Synchronization State Buffer: Supporting Efficient
Fine-Grain Synchronization on Many-Core Architectures

Weirong Zhu
Department of ECE
University of Delaware

_ Newark, DE 19711
weirong@capsl.udel.edu

ABSTRACT

Efficient fine-grain synchronization is extremely important
to effectively harness the computational power of many-core
architectures. However, designing and implementing fine-
grain synchronization in such architectures presents several
challenges, including issues of synchronization induced over-
head, storage cost, scalability, and the level of granularity
to which synchronization is applicable. This paper proposes
the Synchronization State Buffer (SSB), a scalable archi-
tectural design for fine-grain synchronization that efficiently
performs synchronizations between concurrent threads. The
design of SSB is motivated by the following observation: at
any instance during the parallel execution only a small frac-
tion of memory locations are actively participating in syn-
chronization. Based on this observation we present a fine-
grain synchronization design that records and manages the
states of frequently synchronized data using modest hard-
ware support. We have implemented the SSB design in the
context of the 160-core IBM Cyclops-64 architecture. Using
detailed simulation, we present our experience for a set of
benchmarks with different workload characteristics.

Categories and Subject Descriptors: C.0 [Computer
Systems Organization|: General

General Terms: Design

Keywords: Many-Core, Fine-Grain Synchronization, SSB

1. INTRODUCTION

High-performance processor design is rapidly moving to-
wards many-core architectures that integrate 10s (or be-
yond) of processing cores on a single chip [12, 7]. Intel re-
cently announced its research prototype many-core design
with 80 cores on a single die [42]. IBM Cyclops-64 will
support 160 hardware thread units in one chip [16]. The
granularity of parallelism that can be efficiently exploited
in such many-core chips is often limited because of the lack
of effective architectural support for efficient fine-grain syn-

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ISCA' 07, June 9-13, 2007, San Diego, California, USA.

Copyright 2007 ACM 978-1-59593-706-3/07/0006 ...$5.00.

Vugranam C. Sreedhar
T.J. Watson Research Center
IBM Research
Hawthorne, NY 10532
vugranam@us.ibm.com

Ziang Hu, Guang R. Gao
Department of ECE
University of Delaware
Newark, DE 19711
{hu,ggao}@capsl.udel.edu

#pragma omp parallel for \

private(ran, i,idx) shared(y,N,size)
for(i = 0; i < N; i++){

ran = rand(); idx = ran & (size - 1);
#pragma omp critical

{ y[lidx] = y[idx] op ran; }

(a) Random Access with DOALL Loop
for (i=1 ; i<n ; i++)
for (k=0 ; k<i ; k++)
Wil += bl[kI[i] * W[(i-k)-1];

(b) Livermore Loop 6
Figure 1: Examples

chronization. Software-only solutions, with very limited ar-
chitectural support, often lead to high synchronization over-
head, high storage cost, and poor scalability. It is often
difficult or even impossible to harness fine-grain parallelism
at compilation time. Consider the example in Figure 1(a),
which simulates the kernel DOALL loop in the Random Ac-
cess HPCC benchmark [1] implemented using OpenMP. The
critical section ensures the read-modify-write operations in
the loop to be performed atomically. Unstructured refer-
ences like the one shown in Figure 1(a) are impossible to
analyze at compilation time. Therefore, the compiler can
only assign a single lock for the whole table y[], which
introduces unnecessary serialization. An efficient run-time
fine-grain synchronization mechanism is necessary to exploit
such inherent fine-grain parallelism.

Now consider the Livermore Loop 6 shown in Figure 1(b),
which represents widely used linear recurrence equations [17].
At each iteration i of the outer loop, the computation of
W[i]l depends on elements of W (W[1]l, W[2], ... , W[i-1])
that are calculated in all previous iterations. It is difficult
to parallelize the loop at compilation time because of the
cross-iteration dependencies [41]. Again, a fine-grain syn-
chronization mechanism is essential to enforce the data de-
pendences among concurrent threads.

There are several design choices that one can employ to
implement fine-grain synchronization. For instance, HEP [38],
Tera [5], MDP [13], Sparcle [3], M-Machine [24], the MT
processor in Eldorado [18], and others use hardware bits as
tags (e.g., full/empty bits) to support word-level fine-grain
synchronization. These designs tag the entire memory by
associating additional access state bits with each word in
memory. Given that on-chip memory is one of the most
precious resources for many-core chips, one down side of
such design choices is the high cost associated with tagging
every word in the entire memory.

To address the problem of such high-cost synchronization
mechanisms, we made one key observation: at any instance
during the parallel execution only a small fraction of mem-
ory locations are actively participating in synchronization.
To further elaborate this observation, consider the kernel
loop shown in Figure 1(a). Now let 7" be the number of
threads and assume T' < N, where N is the size of the table
y[1. In the example, we can observe that at any instance,
the number of memory locations S that are actively partic-
ipating in synchronization is less than or equal to 7, that
is, S < T, and therefore S < N. In other words, at any
instance, only a small part of the table need to be actively
synchronized (i.e. locked). Therefore, rather than support-
ing fine-grain synchronization by tagging every word one can
focus on recording and managing synchronization states of
only those actively synchronized memory words. One could
make a similar observation for the Livermore Loop 6 shown
in Figure 1(b) (see Section 5.4).

Based on this observation, we introduce a novel synchro-
nization architecture, with a modest hardware extension to
many-core architectures, called the Synchronization State
Buffer (SSB). SSB is a small buffer attached to the memory
controller of each memory bank. It records and manages
states of active synchronized data units to support and ac-
celerate word-level fine-grain synchronization. SSB caches
the states of memory locations that are currently accessed
by SSB synchronization operations. An interesting aspect of
our SSB design is that it avoids enormous memory storage
cost, and still creates an illusion that each word in memory
is associated with a set of states that can be used to sup-
port word-level fine-grain synchronization. SSB can support
a rich set of synchronization functionalities. To understand
the design space of SSB, we implemented our solution in the
context of the 160-core IBM Cyclops-64 (C64) chip archi-
tecture as a case study. We extended the C64 architecture
simulator with the new SSB architectural features to explore
the design space using detailed simulation.

For mutual exclusion, SSB supports different fine-grained
locks, including word-level read, write, and recursive locks.
Our approach exploits the ample parallelism that often ex-
ists in operations on different elements of concurrent data
structures. Using SSB-based fine-grain locking on each mem-
ory unit, we avoid the unnecessary serialization of those op-
erations. For the set of benchmarks that we tested, we have
observed up to 84% performance improvement using SSB
when compared to software only solutions.

For read-after-write data dependence synchronization, SSB
allows fine-grain low-overhead synchronized read and write
operations at word-level in memory. SSB supports several
modes of data synchronization, including two single-writer-
single-reader modes, and one single-writer-multiple-reader
mode. Our SSB design can efficiently exploit the do-across
style loop-level parallelism, where one can directly imple-
ment loop-carried data dependences using SSB fine-grain
synchronization and eliminate the use of unnecessary bar-
riers in the loop. Our experimental results demonstrate
significant performance gain using such fine-grain data syn-
chronization. For instance, using SSB, we observe a 312%
performance improvement over the coarse-grain based ap-
proach when solving linear recurrence equations.

Finally, our experiments also demonstrate that 1) a small
SSB for each memory bank is normally sufficient to record
the access states of outstanding synchronizing data units for

multithreading programs, and 2) most of fine-grain synchro-
nization operations are successful.

2. DESIGN PRINCIPLES OF SSB

In this section we lay the foundation for SSB and present
the principles for efficient implementation of fine-grain syn-
chronization using SSB .

2.1 Many-CoreArchitecture

Architects are actively exploring the design space of many-
core chip, which is currently in a state of flux. The design
choices for efficient implementation of a fine-grain synchro-
nization solution are likely to be strongly influenced by the
underlying architectural design and model. In this paper,
we focus on a class of many-core architectures where a large
number of simple cores and memory modules are integrated
on a chip and connected via an on-chip interconnection net-
work. Examples of these multi-core/many-core chips include
the recent announcement of the Intel terascale chip [42] and
the Larrabee mini-cores chip [2], and the IBM Cyclops-64
(C64) chip architecture [16]. In this paper, we have imple-
mented SSB in the context of the C64 architecture.

One important feature of such many-core architectures
is that the amount of on-chip storage per core is far less
than traditional single core processors - by up to one to two
orders of magnitude. Therefore, tagging every word in on-
chip memory for fine-grain synchronization incurs high cost.
One of our design objectives in SSB is to avoid such cost.

A few multi-core chip designs (such as the IBM Cell pro-
cessor [19], the Cyclops-64 [16] chip, and the ClearSpeed
CSX architecture [11]) employ ezplicitly programmable local
memory store for each processing core rather than coher-
ent data cache. Such local store approach allows denser
hardware implementation and simplifies the microarchitec-
ture by avoiding the complexity of tag-match compare and
late hit-miss detection, miss recovery, and coherence man-
agement associated with cache hierarchies [19]. From the
software perspective, the local store with low and determin-
istic access latency can be effectively exploited by compilers
to further improve the resulting code [19]. Unlike many syn-
chronization mechanisms based on the existence of coherent
cache, another design objective of SSB is to make no such
assumption, and thus it can also be implemented for many-
core designs with local stores.

Another important feature of such many-core architec-
tures is that they often employ a large number of simple
cores. For example, the IBM Cyclops-64 (C64) chip con-
tains 160 cores (also called thread units). C64 system soft-
ware model and the associated programming and execution
environment are centered around TiNy Threads [15]. One
feature of the TiNy Threads is the efficient support of a
non-preemptive thread model: the core on which a thread is
running is simply made idle when the thread is suspended.
Under a many-core architecture such as C64, thread context-
switching can be particularly costly due to two reasons.
First, since on-chip memory is precious and limited, sav-
ing the context of a large number of threads in on-chip
memory can become prohibitively expensive and impracti-
cal. Second, saving the context in off-chip memory suffers
from high latency and low bandwidth. The effectiveness of
the non-preemptive model has been demonstrated through
the mapping of a number of applications onto C64 [21, 40,
10, 43]. An assumption for designing and implementing SSB

that we make throughout the paper is the non-preemptive
thread execution model.

2.2 Formalization of the Key Observation

Recall the key observation that at any instance during
the parallel execution only a small set of memory locations
are actively participating in synchronization. We formalize
this observation as follows: Let 7" be the number of non-
preemptive active threads and let N = M x B be number of
memory locations, where M is the size of each memory bank
and B is the number of memory banks. Observe that T is
usually far less than M x B, that is, T < M x B. Now let
S(t) be the number of active synchronized memory locations
at any instance t. In other words, S(¢) is the amount of
synchronization in an application at any instance ¢, and is
given by:

S(t) < at) x T, (1)
where «(t) indicates the maximum number of distinct mem-
ory locations synchronized by a thread at ¢. Therefore a
many-core architecture can take advantage of the SSB de-
sigh whenever the following relation holds:
S(t) <oty x T < M x B, (2)
For the example shown in Figure 1(a), a(t) = 1. Given
that B is much smaller than M, we can compute the average
amount of synchronization at a memory bank as
Sy =S5(t)/B < M, 3)
We will use Equations 1, 2, and 3 in the design of SSB in
the next section.

3. DESIGN OF SYNCHRONIZATION STATE

BUFFER

SSB is a small buffer attached to the memory controller
of each memory bank. It records and manages states of
actively synchronized data units to support and accelerate
word-level fine-grain synchronization. In this section we will
discuss the various design parameters of SSB.

3.1 Buffer Size

The first design parameter is the number of entries £} in
an SSB for a memory bank b. The number of entries E} is
related to the size of memory bank M, as follows: E, < M,.
Now if £, = My, SSB design is equivalent to tagging every
memory location. In SSB we want to avoid such cost, and
therefore we want:

Ey < M, (4)
From Equations 1, 2, and 3 we know that if an application
can take advantage of the architectural design objective of
Equation 4, then the following is the design requirement for
the size of the buffer:

Ey, > S, (5)
Let us generalize the above relation as follows:
Eb ~ ﬁ X Sb (6)

where (3 is a factor that relates the amount of synchroniza-

tion in an application to the hardware resource limitation.
If 3 > 1 then SSB is cost effective, and if 3 < 1 then the
performance of SSB is hurt since the buffer will fill up and
we have to fall back to a software mechanism for synchro-
nization. In practice, architects can determine the number of
entries, and the level of set associativity of an SSB according
to the target applications, the transistor budget, the power
consumption requirements, and other design factors.

Each SSB functions as a look-up table. Given the small
size of each SSB, the lookup function can be easily imple-
mented with common hardware technology. One merit of
SSB is its de-centralized nature. Because of the indepen-
dence of each SSB, the hardware cost for implementing SSB
increases only linearly proportional to the number of mem-
ory banks, and the complexity of hardware logic remains the
same for each SSB. Therefore, SSB is a scalable fine-grain
synchronization solution for many-core chips.

3.2 Structureof SSB

state (4-bits) counter (8-bits)

thread id ‘ address

Figure 2: One SSB Entry

The overall structure of an SSB entry is shown in Figure 2.
Each SSB entry consists of four parts: (1) address field that
is used to determine a unique location in a memory bank;
(2) thread identifier, whose size is [log(T)], where T is the
number of non-preemptive threads supported by the under-
lying many-core architecture; (3) an 8-bit counter; and (4) a
4-bit field that can support up-to 16 different synchroniza-
tion modes. The address bits are used as a key to search
in the buffer. The remaining three fields form the synchro-
nization state for a memory location. Since we assume a
non-preemptive thread execution model, the “thread id” can
be used to identify a processing core as well as a unique
software thread running on it. The use of the counter field
depends on the type of synchronization operation, which we
will explain in the next section. Table 1 shows different syn-
chronization modes that we support in our design. An entry
in SSB is allocated and released according to its state and
the function of an SSB instruction operating on it.

Table 1: SSB State Bits

[State | Function [Description
0x0000 WLOCK ‘Write Lock
0x0001 RLOCK Read Lock

0x0010 | WRLOCK | Write-Recursive Lock

0x0011 SR1 Single- Writer-Single-Reader Mode 1
0x0100 SR2 Single- Writer-Single-Reader Mode 2
0x0101 MRF Single-Writer-Multiple-Reader Full Mode
0x0110 MRL Single-Writer-Multiple-Reader Lock Mode
0x0111 MRQ Single-Writer-Multiple-Reader Queue Mode

Single-Writer-Multiple-Reader Queue Lock Mode

0x1000 MRQL

Memory instructions, including SSB instructions, are han-
dled in a FIFO manner when arriving at a memory bank
through the on-chip interconnection network. In our design,
with one memory transaction, an SSB instruction not only
performs the synchronization on the memory location, but
also brings the datum to the processor on success.

4. ANARCHITECTURAL MODEL FOR SSB
4.1 Fine-Grain Locking

SSB associates locking functions with memory locations
dynamically. When a memory location needs to be accessed
exclusively, the lock operation is issued with the address
of the location. In the SSB of the corresponding memory
bank, an entry for this address, if does not exist, is allo-
cated to monitor the state of the memory location. If an
entry already exists, the state might be changed according
to the function of the operation. The return value of the
operation informs the synchronization state to the software,

swlock (TID)/
success

WLOCK

cnt=1 cnt=2

L

swlock (TID’)/fail swlock (*)/fail

(a) states transition caused by swlock | and srlock | operations

tid=TID |~ >
swlock (TID")/
swlock (TID’)/ fail WRLOCK fail
tid =TID it
swlock (TID)/
srlock(*)/ fail cnt=2 succ(ess) Sf'?c_r(*)/
ai
swlock (TID) /
success
srlock (TID)/ success RLOCK\ srlock (*)/ success [F

tid =TID tid=TID [~>

WLOCK
tid = TID

sunlock (TID) /

fail

sunlock (TID) /
success

eS!

sunlock (TID’) /
fail

sunlock (*) / success

(b) states transition caused by sunlock operation

Figure 3: State transition diagram of SSB lock/unlock operations. A circle represents the state of a memory location

monitored by SSB. The edge shows the transition between two states. Near the transition edge, the transition condition is

described by a pair of text connected by a “/” symbol. The left side of “/” shows the operation performed to cause the transition;

the right side of “/” indicates the result of the operation. TID in the parentheses suggests that the operation is issued by thread

TID. TID' means a thread other than thread TID. The symbol “%” in the parentheses means that it can be “any thread”.

which can then proceeds accordingly. Since an SSB instruc-
tion takes the address of a memory location to perform the
locking operation, it does not require any pre-allocated syn-
chronization variable. As a result, SSB is able to smoothly
and efficiently handle the cases where the precise synchro-
nization point cannot be resolved statically at compilation
time. SSB provides the following operations to perform the
lock and unlock operations:

(RT, Value) = swlock_l(MemAddr);

/* swlock_1: acquire write lock for location */
/% MemAddr and load the content */
/* MemAddr: the address of the memory location */
/* RT: return value, success or failure */
/* Value: the content of the memory location */

(RT, Value) = srlock_l(MemAddr);

/* srlock_l: acquire read lock for location */
/% MemAddr and load the content *x/
/* MemAddr: the address of the memory location */
/* RT: return value, success or failure */
/* Value: the content of the memory location *x/
sunlock(MemAddr) ;

/* sunlock: release the lock for location MemAddr */
/* MemAddr: the address of the location */

swlock | and srlock_| acquire a write or read lock for the
memory location MemAddr respectively. Upon success, they
also load the content of the memory location to Value. sun-
lock releases the lock previously acquired.

See Figure 3(a), swlock | acquires the write lock for lo-
cation MemAddr. If there is no record for this location in
SSB, which means it is not locked yet, an entry for this lo-
cation is allocated, and the state is set to WLOCK. Before
this location is unlocked by the owner, write/read lock ac-
quisition from other threads will fail, and cause the “counter
(cnt)” to be incremented by 1. The current value of “cnt”
is returned to the thread to indicate the failure. Therefore,
in WLOCK mode, the return value accurately reflects the
status of runtime lock contention on the memory location,
i.e., how “hot” it is. Software may take advantage of this
information to implement a contention manager, such as a
backoff policy. SSB also supports recursive (or nested) lock.
A thread can repeatedly acquire the write lock it already
owns. If a thread is the only owner of the read lock, it can
upgrade the lock to a write lock. In both cases, the state
is set to WRLOCK, and the “cnt” records the number of the

nested recursive locks. The software is required to perform
paired lock/unlock operations.

The srlock | acquires a read lock for the memory location
MemAddr. Multiple threads can own the same read lock
at the same time. The first successful acquisition allocates
an entry in SSB, and sets the state to RLOCK. The “cnt”
records the number of successful acquisitions. As described
before, when “cnt” is equal to 1, a write lock acquisition from
the same thread is able to upgrade the lock to a WRLOCK.
Except for this special case, all the write lock acquisitions
will fail. The behavior of sunlock is shown in Figure 3(b).
When a lock is finally released, the corresponding entry in
SSB will be freed for reuse. It is worth noting that sunlock
does not return the “success”/“fail” result to software. If a
sunlock fails, an exception is raised.

4.2 Fine-Grain Data Synchronization

SSB can help the programmer to exploit data-level paral-
lelism by allowing a program to perform synchronized reads
and writes at the word-level in memory. The single-writer-
single-reader (SWSR) synchronization enforces order between
a thread that produces the data and another thread that

consumes the data. The following are the interfaces:
RT = sswrsr_wl(MemAddr, Value);

/* sswursr_wl: SWSR synchronized write mode 1 x/

/* MemAddr: the address of the memory location */

/* Value: the Value to be written to MemAddr */

/* RT: return value, success or failure */

(RT, Value) = sswrsr_ri1(MemAddr);

/* sswrsr_rl: SWSR synchronized read mode 1 */
/* MemAddr: the address of the memory location */
/* RT: return value, success or failure */
/* Value: the content of the memory location */

RT = sswrsr_w2(MemAddr, Value);

/* sswsr_w2: SWSR synchronized write mode 2 */
/% MemAddr: the address of the memory location */
/* Value: the Value to be written to MemAddr */
/* RT: return value, success, failure or */
/* reader’s thread id */

(RT, Value) = sswrsr_r2(MemAddr);
/* sswusr_r2: SWSR synchronized read mode 2 */
/* MemAddr: the address of the memory location */
/* RT: return value, success, failure, or wait */
/* Value: the content of the memory location */
See Figure 4(a), sswsr_wl and sswsr_rl can coordinate

with software to support a busy-wait approach. If the writer

has not performed sswsr_wl to MemAddr yet, the sswsr_rl
performed by the reader returns a failure. The reader needs
to try again with sswsr_rl afterwards. The reader can get
the data only after the sswsr_ w1 is finally performed, which
allocates an entry in the SSB, sets the state to SR1, and
writes the Value into MemAddr. When sswsr_ rl is success-
fully executed, the entry in SSB is released, and the content
of MemAddr is loaded for the reader.

A blocking strategy can be implemented with sswsr_ w2
and sswsr_r2. See Figure 4(b), if the reader performs ss-
wsr_r2 before the sswsr_ w2 from the writer, an entry will
be allocated in SSB, the state is set to SR2, and the counter
is set to 1 to represent that the data is not available yet. The
thread id of the reader is also recorded. When the reader
finds out that the return value is “wait”, it voluntarily sus-
pends its execution and goes to sleep. Later, sswsr_ w2 in-
struction issued by the writer will write Value into MemAddr,
and set the counter to 0 to indicate the availability of the
data. The instruction also returns the thread id (TID) of the
reader. The writer then can wake up the sleeping reader,
which can now retrieve the value by sswsr_r2 and free the
corresponding entry in the SSB.

sswsr_w2/
success

sswsr_r2/
success

sswsr_r2 (TID)/ sswsr_w2/
wait TID
I
|

!
software: wakeup
thread TID

sswsr_wl/ success

sswsr_r1/ no
fail record
sswsr_rl/succes:

(a) Mode 1: a busy-wait approach (b) Mode 2: a sleep-wakeup approach

Figure 4: State transition diagram of SSB Single-
Writer-Single-Reader operations. “software?” means

the operation is performed by software.

The single-writer-multiple-reader (SWMR) synchroniza-
tion enforces ordering between a thread that produces the
data and a number of other threads that consume the data.
SSB provides three instructions to support this type of data
synchronization. The following are the interfaces:

RT = ssumr_w(MemAddr, Value, NumOfReaders);

/* ssumr_w: SWMR synchronized write */
/* MemAddr: the address of the memory location *x/
/* Value: the Value to be written to MemAddr *x/
/* NumofReaders: the number of readers */
/* RT: return value, success, failure, */
/% or the pointer the wait queue */

(RT, Value) = ssumr_r(MemAddr);

/* ssumr_r: SWMR synchronized read */
/* MemAddr: the address of the memory location */
/* RT: return value, success, failure, lock mode, */
/% or qlock mode */
/* Value: the content of the memory location upon */
/* success, or the pointer to the queue if */
/% the RT is lock mode or queue mode */

sswmr_ul (MemAddr, QueuePtr);

/* sswmr_ul: SWMR queue unlock */
/* MemAddr: the address of the memory location */
/* QueuePtr: the pointer to the wait queue */

Figure 5 shows how SSB SWMR operations interact with
software to perform the data synchronization between one
writer and multiple readers. Ideally, the sswmr_ w write op-
eration is executed before all the reads. As a result, an
entry is allocated in the SSB, the state is set to MRF (full
mode), “cnt” (counter) is initialized to N, which represents

the number of readers, and Value is written into the mem-
ory location addressed by MemAddr. Each of the following
sswmr_r operations reads the value from the memory and
decrements the “cnt” by 1. When all the reads finish and
the “cnt” reaches 0, the corresponding entry in SSB is freed.

However, it is possible that some readers issue the ss-
wmr_r read operations before the write. The first such ss-
wmr_rinstruction allocates an entry in the SSB and sets the
state to MRL (lock mode). Then the thread that issues this
read will initialize a wait queue, put itself into the queue,
and issue a sswmr__ul instruction with the pointer to the tail
of the wait queue as a parameter. The sswmr_ ul stores the
pointer into the memory location, and switches the state
to MRQ (queue mode). The following sswmr_r operations
issued by other threads will get this pointer, with which
a thread can enqueue itself. As shown in Figure 5, if one
or more threads are performing the enqueue operation, the
state of the SSB entry is MRQL (queue lock mode), which
prevents the write from happening. After the enqueue op-
eration, the thread issues a sswmr__ul operation and goes to
sleep. When the state of the SSB entry is switched back to
MRQ and a sswmr_w operation arrives, the write can be
performed, and the state is changed to MRF. In this case,
the queue pointer is returned to the writer thread, which
then wakes up all the threads in the queue. Since the state
of the entry is already MRF, all the awakened threads as
well as other threads can now read data from the memory.

4.3 Hardware Resource Constraints

Since the (hardware) SSB is a fixed size buffer, for some
applications, it can become full. In such a situation we trap
to a software solution. Each hardware SSB (at a memory
bank), called HSSB, has its associated software SSB, called
SSSB. An SSSB is an extension to its corresponding HSSB,
and to simplify our discussion, we assume them to be fully
associative. Each HSSB contains two bits, FBIT and SBIT.
FBIT is set to ON automatically by hardware whenever the
HSSB becomes full, otherwise it is OFF. The SBIT indi-
cates whether there are software maintained entries in the
SSSB. When the kernel starts, it initializes all the SSSBs.
An HSSB also has a register, called SREG that is initialized
during boot time by the kernel, holds a pointer to its corre-
sponding SSSB and an associated software lock. The SSSB
software structure is common across all applications on the
system. An entry in the SSSB has the same structure as the
HSSB entries. We assume that instructions that arrive at
a memory bank are processed in an FIFO order. When an
SSB instruction reaches and searches the HSSB, there are
following possible cases:

Matching FBIT SBIT Case

entry in HSSB?

Yes Any Any 1: HW only solution

No OFF OFF 2: HSSB not full, HW only solution
No ON OFF 3: HSSB full, set SBIT on, trap to SW
No Any ON 4: Bntries in SSSB, trap to SW

The raised trap is handled using a software handler, to
which the pointer in the SREG, along with the opcode and
operands of the SSB instruction, are supplied as parame-
ters. The handler is executed by the thread that issued
the SSB instruction. The software lock associated with each
SSSB has to be acquired by the thread before it executes the
handler, thus no other threads can change the states of an
SSSB simultaneously. It is possible that the state of the cor-
responding HSSB has changed between the duration of the

software: init the queue . software:sleep
L software:sleep

with pointer "ptr" ~

’

/
’

/
sswmr_ul (ptr)/
success

sswme_r/ ;7
qlock (ptr)

sswmr_r/ lock

sswmr_w/
fail

sswmr_w/
fail

sswmr_r/

sswmr_w
(value, N readers)/
success

sswmr_w
(value, N readers)/
success (ptr)

I
! sswmr_w/
! fail
I
sswmr_r/ :
success (value) I

-

success (value)

= ~ software: wakeup readers
in the queue

software: enqueue
/

~ S
sswmr_ul/success /

sswmr_r/

The “MEM =" in the parenthe-
ses indicates the content of the
memory location that is moni-
software: tored by this SSB entry. The
’leef left side of “/” shows the op-

I
sswmr_ul/

eration performed to cause the

lock (pti success ey . .
dock o) “"C;e“ transition, with its parameters
“ia . in parentheses; the right side of
software: . .
cnquete “/” indicates the return result

of the operation, with an addi-
tional return value in parenthe-

’ Ses.

.

Figure 5: State transition diagram of SSB Single-Writer-Multiple-Reader Operations.

raise of the trap and the acquisition of the lock. Therefore,
the software handler will deal with following cases:

SBIT | Matching FBIT | Case
Entry in HSSB?
OFF | No need to check | Any

1: SSSB is empty, fall back to HW

ON Yes Any 2: Fall back to HW
ON No OFF 3: Attempt to promote entry to HW
ON No ON 4: SW only solution

To check the SBIT, FBIT, search the HSSB for matching
entry, and flush entry from SSSB to HSSSB, special instruc-
tions are used. When the thread gets the lock and begins
to execute the handler, it first checks the SBIT. If SBIT is
OFF, the SSSB is empty due to the operation of another
thread who owned the lock previously. As suggested in case
1, the handler releases the lock and re-issues the SSB in-
struction. If SBIT is ON, the handler issues an instruction
to search the HSSB. If a matching entry is found, which
is case 2, and the handler takes the same action as case 1.
Otherwise, it performs the operations on SSSB, then checks
the FBIT. If the FBIT is OFF, which is case 3, the handler
attempts to flush the entry to the HSSB. If successful, the
handler removes the software entry from the SSSB. The re-
maining steps of case 3 and case 4 are the same. If the SSSB
becomes empty, the handler sets the SBIT to OFF, releases
the lock, and returns.

The software mechanism will slow down the requested
synchronization operation. However, it is expected that a
small SSB is normally sufficient for most multithreading pro-
grams. As we will show in Section 5.5, for many benchmarks,
only one has a small percentage of synchronization opera-
tions that encounter the “full” situation.

5. EVALUATION

Our objective in this section is to illustrate the charac-
teristics of SSB and verify the efficiency and effectiveness of
SSB, and compare SSB with other synchronization mecha-
nisms. We explore the characteristics of SSB in the context
of the IBM 160-core Cyclops-64 (C64) chip architecture [16],
which represents a class of many-core architectures that we
discussed in Section 2.

5.1 C64 Architecture and Experimental
Framewor k

C64 is evolved from a preliminary design of Cyclops ar-
chitecture [8]. The C64 chip contains 160 thread units (TU)
(running at 500MHz) and 160 embedded SRAM memory
banks (32KB each) in a single silicon die, and with a peak
performance of 80GFLOPS. There are 80 floating point units,
each of which is shared by two TUs. A 32KB instruction
cache, is shared among 10 TUs. C64 has efficient support for
thread level execution, such as ISA-level sleep/wakeup in-

structions. C64 features an explicitly addressable three-level
memory hierarchy (Scratchpad memory, on-chip SRAM, off-
chip DRAM) without data cache. A portion of each SRAM
bank can be configured as the scratchpad memory (SP),
which can be accessed by a corresponding TU with very
low and deterministic latency. The remaining sections of
all on-chip SRAM banks together form the global memory
(GM) that is uniformly addressable by all TUs. There are 4
memory controllers connected to off-chip DRAM banks (up
to 2GB). All memory words are 8 bytes wide and the mem-
ory is byte-addressable. The memory accesses to contiguous
address space are interleaved. For example, the access to
GM is interleaved to SRAM banks by a 64-byte boundary,
which ensures the full utilization of the bandwidth and the
SSBs attached to all memory banks. Memory accesses to
GM and DRAM go through an on-chip crossbar network,
which sustains a 384 GB/s on-chip bandwidth. The cross-
bar also guarantees a sequential consistency memory model
for the C64 chip architecture. Fence-like instructions is not
needed to ensure the order between memory operations [16].
C64 provides no hardware support for context switch, and
currently uses a non-preemptive thread execution model.

The current C64 architecture supports several synchro-
nization mechanisms. Atomic in-memory instructions, such
as test-and-set, can be used to implement various spin-locks.
The sleep/wakeup instructions can be used for post/wait
type of synchronization. A 16-bit signal bus, to which all
thread units are connected, supports the efficient imple-
mentation of barriers. The compare-and-swap (CAS), load-
linked, and store-conditional instructions are not currently
supported in the design of C64 chip architecture [16]. How-
ever, for the purpose of comparison, we implemented the
CAS instruction in the simulator.

We use detailed simulation to evaluate SSB. We use an
execution-driven full-system simulator for the C64 architec-
ture, which models all the components of the C64 chip de-
sign, including the 160 TUs, the memory modules, and the
on-chip crossbar network. The three-level memory hierar-
chy is modeled in detail, including the contention in mem-
ory banks and the crossbar network [14]. We implemented
the proposed SSB extension to C64 in the simulator. In our
simulation, we use a 16-entry SSB for each on-chip memory
bank, and a 1,024-entry SSB for each off-chip memory bank.
Both are 8-way set associative.

In the rest of the section, we will answer the following
questions: 1) What is the cost of a successful synchroniza-
tion operation? 2) How effective is SSB for fine-grain lock
synchronization? 3) How effective is SSB for fine-grain data
synchronization? and 4) How effective is SSB in exploiting

Table 2: Summary of Benchmarks Analyzed for SSB Behavior

Benchmark Description

[Source

[Data Set [Synchronization

Random Access HPCC Benchmarks [1]

random updates of memory

217 64-bit integers write lock

Livermore Loop 13 Livermore Loops [17]

3-D particle-in-cell

4K doubles for h table, 512 iterations write lock

Tivermore Loop 14 Livermore Loops

1-D particle-in-cell

4K doubles for rh table, 2,048 iterations write lock

Ordered Integer Set Common data structure hash-table based

35 buckets, average load 100 write/read lock

K1, K2, K3
K4, K5, K6

Kernel Loops from
SPEC OMP [39]

DOAcross Loops with constant
& positive dependence distances synch.

5000 iterations SWSR data

Livermore Loop 6 Livermore Loops

Tinear recurrence equations

5K doubles SWMR data sync.

2D Wavefront scientific application kernel

2D wavefront computation

1K X 1K doubles SWSR data synec.

Test-and-set CAS SSB.

Figure 6: Overheads of Mutual Exclusion

fine-grain parallelism? The set of benchmarks that we used
for experiments are summarized in Table 2.

5.2 Cost of Successful Synchronization

Previous studies have shown that fine-grain synchroniza-
tion results in successful synchronization in most cases [26,
44]. In this section we demonstrate that the cost of success-
ful synchronization for SSB is very low.

Fine-grain lock: To measure the overhead of different
synchronization mechanisms, we use a simple loop that it-
erates 10,000 times and at each iteration a 64-bit integer
value is loaded from on-chip SRAM, a simple arithmetic op-
eration is performed on the value, and the result is stored
back to the memory. A reference time is obtained by execut-
ing the loop sequentially without using any synchronization.
Then the synchronization overhead is calculated by compar-
ing the reference time with the execution time of the same
code extended with synchronization operations. When using
a test-and-set spin lock, a lock has to be acquired (released)
before (after) accessing the memory location. A lock-free
approach can be implemented using the compare-and-swap
(CAS) instruction to commit the result into memory if the
content of the memory location has not changed since the
last load. SSB-based synchronization is similar to the spin
lock in this case. The loop with synchronization is also exe-
cuted on a single thread, thus all the synchronization opera-
tions (lock acquisition or CAS commitment) are successful.
Figure 6 shows that SSB incurs the lowest cost among the
three mechanisms. One reason for this is that an SSB in-
struction performs a successful synchronization and brings
the datum to the processor in one memory transaction, and
that keeps the cost low.

Table 3: Overhead of data synchronization
SSB Operations

sswsr_wl/ [sswsr_w2/ | sswmr_w/
sswsr_rl sswsr_r2 sswmr_r
Overhead (cycles) 22 24 26

Fine-grain data synchronization: In this experiment
we use a simple loop of 10,000 iteration with 2 threads. Each
iteration contains a barrier operation. We get the reference
time by employing one thread to perform a store before the
barrier, and the other to perform a load after the barrier.
The overhead is computed by comparing the reference time
with the execution time of the same code but replacing the
store/load operation with SSB synchronized write/read op-
eration. The barrier in the code guarantees the synchronized

T T T T

Software Lock—Array (Test—and—Set) —+——
CAS—based lock—free approach —>—

SSB: swlockil}gunlnck

L A

120 [= oo

B0 [or oo B

G0 [=rmme

Absolute Speedup

A0 [

B i

oM e L L L
1 2 4 8 16 32 64 128
Num of Threads

Figure 7: Speedup of Random Access

write happens before the synchronized read, which is always
successful as a result.

As shown in Table 3, the overhead of SSB data synchro-
nization operations are small when performed successfully.
The major overhead comes from the difference between a
synchronized write and a normal store instruction. It takes
1 cycle to issue a normal store instruction without intro-
ducing any data dependence. However, a data dependence
is formed between the synchronized write instruction and
the instruction that checks its return value (success, failure,
etc.). Therefore, there is a latency similar to a load opera-
tion. One can hide this latency by issuing other independent
instructions. Additional overhead comes from the code that
checks and handles the return value of the SSB operations.

5.3 Effectivenessfor Fine-Grain L ock

In this section, we examine the effectiveness of SSB for

fine-grain locking using the first four benchmarks listed in
Table 2.
Random Access. The unstructured reference in the code
(see Figure 1(a)) normally results in a single lock being as-
signed to the whole array, which serializes the execution.
One solution is to allocate an array of locks with the same
size as y, so that a thread can acquire the corresponding
lock for an element of y dynamically. However, this lock-
array approach doubles the memory usage. Using SSB, one
can simply provide the runtime calculated address as a pa-
rameter to the SSB lock interface to achieve the same effect
as the lock-array approach with no extra memory usage.

Figure 7 compares three parallelization schemes using dif-
ferent fine-grain synchronization mechanisms. The table is
placed in the on-chip SRAM. The software lock-array ap-
proach provides scalable performance, however, it incurs
large memory usage overhead. The CAS-based lock-free ap-
proach achieves a similar speedup curve as the lock-array
one (the two curves overlapped in Figure 7). The SSB-based
solution indicates the best performance by fully exploiting
the fine-grain parallelism with low cost synchronization op-
erations (see Section 5.2). When running on 128 threads, it
yields an absolute speedup of 101, outperforming the other
two approaches by 50.3% and 49.7% respectively.
Livermore Loops. Because of the cross-iteration depen-
dencies, Livermore Loops 13 and 14 cannot be easily paral-
lelized statically due to the irregular data access [41]. Within
each iteration, a few elements of the array are updated.

T T T
CoqrserGrain Spin—Lock (Loop 13)
SSB Fine—Grain Lock (Loop 13) —<—
ain Spin—Locl 12)
)

“ock (Loop 14
in Lock (Loop 14

Absolute Speedup

1 2 4 8 16 32 64 128
Num of Threads

Figure 8: Speedup of Livermore Loops

(a) SSB vs Coarse-Grain

Figure 9: Hash Table Based Ordered Integer Set.
Y-azis: normalized execution time by num of threads (millisec-
onds)

(b) SSB vs Software-based Fine-Grain

However, the calculation of the indices is unpredictable and
data-dependent. Since it is not necessary to preserve the
order of these updates, we use locks to guarantee mutual
exclusion for updating elements of the array.

Figure 8 compares coarse-grain synchronization with SSB.

The coarse-grain approach serializes the updates to the array
using a MCS spin-lock [29] to ensure mutual exclusion. The
fine-grain approach makes use of the SSB lock instructions
to individually lock the locations to be updated. Therefore,
the iterations that access different locations do not contend
with each other. The SSB-based synchronization exploits
the inherent parallelism in the code without unnecessarily
serializing the updates to non-conflicting locations. As a re-
sult, we achieve speedups of 114.3 and 72.4 on 128 threads
for Loop 13 and Loop 14, respectively.
Hash Table Based Ordered Integer Sets. In this study,
we use a hash table to implement an ordered integer set.
The hash table has multiple buckets, each managing an or-
dered linked list. We implemented four different versions of
concurrent hash tables:

e Coarse-grain lock based version: each bucket is pro-
tected by a MCS spin-lock [29].

o Lock-free version: uses Michael’s lock-free hash table
algorithm [30]. The hazard pointers mechanism is used
to guarantee safe memory reclamation of lock-free ob-
jects as well as ABA-safety [31].

o sw-rwlock version: uses software based read and write
locks. A lock variable is added into the data structure
of the node of the hash table. Read locks are continu-
ously acquired and released for accessed nodes, while
the code searches through a selected ordered linked
list. When the position where the key should be in-
serted or deleted is found, the corresponding read locks
are upgraded to write locks, and the operations are
performed. This version increases the memory usage
of every node by 50%.

e SSB version: similar as the sw-rwlock version. SSB
read and write lock operations are used to replace the
software-based ones. There is no need to modify the
data structure and no extra memory usage.

To evaluate these implementations, the hash table is ini-
tialized with 10 buckets and a load factor of 100, which rep-

resents the average number of items per bucket. Each thread
performs 1,000 operations, of which 20% are insertions, 20%
are deletions, and 60% are searches. At each iteration, the
operation to be performed is randomly determined, after
which a small random delay is inserted.

Figure 9 shows that the SSB based version achieves the
best performance when the number of threads is greater than
1. The execution time of the coarse-grain lock-based version
keeps increasing with the number of threads, because of the
contention when multiple threads access the same bucket
concurrently. The other three fine-grain versions show near
constant execution time even when the number of threads
reaches 128. With SSB instructions, the synchronization
overhead is small when there is no contention. Both the lock-
free and sw-rwlock version needs to check the return value of
the synchronization operations (CAS, or lock acquisition).
Therefore, even without contention, a synchronization oper-
ation incurs overhead at least equal to a load operation. In
addition, the lock-free version also needs to pay certain cost
for the safe memory reclamation. As shown in Figure 9,
when running on a single thread (i.e., no contention), the
lock-free version and sw-rwlock version are 56% and 42%
slower than the sequential version, respectively, whereas the
SSB-based version is only 9% slower. In all cases, the SSB
version is at least 14% and up to 84% faster than the other
two versions without any extra memory usage.

5.4 Effectivenessfor Fine-Grain Data
Synchronization

In this section, we evaluate the performance of SSB-based

fine-grain data synchronization with DOACROSS-style ker-
nel loops. We demonstrate how these kernels can be paral-
lelized to exploit fine-grain parallelism with the coordination
between SSB hardware and software.
Kernel Loops from SPEC OMP. The 6 kernel loops,
K1, K2, ..., K6, are extracted from multithreaded appli-
cations, such as 814.mgrid and 818.galgel [39]. The cross-
iteration dependence distance of all the kernels are constant
and positive. We parallelize those loops by statically as-
signing iterations to different threads in a round robin fash-
ion. We compared the SSB-based approach with the three
software-based synchronization methods (SYS, MAP, and
MYS), which are recently proposed by Kejariwal et. al [25].
For more details, please refer to [25]. For the SSB-based
approach, we use SSB SWSR operations to enforce the data
dependences among threads.

The workloads for each iteration of K1, K2 and K3 are
small. For instance, there is only one arithmetic operation
in the loop body of K'1. Because of the low computation to
synchronization ratio, none of the methods show significant
absolute speedup. However, in all cases (Figure 10(a), (b),
(c)), it is not surprising that SSB-based approaches show
better performance than software methods. For kernel K4,
K5, K6, all with a two-level loop nest, the workloads in-
side each iteration of the outer loop are large. The soft-
ware methods can only exploit the parallelism of the outer
loop. The SSB-based method can naturally exploit fine-
gain parallelism in the loop nests with no overhead of mem-
ory usage. Therefore, the SSB-based approach shows much
better scalability than the software-based approaches (Fig-
ure 10(d), (e), (f)). These 6 loops illustrate the effectiveness
of SSB-based fine-grain data synchronization (compared to
state-of-the-art software approaches) for DOACROSS loops

| OosmCe

Absoulte Speedup
Absoulte Speedup

_©OKOST=8)

Absoulte Speedup

8
3

alalcl ol |

Reggys

Absoulte Speedup
Absoulte Speedup

Write N=8 iterations, T=4 threads, round-robin (modulo T) scheduling

O Normal Read
O Synchronized Read
. Synchronized Write

~

©06600008 -

Iteration (i) i— (num_threads — 1) num_threads — 1

Figure 11: Parallelization and Synchronization of
Livermore Loop 6

with simple cross-iteration dependencies. The following two
benchmarks illustrates how SSB can help exploiting fine-
grain parallelism of applications with complex data depen-
dences, which cannot be easily handled by software methods.
Linear Recurrence Equations (Livermore Loop 6).
To parallelize the loop shown in Figure 1(b), we assign the
iterations to threads using the round-robin scheduling. The
SSB SWMR data synchronization mechanism is used to en-
force the data dependences between iterations.

Figure 11 illustrates our synchronization scheme through
an example that executes 8 iterations with 4 threads. Thread
1 marks W[1] as available via a synchronized write after it
completes iteration 1. It then starts iteration 5 according
to the scheduling policy. In iteration 5, the computation of
W[5] depends on W[1] to W[4]. However, it is not necessary
to explicitly wait for W[1], since thread 1 itself computed
W[1] in iteration 1. Accordingly, thread 2 does not need to
check the availability of W[1] and W[2] when executes iter-
ation 6, since it computed W[2] with the readiness of W[1]
in iteration 2.

With this scheme, when a thread starts an iteration i
to compute W[il, it first uses normal load instructions to
read from W[0] to WL[(i-1)-(T-1)]1, where T is the number
of threads. Then synchronized reads (sswmr_r) are used
to fetch the other T-1 elements of W. After completing the
iteration, the thread issues a synchronized write (sswmr_ w)
to W[i] to inform T-1 readers. Therefore, the number of
synchronization reads and writes required for each iteration
does not depend on the problem size, but on the number

»
5
T

| DOBEON

Absoulte Speedup

sys MAP MYS SsB

80

T T
SSB Fine-Grain —9—
70 ko Coarse=Grain —&—

60 [mmrme
5O [

40 [

Absolute Speedup

30 [

R d i S CEL

O e

0 I I
1 2 4 8 16 32 64 128
Num of Threads

Figure 12: Speedup of Livermore Loop 6

of threads. It is now clear that this application kernel also
satisfy Equation 2 (S(¢) < M x B) introduced in Section 2.

Figure 12 compares the fine-grain parallelization approach

with a coarse-grain implementation based on [17]. Both ver-
sions are based on a sequential version, whose outer loop has
been unrolled 4 times. A speedup is also calculated against
this sequential code. By exploiting fine-grain parallelism,
the fine-grain data synchronization based approach demon-
strate significant performance advantage over the coarse-
grain counterpart. For instance, when running with 128
threads, the SSB-based fine-grain approach yields an abso-
lute speedup of 72, a 312% performance improvement over
the coarse-grain scheme.
Wavefront Computation. Wavefront is a common com-
putation form in scientific codes. For a 2D matrix with ini-
tialized left and top edges, each remaining element is com-
puted from its neighbors to the left, above, and above-left.
To parallelize the code, we treat each row of the matrix as a
task, and assign rows to threads using round-robin schedul-
ing. As a result, only the presence of the above neighbor
of an element need to be checked before computing this el-
ement. In our implementation, we group 8 consecutive el-
ements in a row as a block. For each block, a thread only
loads/stores the first element via SSB synchronized read (ss-
wsr_r2)/write (sswsr_w2). The other elements in the block
are accessed using normal load/store instructions.

Figure 13 shows the speedup of our parallelization of the
wavefront computation on a 1,024 x 1,024 matrix. We in-
crease the size of on-chip SRAM in simulator such that the
matrix can be stored on-chip. The speedup is calculated
against the sequential version with inner loop being unrolled
8 times. The multithreaded implementation of wavefront
computation with fine-grain data synchronization demon-
strates the capability of the SSB to exploit the parallelism.
For example, the SSB-based fine-grain version shows an ab-
solute speedup of 104 when executed with 128 threads.

T T
120 | SSB Fine—Grain —>— .~
Linear Speedup —%—

L R A
BO [rrrr e A

60 [omrr e A A

Absolute Speedup

40 o S A

20 [A

1 2 4 8 16 32 64 128
Num of Threads

Figure 13: Speedup of Wavefront

Table 4: SSB Synchronization Success Rates and
SSB Full Rates

Success Rate SSB Full Rate
Benchmark 64 128 64 128
Threads | Threads ‘ Threads | Threads
Random Access 99.98% 99.96% 0 0
Livermore Loop 13 99.11% 98.42% 0 0
Livermore Loop 14 99.72% 99.59% 0 0
Ordered Integer Set 99.97% 99.93% 0 0.0004%
Livermore Loop 6 87.52% 72.13 0 0
Wavefront 99.86% 99.83% 0 0

55 Effectiveness of SSB

In Table 4, we report the percentage of successful synchro-
nizations of all synchronizations issued for 6 benchmarks.
We can observe that most fine-grain synchronizations are
executed successfully even when number of threads is large.
This is preferred because the cost of successful synchroniza-
tion operation is very low (see Section 5.2). The Livermore
Loop 6 has relatively low successful rate compared to oth-
ers. This is because a certain portions of synchronized reads
happen before the corresponding synchronized writes. We
do not show kernel loops K1, K2, ..., K6 in Table 4. For
those loops, when the number of threads are smaller than
or equal to the dependence distance (shown as DIST in Fig-
ure 10), the synchronization successful rates are also very
high. Otherwise, the rates are not high, since a certain por-
tion of synchronized reads are destined to fail at the first
attempt in such cases. For example, when dependence dis-
tance is 8 and 16 threads start computation at the same
time, the first attempt of synchronized read from thread 9 to
16 will fail, because the corresponding synchronized writes
from thread 1 to 8 have not yet finished.

We also observed that only one benchmark encounters the
situation where the SSB happens to be full. The percentage
is only 0.0004% among all synchronization operations issued.
In all other benchmarks, the buffer is never filled up. For
a set of multithreaded benchmarks with different workload
characteristics, we can see that a small SSB for each memory
bank is usually sufficient for recording the synchronization
states of active synchronized data units.

6. RELATED WORK

Our SSB design provides an illusion that the entire mem-
ory is tagged at word-level, and therefore can be consid-
ered as a “virtual tagged memory” design. The major differ-
ence between SSB and the classical tagged memory (e.g.
full/empty bits) in HEP [38|, Tera [5], MDP [13], Spar-
cle [3], M-Machine [24], the MT processor in Eldorado [18],
and other machines, has been explained in Section 1. I-
structure [6] memory system employed in some dataflow
model based architectures [6, 23] exploits similar design as

full/empty bits based memory system. Tagging each word
of the entire memory requires modification to off-the-shelf
SRAM or DRAM technologies and introduces significant
storage cost. Because of such cost, the number of state bits
that can be tagged to a word has to be small, which can
only be used to implement limited synchronization function-
alities. Because of the small storage cost, SSB can afford to
form much larger states in each entry, thus can potentially
support more synchronization functionality.

Hardware mechanisms such as QOLB [22], MAOs on SGI
Origin [27], lock box [41] for SMT processor, SoC lock cache [4],
AMO [45] and others, target to improve the efficiency of
lock primitives. Unlike SSB or tagged memory, they are
not designed to provide architectural support for word-level
fine-grain synchronization in memory. The M-Machine [24]
also allows fast synchronization between three on-chip pro-
cessors through register-register communication. Sampson
et. al. [37] proposed barrier filters, a hardware mechanism
for enabling fast barrier synchronization on multi-core chips.

Transactional memory (TM) using non-blocking synchro-
nization is proposed as a replacement to lock-based synchro-
nization [20, 35, 36, 28]. Most hardware TM designs need
to extend and modify the existing cache coherence proto-
cols and speculative execution techniques. Our current SSB
design relies on blocking synchronization mechanism, and it
will be interesting to see how to explore non-blocking syn-
chronization in an SSB-like design.

Finally, various loop optimization techniques have been
developed to minimize the amount of fine-grain synchroniza-
tion for parallelized do-across loops [32, 9, 33, 34]. Those
techniques can be combined with SSB-based hardware sup-
port to further improve the resulting code, especially when
the synchronization resource requirements exceeds the num-
ber of SSB entries provided.

7. CONCLUSION AND FUTURE WORK

This paper shows how fine-grain synchronization can be
effectively and efficiently supported in many-core architec-
ture design using the synchronization state buffer (SSB) with
only a modest hardware extension. We experimented the
SSB design in the context of IBM Cyclops-64 architecture.
Using detailed simulation, our experimental results demon-
strate the effectiveness and efficiency of our solution for a
set of benchmarks with different workload characteristics.

Our current design assumes the non-preemptive thread
model, which provides a good starting point to implement
the idea of SSB. To explore preemptive threads, virtualiza-
tion and other more elaborate hardware mechanisms will
be necessary for implementing SSB design. The virtualiza-
tion of SSB is beyond the scope of the current paper, and
we regard this as important future work. Other possible fu-
ture research includes language extensions to map high-level
constructs to the SSB synchronization mechanism, compiler
techniques that can optimize the allocation and scheduling
of SSB resources, and exploration of potential extensions of
SSB mechanisms to facilitate parallel program debugging,
runtime performance monitoring, and other techniques that
may take advantage of states bookkeeping by hardware.

8. ACKNOWLEDGMENT

This work was supported in part by IBM, ETI, DoD, DoE
(DE-FC02-01ER25503), NSF (CNS-0509332), and other gov-

ernment sponsors.
architect of the IBM Cyclops-64 architecture.

We acknowledge Monty Denneau, the
We thank

Arun Kejariwal and Xinmin Tian for providing the code of
kernel loops extracted from SPEC OMP. We thank all the
members of CAPSL group at University of Delaware. Spe-
cial thanks to Ioannis E. Venetis, Guangming Tan, Juan del
Cuvillo, Yuan Zhang, Xiaoming Li, and anonymous review-
ers for their invaluable feedback on the paper.

9.

(1]
(2]

(3]

(4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

REFERENCES

HPC challenge benchmark. http://icl.cs.utk.edu/hpcc/.

Meet Larrabee, Intel’s answer to a GPU.
http://www.theinquirer.net/default.aspx?article=37548.

A. Agarwal, J. Kubiatowicz, D. Kranz, B.-H. Lim, D. Yeoung,
G. D’Souza, and M. Parkin. Sparcle: An evolutionary
processor design for large-scale multiprocessors. IEEE Micro,
13(3):48-61, June 1993.

B. Akgul and V. Mooney. The system-on-a-chip lock cache.
Intl. Journal of Design Automation for Embedded Systems,
7(1-2):139-174, Sept. 2002.

R. Alverson, D. Callahan, D. Cummings, B. Koblenz,

A. Porterfield, and B. Smith. The Tera computer system.
SIGARCH Comput. Archit. News, 18(3b):1-6, 1990.

Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: data
structures for parallel computing. ACM Trans. Program.
Lang. Syst., 11(4):598-632, 1989.

S. Y. Borkar, H. Mulder, P. Dubey, S. S. Pawlowski, K. C.
Kahn, J. R. Rattner, and D. J. Kuck. Platform 2015: Intel
processor and platform evolution for the next decade, 2005.

C. Cascaval, J. Castanos, L. Ceze, M. Denneau, and et. al.
Evaluation of a multithreaded architecture for cellular
computing. In Procs. of 8th Intl. Symp. on High Performance
Computer Architecture, Boston, MA, 2002.

D.-K. Chen. Compiler Optimizations for Parallel Loops with
Fine-Grained Synchronization. PhD thesis, UIUC, 1994.

L. Chen, Z. Hu, J. Lin, and G. R. Gao. Optimizing fast fourier
transform on a multi-core architecture. In Procs. of Workshop
on Performance Optimization for High-Level Languages and
Libraries, Mar. 2007.

ClearSpeed Technology. CSX processor architecture
whitepaper, 2006.

W. J. Dally. Computer architecture in the many-core era. In
Keynote at the 24th Intl. Conf. on Comput. Design, 2006.
‘W. J. Dally and et. al. The message-driven processor. [EEE
Micro., 12(2):23-39, 1992.

J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao. FAST: A
functionally accurate simulation toolset for the Cyclops64
cellular architecture. In 1st Workshop on Modeling,
Benchmarking, and Simulation, Madison, WI, Jun. 2005.

J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao. Toward a
software infrastructure for the Cyclops-64 cellular architecture.
In Procs. of 20th Intl. Symp. on High Performance
Computing Systems and Applications, St. John’s, NL,
Canada, 2006.

M. Denneau and H. S. Warren, Jr. 64-bit Cyclops: Principles
of operation, Apr. 2005.

J. Feo. An analysis of the computational and parallel
complexity of the Livermore loops. Parallel Computing,
7(2):163-185, 1988.

J. Feo and et. al. Eldorado. In Procs of the 2nd Conf. on
Computing frontiers, pages 28-34, 2005.

M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins,

Y. Watanabe, and et. al.. Synergistic processing in Cell’s
multicore architecture. IEEE Micro, 26(2):10-24, 2006.

M. Herlihy and J. E. B. Moss. Transactional memory:
architectural support for lock-free data structures. In Procs. of
the 20th Intl. Symp. on Computer architecture, 1993.

Z. Hu, J. del Cuvillo, W. Zhu, and G. R. Gao. Optimization of
dense matrix multiplication on IBM Cyclops-64: Challenges
and experiences. In Procs. of the 12nd Intl. European Conf.
on Parallel Processing, Aug. 2006.

A. Kégi and D. B. J. R. Goodman. Efficient synchronization:
Let them eat QOLB. In Procs. of the 24th Intl. Symp. on
Computer Architecture, pages 170-180, 1997.

K. M. Kavi, A. R. Hurson, P. Patadia, E. Abraham, and

P. Shanmugam. Design of cache memories for multi-threaded

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

dataflow architecture. In Procs. of the 22nd Intl. Symp. on
Computer architecture, 1995.

S. W. Keckler, W. J. Dally, D. Maskit, N. P. Carter, A. Chang,
and W. S. Lee. Exploiting fine-grain thread level parallelism on
the MIT multi-ALU processor. In Procs. of the 25th Intl.
Symp. on Computer architecture, 1998.

A. Kejariwal, H. Saito, X. Tian, M. Gikar, W. Li, U. Banerjee,
A. Nicolau, and C. D. Polychronopoulos. Lightweight lock-free
synchronization methods for multithreading. In the 20th Intl.
Conf. on Supercomputing, Cairns, Australia, 2006.

D. Kranz and et. al. Low-cost support for fine-grain
synchronization in multiprocessors. Technical Report
MIT/LCS/TM-470, 1992.

J. Laudon and D. Lenoski. The SGI Origin: a ccNUMA highly
scalable server. In Procs. of the 24th Intl. Symp. on
Computer Architecture, 1997.

A. McDonald, J. Chung, B. D. Carlstrom, C. C. Minh,

H. Chafi, C. Kozyrakis, and K. Olukotun. Architectural
semantics for practical transactional memory. In Procs. of the
383rd Intl. Symp. on Computer Architecture, 2006.

J. M. Mellor-Crummey and M. L. Scott, “Algorithms for
scalable synchronization on shared-memory multiprocessors,”
ACM Trans. on Computer Systems, vol. 9, no. 1, pp. 21-65,
Feb. 1991.

M. M. Michael. High performance dynamic lock-free hash
tables and list-based sets. In the 14th Annual ACM Symp. on
Parallel Algorithms and Architectures, Aug. 2002.

M. M. Michael. Hazard pointers: Safe memory reclamation for
lock-free objects. IEEE Trans. Parallel Distrib. Syst,
15(6):491-504, 2004.

S. P. Midkiff and D. Padua. Compiler algorithms for
synchronization. IEEE Trans. on Comput., 36(12):1485-1495,
1987.

M. F. P. O’'Boyle, L. Kervella, and F. Bodin. Synchronization
minimization in a SPMD execution model. J. Parallel Distrib.
Comput., 29(2):196-210, 1995.

R. Rajamony and A. L. Cox. Optimally synchronizing
DOACROSS loops on shared memory multiprocessors. In
Procs. of 1997 Intl. Conf. on Parallel Architectures and
Compilation Techniques, 1997.

R. Rajwar and J. R. Goodman. Transactional lock-free
execution of lock-based programs. In Procs. of the 19th Symp.
on Architectural Support for Programming Languages and
Operating Systems. 2002.

R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional
memory. In Procs. of the 32nd Intl. Symp. on Computer
Architecture, Jun. 2005.

J. Sampson, R. Gonzalez, J.-F. Collard, N. Jouppi,

M. Schlansker, and B. Calder. Exploiting fine-grained data
parallelism with chip multiprocessors and fast barriers. In
Procs. of the Intl. Symp. on Microarchitecture, 2006.

B. Smith. The architecture of HEP. In Parallel MIMD
Computation: HEP Supercomputer and Its Applications,
Scientific Computation Series, pages 41-55. MIT Press,
Cambridge, MA, 1985.

SPEC. SPEC OpenMP benchmark suite.

G. Tan, N. Sun, and G. R. Gao. A parallel dynamic
programming algorithm on a multi-core architecture. In Procs.
of 19th ACM Symp. on Parallelism in Algorithms and
Architectures, Jun. 2007.

D. M. Tullsen, J. L. Lo, S. J. Eggers, and H. M. Levy.
Supporting fine-grained synchronization on a simultaneous
multithreading processor. In Procs. of the 5th Intl. Symp. on
High-Performance Computer Architecture, 1999.

S. Vangal, J. Howard, G. Ruhl, and et. al. An 80-tile
1.28TFLOPS network-on-chip in 65nm CMOS. In Procs. of
2007 Intl. Solid-State Circuits Conf., Feb. 2007.

I. E. Venetis and G. R. Gao. Optimizing the LU Benchmark
for the Cyclops-64 Architecture. CAPSL Technical Memo 75,
University of Delaware, Feb. 2007.

D. Yeung and A. Agarwal. Experience with fine-grain
synchronization in MIMD machines for preconditioned
conjugate gradient. In Procs of the 4th ACM Symp. on
Principles and practice of parallel programming, 1993.

L. Zhang, Z. Fang, and J. B. Carter. Highly efficient
synchronization based on active memory operations. In Procs.
of 18th Intl. Parallel and Distrib. Processing Symp., 2004.

