit number that is the

capability code of a chunk, and the physical location

where it is held in the Storage System. This property

permits new data to be stored in proximity to the loca-

tion in the system where they are generated. Hardware-

supported associative search is used to map handles to

the physical locations where the designated chunks are

to be found.

Another function performed by the Storage Sys-

tem is to supply free capability codes to the processing

chips for assignment to newly created chunks. A data

structure is maintained, that keeps a record of avail-

able codes. Capability codes are assigned from the free

pool and returned to the pool when the reference count

shows they are no longer needed.

The principal components at each level of the Stor-

age System are multiple storage devices to hold data

chunks, and an associative directory for mapping chunk

identifiers (global pointers) to the locations where chunks

reside. At the lowest level, the set of storage devices is

sufficient to hold all data in the computer system, and is

partitioned according to a division of the set of possible

capability codes. Accordingly, each directory must map

to a sufficiently large physical space to accommodate all

data in its part, and its implementation must be able

to handle the anticipated traffic, although a relatively

long search time may be acceptable to reduce cost.

5 Simulation Facility

A simulation model of a two-level Fresh Breeze mem-

ory system has been implemented. It uses an exist-

ing simulation system [11], built by a collaboration of

IBM and E.T. International, for testing and evaluat-

ing the IBM Cyclops 64 many-core chip [9]. The chip

contains 80 processing assemblies, each consisting of

two independent Thread Units (TUs) sharing a floating
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point unit. Each TU has an associated 30 KB block of

SRAM. There are several instruction cache memories,

each serving a group of ten TUs. The chip incorpo-

rates a cross-bar switching network that interconnects

all 160 TUs, allowing each TU to access the SRAM of

any other TU. The TUs have access to 1Gb of off- chip

DRAM memory through four additional ports of the

X-bar network.

In our Fresh Breeze simulation, 40 thread units serve

as E-processors that execute application tasks; most of

the remaining 120 are S-processors used to implement

a simulation of the Fresh Breeze Storage System, using

SRAM for associative directories of a top storage level

and the DRAM for a shared main storage level. Run-

time software has been written to schedule user tasks

on the E-processors and to implement the Storage Sys-

tem simulation. Test programs are written in C and

compiled by the Cyclops C compiler.

6 Scheduling and Work Stealing

The Fresh Breeze simulation models a hardware schedul-

ing mechanism in each of the E-processors. The ele-

ments of this mechanism are the Active Task List (ATL)

and the Pending Task Queue (PTQ). The ATL con-

tains an entry for each of several tasks that the E-

processor switches among when a task in execution be-

comes blocked (usually due to a chunk read instruc-

tion). An entry in the ATL holds the complete processor

state for resuming the task when the reason for being

blocked is resolved. (A blocked task is never resumed

on another processor; it runs on its assigned processor

until it quits.)

The PTQ is a queue of tasks generated by Spawn

instructions, that are available for execution. An entry

in the PTQ just contains: (1) the address of the func-

tion to be applied by the new task, (2) the handle of an

argument structure (chunk) containing argument val-

ues for use by the new task, and (3) the handle of the

join ticket used by the new task to record its result.

The PTQ entry does not include any processor register

contents because a new task is assumed to start fresh

and not depend on any register contents; The program

counter is implicitly set to zero (indicating the first in-

struction of the method for the spawned task). Any ap-

plication processor can perform any pending task just

by loading the contents of a PTQ entry, a consequence

of the global validity of handles and their power to pro-

vide access to arbitrarily large data objects.

In the experiments (Section 8), the ATL for each E-

processor has five entries and the PTQ has 64 entries.

The chip area required for the ATL and PTQ would be

a small fraction of the silicon area of a processor.

Actions performed by the simulated E-processor are:

1. Execute a task from the ATL.

2. Perform a storage system chunk read or chunk write

instruction issued by a task.

3. On a join init instruction, initialize a join ticket

chunk.

4. On a spawn one instruction, add an entry to the

PTQ and continue task execution.

5. On a task exit instruction, delete the task from the

ATL and select a task from the PTQ to make active.

Additional actions are used for implementing the

join mechanism:

1. On a join update instruction, write the result value

(scalar or handle) into the join data chunk, update

the join count, and terminate the worker task.

2. On a join fetch instruction, return the handle of

the join data chunk to the master application task

and mark the join ticket chunk as garbage.

The scheduling mechanism described above does not

provide for distributing spawned tasks over the large

number of processors of a massively parallel system.

The current Fresh Breeze simulation includes a work

stealing scheme that is a variation on work stealing in

Cilk. It is designed to model a low-cost hardware mech-

anism.

Task stealing is used by a processor to maintain the

number of entries in its PTQ between two limits; if

the number of entries is less than the lower limit, this

processor is not willing to give away any of its tasks; if

the upper limit is exceeded, the processor will not try

to fetch a task from the global deferred task queue (see
below).

The simulation uses two tables located in memory

globally accessible by all processors of a domain or clus-

ter of processors in a large system. This approach can

be extended hierarchically as needed. These tables are

managed by a reserved Steal Daemon processor in the

simulation. The work of the Steal Daemon is sufficiently

simple that it could readily be implemented in hardware

in the envisioned Fresh Breeze system.

One table, the Steal List, contains an entry for each

processor of its domain/cluster. The entry specifies the

identity (processor number) of some processor of the

domain that has tasks for stealing. The entry is unde-

fined if the Steal Daemon judges that stealing has no

benefit for the task processor at this time. A proces-

sor accesses its entry in the table using a read/replace

memory operation that sets the entry to undefined and

provides the identity of a processor with available tasks

in its PTQ; the processor removes the task from the

target processor’s PTQ. If stealing fails, the requesting
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processor will do other work and make a new request

after a preset time interval.

The second table, the Load Table, is provided so

the Steal Deamon can know the load status of each

processor of the domain. It contains simply a boolean

value maintained by each processor to indicate whether

or not the processor’s PTQ has more entries than its

lower limit. The steal Daemon maintains the Steal Ta-

ble continuously based on its knowledge of the load on

each processor. The rule is: initialize all entries of the

Steal Table to Undefined; then, for each processor, if

its entry is undefined, set it to the identifier of some

processor with more than the lower limit of entries in

its PTQ.

An additional problem arises when so many tasks

are generated that there is insufficient room in the PTQs

of all processors. The scheduler must somehow retain

records of them so they may be scheduled at a future

time when the overload condition has subsided. This is

done in our present simulations by means of a global

deferred task queue held in the memory system.

7 System Modeling with Simulation

In this section the relation between the system being

modeled and the simulation is discussed. First, the sys-

tem studied by our modeling experiments is described.

It is limited to a two-level memory hierarchy by the de-

sign of the present simulation capability. Extension to

a more extensive memory hierarchy is planned. Then

the issues in relating actions in the modeled system to

simulation events are discussed, together with the solu-

tion adopted to obtain accurate modeling of the timing

of the modeled system

7.1 The System Modeled

Figure 4 shows the system modeled in our simulations

which has two memory levels. We take the upper level

as modeling an L1 cache unit which is private to each

processor. The lower memory level is a Shared Mem-

ory System that may be regarded either as a shared L2

cache accessible to all processors, or as a main mem-

ory level. The two choices differ in their access times,

so we use the “main level” access time as a princi-

pal parameter in our experiments. In both levels mem-

ory is allocated in units of one chunk. Reference count

garbage collection is used to reclaim memory chunks

no longer accessible. The hardware implementation of

garbage collection is not expected to have a significant

impact on the performance results reported below.

Fig. 4: Fresh Breeze system for modeling with two mem-

ory levels.

For the present experiments, only data objects are

held as trees of chunks. The program instruction code is

held just as code is held for normal Cyclops 64 simula-

tion. This should not affect our experiments other than

by Cyclops instruction cache misses which we believe

are rare.

We assume the upper memory level (L1) may be ac-

cessed in two clock cycles and that read one chunk of

data into processor register takes 16 clocks. Since this

combination always occurs together in the Dot Prod-

uct test program, we treat the pair as a single action.

This permits use of less padding to equalize the times

per clock of all actions and provides a more practical

duration of simulation runs.

The upper level is operated as a fully associative

cache where the cache tag is the handle of the referenced

chunk. Each L1 cache holds 128 chunks or 16K bytes of

data.

For specificity we chose the system clock rate to be

500 MHz, a common choice for many core chips such as

the Cyclops 64.

7.2 Events in Simulation versus Actions in An

Implementation

The simulation code consists of routines that model

various actions in the modeled system. Unfortunately,

there is a large disparity among the numbers of Cyclops

chip cycles required for the various action and they de-

part significantly from a uniform multiple of the clock

cycles needed in the modeled system. The following ta-

ble shows the several actions exercised by the Dot Prod-

uct test program. For each action the table shows the

clock cycles assumed needed in the modeled system and

the simulation cycles used by the corresponding simu-

lation routine. For our experiments, we made the simu-

lation time exactly proportional to the modeled system
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Table 1: Cycle-accurate modeling of the system

action system simulation padding total

cycles cycles

Task Startup 4 262 378 640

Task (Compute) 32 376 4844 5120

Task (Save/Restore) 16 262 4095 2560

Shared Mem. Data Transfer 16 3047 0 2560

time by choosing a ratio of simulation cycles to system

cycles and adding ”padding” cycle to each simulation

action routine to provide a uniform ratio of 160. In this

way, cycle-accurate modeling of the subject system is

achieved. The padding cycles and total simulation cy-

cles for each action are shown in columns four and five

of table 1

The simulation experiments are conducted for two

scenarios: In the first scenario, the Shared Memory Sys-

tem models a shared L2 cache memory. For this case, ac-

cess times are relatively short and performing chunk read

operations without blocking the processor is the pre-

ferred mode of operation. For these tests the action of

Task Save and Task Restore do not apply. In the second

scenario, the Shared Memory System models a main

memory with longer access times. For the Fresh Breeze

architecture, task switching times are sufficiently short

that it may be beneficial to use a blocking read wherein

the processor is switched to a different task while a

chunk read operation is performed. For these tests

the Task Save/Restore action model the retention of

processor register state across read operations.

The Shared Memory System is modeled by simula-

tion routines running on each Cyclops processor used to

simulate the Shared Memory. Each routine maintains a

queue of access requests for each separate memory unit.

In the modeled system a shared memory access request

must traverse the Switch, with arbitration, and then

wait at the memory unit until it can be served and

the chunk location determined. Then the data transfer

is performed in 16 cycles. The switch, arbitration, and

queuing delays make up the Access Time, which is a pa-

rameter of the simulation runs. Instead of padding each

simulation routine to model the delay, time stamps are

used to operate each request queue so that many re-

quests may be entered while each requested data trans-

fer is not performed until the specified number of cycles

have elapsed.

8 Experiments

In our simulation runs, the Dot Product computation

was run for several vector lengths and various values of

parameters of the modeled system.

Table 2: Number of task executions and operations

vector leaf non-leaf total adds multiplies

length tasks tasks tasks

163 256 17 273 4095 4096

164 4096 273 4369 65535 65536

165 65536 4369 69895 1048575 1048576
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Fig. 5: Non-blocking read scenario: system cycles per

task.

To begin, table 2 shows the numbers of task exe-

cutions needed for processing leaf chunks and non-leaf

chunks of tree representations of the vectors. Since 16

multiplies and 15 adds are performed in processing a

leaf chunk and 15 adds are performed for each non-leaf

chunk, the totals of adds and multiplies are readily cal-

culated.

First presented are basic performance measures where

performance is presented as the average number of cy-
cles per task over all tasks executed in the simulation

run. The charts show the performance for three vec-

tor lengths and various shared memory access times for

the two cases of interest. In Figure 5 reads are non-

blocking, modeling behaivoir of an L2 shared cache; In

Figure 6 reads are blocking, with suspension of the task

and swapping procesor state to run an alternative task.

This models a main memory where the fine-grain task

management of the Fresh Breeze architecture serves to

provide help with latency tolerance, even for typical

main memory access times. In all of these runs a sys-

tem having 40 processors and 64 independent shared

memory units was simulated.

The best performance shown in these runs achieves

an average of 200 cycles per task. Using the numbers

of leaf and non-leaf tasks from the table and the corre-

sponding counts of adds and multiplies, the number of

operations per task for vectors of length 165 is 30.0. For

a processor operating at a 500 MHz clock rate, this cor-

responds to a performance of (30∗500)/200 = 75 million
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Fig. 6: Blocking read scenario: system cycles per task.

operations per second per processor or 3000 MOPS for

the set of 40 processors.

In addition to average performance, the simulations

have demonstrated the effectiveness of hardware-supported

work stealing. Figures 7 show how well the task process-

ing load is distributed over the 40 processors for the

Main Memory model. Similar results were obtained for

the L2 Cache simulations, although load distribution

was slightly less effective for vectors of length 164.

8.1 Discussion

For the processor characteristics chosen for this study

the maximum possible performance for the Dot Prod-

uct computation for a 16-element vector is determined

by the 32 cycles to execute 32 pipelined arithmetic op-

erations and 32 cycles to access vector elements from

top-level cache or (32 * 500) / 64 = 250 MOPS. The

experiments show that the Fresh Breeze architecture

is able to achieve 30 percent of this maximum. This

is satisfying as memory and storage management func-

tions are both performed entirely by the system, with

no involvement of application programmer or compiler.

8.2 Work Stealing

A high processor utilization requires that the tree of

parallel tasks be distributed over the available proces-

sors as quickly as possible. Under the modeled system

structure shown in Figure 4, all of the shared stor-

age units are equally accessible to all the processors.It

makes no difference which processor gets to run any

particular task. Under these conditions, the goal of schedul-

ing and task distribution is to ensure that if there is a

free processor and work to be done, the processor gets

some work assigned. The mechanism employed in the
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Fig. 7: Load distribution performance of work stealing

for Main Memory

system modeled in these experiments has been shown

to be effective at this job.

However, for much larger systems it becomes impor-

tant to recognize the non-uniform access characteristics

of practical scalable architectures for memory hierar-

chies. It follows that the locations of data structures

must be considered in the design of any scalable, gen-
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eral task distribution scheme. This is expected to be a

challenge for future research.

8.3 Caching

The traditional role of cache memories in computer

systems has been to reduce the idle time of proces-

sors by exploiting temporal and spatial locality. How-

ever, the size of the L1 cache played no role in these

simulation results. Essentially all memory references in

runs of Dot Product resulted in data transfers from the

Shared Memory. This did not result in a big perfor-

mance problem because of the inherent spatial locality

of data residing in one memory chunk: a cache miss on

a chunk read instruction causes transfer of the entire

chunk and further accesses proceed at the L1 cache rate.

Further system design study may exploit another

locality benefit of the tree-structured data model: if a

node is accessed, it is likely that its children will also

be accessed. This suggests an implementation in which

the system automatically fetches the child chunks of a

node to some memory level when a request is received

at that level for access to the node.

The Dot Product test computation involved zero

reuse of data. This is not characteristic of most compu-

tations, for example, matrix multiplication which will

be studied for the Fresh Breeze architecture. In general,

the cache mechanism will likely be an important con-

tribution to overall performance in future Fresh Breeze

designs.

8.4 Excess Parallelism

The fine-grained hardware-implemented resource man-

agement results in that computations will generally of-

fer much more parallelism than can be actually ex-

ploited at any time by the system. This generates a

need for either ”throttling” the generation of tasks or

providing a way for the system to remember the tasks

that need to be taken up when resources (processors)

become free.

In our experimental simulation, we chose to have

each processor maintain a 64-position queue of pending

tasks. With this choice the computation of the dot prod-

uct for vectors of length 165 generated 209, 716 tasks

under main memory model with 100 cycles of access

latency (which is a typical value for the current main

memory technology), all but 412 of which never sent to

the deferred pool but were either taken from the pend-

ing list by the local processor, or were stolen from the

pending list of another processor. Thus it seems that

managing deferred tasks is manageable with suitable

fine-grain hardware scheduling support.

9 Related Work

The idea of building a computer system with unique

handles for all data objects is central to the capability

concept. It is the logical extension of virtual memory

ideas embodied in Multics [12], and a successful com-

mercial implementation is used in the IBM AS/400 sys-

tems [13]. A software implementation of capabilities is

available [6] and a successor Coyotos is under devel-

opment. However, these are software implementations

that do not have the tight security feature of hardware-

based capabilities. The write-once storage concept has

been proposed by Dennis in [2]

During the past two decades, techniques for dy-

namic load balancing have been studied extensively in

the context of several multithreading implementations.

These include Cilk [8,14], EARTH [15,16] and the schedul-

ing of parcels in HTMT [17]. The Rice University pro-

posal for the HPC language Habanero Java includes

the idea of place tree hierarchies as a means to offer

programmers a range of options from fully specifying

the mapping of parallel task to processor, to granting

the system the responsibility of making the assignment.

This work is a revision of the X10 programming lan-

guage, which uses the asynch/finish concurrency control

primitives [18–21]. Related work appears in the HPC

language Cascade [22].

In contrast to these software approaches, the Japanese

Sigma 1 data flow computer included an interproces-

sor network that automatically routes remote function

invocations to lightly loaded processors [23]. The work

stealing technique used in the reported simulations may

be regarded as an implementation of Cilk ideas using

similar principles to the Sigma 1.

Tools for conducting system evaluation through sim-

ulation and emulation is an area of active work [24,25].

The RAMP project [26] system developed at Berkeley is

a good example. It is a FPGA-based many core emula-

tion platform. This system deploys Xilinx Vertex-II Pro

FPGAs on 16-21 BEE2 boards to implements a many

core system composed of 1000 plus cores. The purpose

of the RAMP project is to explore the architecture de-

sign space for future many-core computer architecture

and enable early software development and debugging.

It is intended to define and create the next generation

tools for computer architecture and computer system

research. In contrast, the simulation tool used in this

paper is an industry-strength system that can simu-

late the entire logic of the IBM Cyclops-64 chip with
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its 160 cores [11]. An implementation of a system em-

ulation facility equivalent to the FAST simulator has

been constructed using FPGA devices and is used for

the validation of both architecture and system software

implementation.

10 Conclusion

The work reported here has suggested the merits of

a new memory model using trees of fixed size mem-

ory chunks to represent all data objects. Furthermore,

the advantages of hardware implementation of schedul-

ing and load distribution functions have been demon-

strated, albeit in a limited scenario. Further work is

needed to extend the system model and to study its

performance for a variety of applications.

The Fresh Breeze architecture is an attractive basis

for building future multiuser computer system with ex-

cellent security and protection properties by virtue of

the equivalence of handles of objects with capabilities.

Further exploration of novel approaches to the ar-

chitecture of highly parallel systems seems eminently

justified.

References

1. J. B. Dennis, “A parallel program execution model sup-
porting modular software construction,” in Massively
Parallel Programming Models, pp. 50–60, IEEE, 1997.

2. J. B. Dennis, “Fresh breeze: a multiprocessor chip ar-
chitecture guided by modular programming principles,”
SIGARCH Comput. Archit. News, vol. 31, no. 1, pp. 7–
15, 2003.

3. J. B. Dennis and E. C. V. Horn, “Programming semantics
for multi-programmed computations,” Communications
of the ACM, vol. 9, Feb 1966.

4. H. Levy, Capability-Based Computer Systems. Newton,
MA: Butterworth-Heinemann, 1984.

5. M. V. Wilkes, The Cambridge CAP computer and its op-
erating system (Operating and programming systems se-
ries). Operating and Programming Systems Series, Ams-
terdam, The Netherlands: North-Holland Publishing Co.,
1979.

6. J. S. Shapiro, J. M. Smith, and D. J. Farber, “Eros:
a fast capability system,” in Proceedings of the Seven-
teenth ACM symposium on Operating Systems Srinci-
ples, SOSP ’99, (New York, NY, USA), pp. 170–185,
ACM, 1999.

7. J. B. Dennis, “The Fresh Breeze model of thread exe-
cution,” in Workshop on Programming Models for Ubiq-
uitous Parallelism, IEEE, 2006. Published with PACT-
2006.

8. M. Frigo, C. E. Leiserson, and K. H. Randall, “The imple-
mentation of the cilk-5 multithreaded language,” ACM
SIGPLAN Notices, vol. 33, pp. 212–223, May 1998.

9. J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao, “Tiny
threads: A thread virtual machine for the Cyclops 64
cellular architecture,” in International Parallel and Dis-
tributed Processing Symposium, p. 265, IEEE, 2005.

10. B. Schmidt, “A shared memory system for fresh breeze,”
Master’s thesis, MIT Department of Electrical Engineer-
ing and Computer Science, May 2008.

11. J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao, “Fast: A
functionally accurate simulation toolset for the cyclops64
cellular architecture,” 2005.

12. A. Bensoussan, C. T. Clingen, and R. C. Daley, “The
Multics virtual memory,” in Proceedings of the Sec-
ond Symposium on Operating Systems Principles, (New
York), pp. 30–42, ACM, 1969.

13. F. G. Soltis, Inside the AS/400. Duke Press, 1996.
14. V.-Y. Vee and W.-J. Hsu, “Applying Cilk in provably ef-

ficient task scheduling,” The Computer Journal, vol. 42,
pp. 699–712, 1999.

15. K. B. Theobald, EARTH: An Efficient Architecture for
Running Threads. PhD thesis, University of Delaware,
May 1999.

16. H. H. J. Hum, O. Maquelin, K. B. Theobald, X. Tian,
X. Tang, and G. R. Gao, “A design study of the EARTH
multiprocessor,” in Conference on Parallel Architectures
and Compilation Techniques, PACT, pp. 59–68, IEEE,
1995.

17. K. B. Theobald, G. R. Gao, and T. L. Sterling, “Super-
conducting processors for HTMT: Issues and challenges,”
in ACM ’87: The 7th Symp. on the Frontiers of Mas-
sively Parallel Computation: Today and Tomorrow, (New
York), pp. 260–267, ACM, 1999.

18. P. Charles, C. Grotho, V. Saraswat, C. Donawa, A. Kiel-
stra, K. Ebcioglu, C. von Praun, and V. Sarkar, “X10:
an object-oriented approach to non-uniform cluster com-
puting,” in 2005 Conference on ObjectOriented Program-
ming, (New York), pp. 519–538, ACM, 2005.

19. V. Sarkar and J. Hennessy, “Compile-time partition-
ing and scheduling of parallel programs,” in 86 Sympo-
sium on Compiler Construction, SIGPLAN, (New York),
pp. 17–26, ACM, 1986.

20. J. Shirako, D. Peixotto, V. Sarkar, and W. Scherer,
“Phasers: A unified deadlock-free construct for collec-
tive and point-to-point synchronization,” in Twenty-
second International Conference on Supercomputing,
IEEE, 2008.

21. Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-
first and help-first scheduling policies for async-finish task
parallelism,” in International Parallel and Distributed
Processing Symposium, IPDPS, IEEE, 2009.

22. D. Callahan, B. L. Chamberlain, and H. P. Zima, “The
Cascade high productivity language,” in Ninth Interna-
tional Workshop on High-Level Parallel Programming
Models and Supportive Environments, 2004.

23. T. Yuba, K. Hiraki, T. Shimada, S. Sekiguchi, and
K. Nishida, “The sigma-1 dataflow computer,” in ACM
’87: Proceedings of the 1987 Fall Joint Computer Con-
ference on Exploring technology: today and tomorrow,
(Los Alamitos, CA, USA), pp. 578–585, IEEE Computer
Society Press, 1987.

24. J. Darringer, E. Davidson, D. Hathaway, B. Koene-
mann, M. Lavin, J. Morrell, K. Rahmat, W. Roesner,
E. Schanzenbach, G. Tellez, and L. Trevillyan, “Eda in
ibm: past, present, and future,” Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions
on, vol. 19, pp. 1476 –1497, dec. 2000.

25. M. Dubois, J. Jeong, Y. Song, and A. Moga, “Rapid hard-
ware prototyping on rpm-2.,” IEEE Des. Test. Comput,
pp. 112–118, 1998.

26. J. Wawrzynek, D. Patterson, M. Oskin, S.-L. Lu,
C. Kozyrakis, J. Hoe, D. Chiou, and K. Asanovic, “Ramp:



Experiments with the Fresh Breeze Tree-Based Memory Model 11

Research accelerator for multiple processors,” Micro,
IEEE, vol. 27, pp. 46 –57, mar. 2007.


	Introduction
	The Fresh Breeze Memory Model
	API of the Fresh Breeze Memory Model
	Computer System Structure and the Memory Hierarchy
	Simulation Facility
	Scheduling and Work Stealing
	System Modeling with Simulation
	Experiments
	Related Work
	Conclusion

