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Abstract—
State-of-the-art codelet scheduling focuses on dynamic work-

load balance of codelets (similar to tasks). While this approach
may achieve reasonable performance since computation re-
sources are fully utilized, it may not attain optimal energy
savings. In this paper, targeting at IBM Cyclops64 – a many-
core system, we propose a novel polynomial time algorithm
that finds out the optimal codelet scheduling in terms of
maximum locality and minimum global memory accesses. Our
algorithm leverages static information regarding locality among
codelets to achieve better performance and energy efficiency.
By using local buffers to pass data produced in one codelet
to another, global memory accesses can be greatly reduced.
The experimental results on our developed IBM Cyclops-64
emulator show that the codelet scheduling of our algorithm
removes up to 59.7% of global memory accesses, achieves up to
68.1% of performance improvement, and reduces up to 40.7%
of energy consumption comparing to the state-of-the-art codelet
scheduling.
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I. INTRODUCTION

To continue to reach new levels of performance, HPC
systems are growing extremely large and cumbersome. Cur-
rent means for effectively utilizing these systems are quickly
becoming antiquated. For this reason some are seeking
alternate execution models parting from the unsatisfying
MPI and OpenMP models which have dominated today’s
parallel paradigm. One such effort is the Codelet model
which aims at providing scalable fine-grained execution for
the upcoming exa-scale era. The Codelet model finds its
inspiration in the dataflow and its descendants such as the
hybrid dataflow/Von Neumann EARTH execution model[1].
We are hopeful that representing programs in there most
basic dependencies will enable intelligent (codelet based)
runtimes to adequately schedule and allocate resources in
the ever growing systems of the future.

Several new and emerging architectures share a similar
design trend, forgoing traditional caches for several levels
of globally shared memory used for data transformations
among cores. Each core has a local storage that can be
accessed with lower latency and power consumption rather
than accessing shared memory. This local storage can be
used to buffer data which will be used in immediate future

replacing caches. Some examples of such architecture de-
signs are IBM CELL Broadband Engine[2], IBM Cyclops64
[3], and Intel UHPC Straw-man architecture [4].

Locality exploitation is very important for the aforemen-
tioned architectures since: (1) there is no hardware cache to
automatically exploit locality, and (2) locality exploitation
improves both performance and energy efficiency. Unfortu-
nately, current codelet scheduling approaches mainly focus
on balancing workloads and reducing scheduling overhead.
Therefore, programmers have to manually exploit locality,
which is detrimental to the programming productivity.

In this paper, we study the problem of automatically ex-
ploiting locality among codelets. Given both a static codelet
graph and information regarding locality, our study targets
finding the best parallel schedule capable of maximizing
locality. The major contributions of this paper are as follows:

• We propose and study the codelet scheduling problem
for maximum locality exploitation (Best Scheduling
Problem). Through study of this problem we discover a
solution which provides better performance and energy
efficiency. To the best of our knowledge, we are the
first to study this problem in codelet scheduling.

• We propose a polynomial-time algorithm that provides
an optimal solution to the Best Scheduling Problem
when there are enough computation resources. In addi-
tion, the algorithm provides the minimal computation
resource required.

• For comparison, we studied two other algorithms, each
of which has different trade-offs in algorithmic com-
plexity, locality exploitation, program execution time,
and energy efficiency. We analyze and show suitable
algorithms which should be used in different circum-
stances.

We developed an emulation platform of the IBM Cyclops-
64 many-core architecture to study various algorithms to
solve the Best Scheduling Problem. Within the platform,
we studied the three algorithms on various applications
including matrix multiply, merge sort, and random generated
codelet graphs with reasonable assumptions. The experimen-
tal results show that we can reduce up to 59.7% of global
memory access via the locality exploitation. We also ob-



Figure 1. The Cyclops-64 processor chip block-diagram.

serve that our algorithms achieve up to 68.1% performance
improvement and 40.7% energy reduction comparing to the
state-of-the-art codelet scheduling.

The rest of the paper is organized as follows. Section II
introduces the background architecture and execution model
of our study in this paper. Section III introduces the method-
ology for solving the problem. Section IV introduces the
algorithms in the application of our methodology. Section V
reports our emulation platform and experimental results.
Section VI discusses the related work. Section VII summa-
rizes the paper.

II. BACKGROUND

We use the IBM Cyclops-64 many-core architecture (C64)
as our testbed. On C64, we study various algorithms that
automatically exploit locality in the codelet model. We
introduce the C64 architecture and the codelet model in
Section II-A and II-B respectively.

A. The Cyclops-64 Architecture

Fig. 1 shows a block-diagram of a C64 node. Each node
contains a 160-core chip, clocked at 500MHz. The chip is
comprised of 80 processors, each of which contain two cores
(called thread units or TU) and one floating point unit (FP).
Each TU features a simple 64-bit in-order RISC architecture
with 64 64-bit registers in its register file. Each FP is able to
issue one fused multiply-add instruction (FMA) per cycle.
Hence a C64 node has a theoretical peak performance of
80GFLOPS.

C64 has a 3-layer memory hierarchy with no data cache.
First, each TU is assigned a 15KB scratchpad memory
(SPM) with a memory bandwidth of 640GB/s. Moreover,
all the TUs are able to access 2.4MB of on-chip shared
SRAM with a memory bandwidth 320GB/s1 Finally, the chip
is equipped with 1GB of off-chip DRAM (16GB/s memory
bandwidth). Both SRAM and DRAM are accessed through
a 96-port crossbar switch.

1In practice, the amount of shared SRAM vs SPM is configurable at
boot-time.
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Figure 2. A motivating example of locality exploitation in the codelet
model. The weight on an edge represents the amount of locality that can
be exploited by scheduling the two ends of the edge on the same core. The
best plan exploits 31KB locality by scheduling AD to one core and BC
to another.

B. The Codelet Model

The codelet model is a fine-grain dataflow-inspired paral-
lel execution model. In an application written for the codelet
model, all code is partitioned into codelets. A codelet is
a sequence of instructions that can be executed in a non-
blocking fashion. A codelet extends traditional dataflow
operation semantics beyond data-driven actors. A codelet is
event-driven, firing once all data is available and all resource
requirements are met.

All the codelets are linked together based on data de-
pendencies to form a Codelet Graph (CDG) very similar to
a dataflow graph [5]. A CDG is contained in a Threaded
Procedure (TP). A TP is functionally invoked and contains
all the necessary space for the data passed between codelets.
Within a TP the CDG is static and acyclic. Our current work
focuses on the static CDGs within a TP.

III. METHODOLOGY

This section introduces the locality exploitation problem
and our solution. Firstly, we use an example to motivate
the idea of locality exploitation in the codelet model in
Section III-A. Next we formalize the locality exploitation
problem as the Best Scheduling Problem in Section III-B.
Finally, we introduce our methodology for solving the Best
Scheduling Problem in Section III-C.

A. Motivating Example

To motivate the exploitation of locality in the codelet
model, we present the following example. Fig. 2 shows
6 codelets and their dependencies. The starting and end-
ing codelets do not affect the locality exploitation. The 4
codelets in middle are working codelets. The arrows from
A and B to C and D indicate data dependencies between
the codelets. A codelet is unable to begin execution until
its dependencies are satisfied. The numbers on each arrow
signifies the data generated by source of the arrow and



/*Define # of parents for codelets C & D*/
1: dep_t depC=swarm_Dep_INITIALIZER(2,&C,...);
2: dep_t depD=swarm_Dep_INITIALIZER(2,&D,...);

3: CODELET_IMPL_BEGIN(A) //Begin of codelet A
4: ... //A’s work;

/*Satisfy A’s dependencies for C & D*/
5: swarm_Dep_satisfyOnce(&depC);
6: swarm_Dep_satisfyOnce(&depD);
7: CODELET_IMPL_END; //End of codelet A

8: CODELET_IMPL_BEGIN(B) //Begin of codelet B
9: ... //B’s work;

/*Satisfy B’s dependencies for C & D*/
10: swarm_Dep_satisfyOnce(&depC);
11: swarm_Dep_satisfyOnce(&depD);
12: CODELET_IMPL_END; //End of codelet B

13: CODELET_IMPL_BEGIN(C) //Begin of codelet C
14: ... //C’s work;
15: CODELET_IMPL_END; //End of codelet C

16: CODELET_IMPL_BEGIN(D) //Begin of codelet D
17: ... //D’s work;
18: CODELET_IMPL_END; //End of codelet D

Figure 3. A simplified SWARM codelet program corresponding to the
codelet graph in Fig. 2 (starting and ending codelets are omitted). The
SWARM runtime handles the codelet graph creation (line 1 and 2) and
dependency satisfaction (line 5,6,10,and 11).

consumed by the sink. This number also indicates potential
locality. For example, the arrow between A and C specifies
that 20KB of data produced by A will be consumed by C. In
general, A has to store this 20KB data into shared memory
since it guarantees that C is able to access the data no matter
where C is executed. However, if A and C are scheduled to
the same core, A does not need to store the 20KB data into
the shared memory. Instead, A may store the data into the
core’s local storage for future access of C. In such a way,
we exploit the locality between A and C.

Fig. 3 shows a simplified codelet program written in
SWARM [6]. The program corresponds to the codelet graph
in Fig. 2 without the starting and ending codelets. In the
program, line 1 and 2 specify that both codelets C and
D have two parents, respectively. Line 5 and 6 satisfy the
dependency from A to C and D once A’s work is done.
Similarly, line 10 and 11 satisfy the dependency from B
to C and D. SWARM has a runtime to create the codelet
graph, maintain the dependencies, and schedule the codelet
whose dependencies have all been satisfied.

In general, there may be multiple choices to exploit local-
ity. For example, we may schedule AC on one core and BD
on the other. This scheduling plan exploits 30KB locality.
However, the best plan for this example is to schedule
AD on one core and BC on the other, which exploits
31KB locality. For a more complicated case that contains
many codelets and dependencies, there may be exponential
selections. It would be hard for a programmer to figure out
the optimal schedule exploiting maximum locality. In this

paper, we discuss a number of algorithms that automate
selecting an optimal or nearly optimal schedule with respect
to maximizing locality. The details will be discussed in
Section IV.

B. Problem Statement

In this section, we formalize the problem of locality
exploitation as the Best Scheduling Problem. We assume
that the CDG is statically known. We also assume that the
information of potential locality is known. By partitioning
the CDG into several groups of codelets, we can generate
a static schedule. Each group may be assigned to a single
core. Then the adjacent codelets (the pair of codelets that
are executed contiguously on the same core) may use local
storage as a buffer to pass data. It reduces not only the
latency of the memory access, but also saves energy as
data is produced and consumed in place. Since the schedule
is static, the execution order of the codelets assigned to
the same group must be fixed. That is, the codelets in the
same group are totally ordered in the CDG. The generated
schedule should guarantee the maximum amount of potential
locality is exploited. With this, we define the Best Schedul-
ing Problem as follows:
(Best Scheduling Problem) Given a weighted CDG G =<
V,E,W > and a positive integer n, where V represents the
codelets, E represents the dependencies, W represents the
potential locality, and n represents the total number of cores,
find a mapping

f : V → {1, . . . , n}

to satisfy the following requirement:

Maximize : {
∑

W (v1, v2)|f(v1) = f(v2) ∧ v1 ↔ v2}

Subject to : ∀f(v1) = f(v2), v1
P−→ v2 ∨ v2

P−→ v1

,where v1 ↔ v2 means that v1 and v2 are adjacent (executed
one after the other) in the same group, and v1

P−→ v2 means
that there exists a path in G from v1 to v2.

C. Solution

We propose three algorithms to solve the Best Scheduling
Problem. The three algorithms have different trade-off in
the algorithmic complexity, locality exploitation, program
performance, energy efficiency, and required computation re-
sources. The features of the three algorithms are as follows:

• Min-cost flow based algorithm: This algorithm con-
verts the Best Scheduling Problem to a min-cost flow
problem. It guarantees an optimal solution. The time
complexity is O(knmlog(n)) where k is the number
of cores, n is the number of codelets, and m is the
number of dependencies in the codelet graph.

• Max first algorithm: This is a heuristic algorithm that
provides a nearly optimal solution in practice. Its time



complexity is O(nlog(n) +m) which is the lowest in
the three algorithms.

• Graph partitioning based algorithm: This algorithm
converts the Best Scheduling Problem to a graph parti-
tioning algorithm. Its time complexity is O(mlog(k))
which is lower than the min-cost flow based algorithm.

The details of the three algorithms will be introduced in
Section IV.

IV. ALGORITHM

In this section, we introduce three algorithms used to
automatically exploit locality in the codelet model. We first
formalize the problem in Section III-B. Then we explain
the three algorithms in Section IV-A,IV-B ,and IV-C, re-
spectively.

A. Min-cost Flow Based Algorithm

The Best Scheduling Problem can be converted to a min-
cost flow problem. Given the weighted codelet graph, we
can create a flow network that has two properties: (1) Each
scheduling plan corresponds to a flow in the flow network,
and vice versa; and (2) The sum of available weights in a
scheduling plan and the cost of the corresponding flow are
anticorrelated.

A min-cost flow algorithm finds the flow that has mini-
mum cost among all possible flows. Applying the above two
properties, we know that the corresponding scheduling plan
is the one with maximum sum of available weights among
all the plans. Therefore, the solution of the min-cost flow
problem corresponds to the solution of the Best Scheduling
Problem.

Algorithm 1 shows how to convert a given weighted
codelet graph G into a flow network N and how to map
the solution of the min-cost flow problem to the solution of
the Best Scheduling Problem.

From the algorithm, we can see that N has two initial
vertices src1 and src2 where src1 connects to src2 with
capacity equals to the total number of cores. The capacity
guarantees that the solution does not exceed the provided
number of cores.

Each codelet v in G is represent as two vertices v1 and
v2 in N . v1 connects v2 with capacity equals to 1. This
capacity guarantees that the codelet v can be executed at
most once. Moreover, the cost between v1 and v2 is equal to
a big negative constant number −M . This cost guarantees
that v will be executed since the min-cost flow must go
through (v1, v2) to include−M in its overall cost. Therefore,
the capacity and the cost between v1 and v2 guarantee that
the corresponding codelet v will be executed once and only
once.

If codelets v depends on codelet u in G, then u2 connects
to v1 with a capacity equal to 1 in N . If this capacity is
reached in the min-cost flow, then v will execute right after
u on the same core in the best scheduling plan. Since the
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Figure 4. The flow network converted from the codelet graph
in Figure 2. The resulting min-cost flow is consist of two paths:
Src1Src2A1A2D1D2Sink and Src1Src2B1B2C1C2Sink. The two
paths correspond to the best scheduling plan that schedules codelet AD on
one core and BC on the other.

locality between u and v is represented as W (u, v) in G, the
cost of (u2, v1) in N is the corresponding negative number
−W (u, v).

Finally, src2 connects to v1, and v2 connects to sink.
Both the capacities equal to 1. If the former capacity is
reached, then the corresponding v is the first codelet on
some core. If the latter capacity is reached, then v is the
last codelet on some core.

Fig. 4 shows the flow network converted from the
codelet graph of Fig. 2. The min-cost flow is rep-
resented by thick arrows. The min-cost flow goes
through two paths: (src1, src2, A1, A2, D1, D2, sink) and
(src1, src2, B1, B2, C1, C2, sink). That means the corre-
sponding best scheduling plan will schedule AD on one
core and BC on the other.

B. Max First Algorithm

In this section, we introduce a heuristic algorithm (called
max first algorithm) to provide nearly optimal solution for
the Best Scheduling Problem. The main idea of the algorithm
is to schedules the two codelets with maximum potential
locality to some adjacent position on the same core at every
step.



Algorithm 1: Using min-cost flow to solve the Best
Scheduling Problem

input : Total number of cores n
A weighted codelet graph G =< V,E,W >

output: A vector par stores the parent of each codelet.
Codelets par[i] and i will be scheduled to the
same core and executed one after the other. If
codelet i is the first codelet scheduled to some
core, then par[i] equals -1.

Data: N =< V,E,W,C > is the flow network that
corresponds to G, where

W is the weight i.e. cost of each edge
C is the capacity of each edge in N

−M is a big negative number to represent −∞
F is the min-cost flow

PSEUDO CODE:
N ← ∅;
N.V ← N.V ∪ src1 ∪ src2 ∪ sink;
N.E ← N.E ∪ (src1, src2);
N.W (src1, src2)← 0;
N.C(src1, src2)← n;
for each v ∈ G.V do

N.V ← N.V ∪ v1 ∪ v2;
N.E ← N.E ∪ (v1, v2) ∪ (src2, v1) ∪ (v2, sink);
N.W (v1, v2)← −M ;
N.W (src2, v1)← 0;
N.W (v2, sink)← 0;

for each (u, v) ∈ G.E do
N.E ← N.E ∪ (u2, v1);
N.W (u2, v1)← −w(u, v);

for each (u, v) ∈ N.E − (src1, src2) do
C(u, v)← 1;

F ← MinCostFlow(N);
for each v ∈ G.V do par[v]← −1;
for each u, v ∈ G.V do

if F (u2, v1) == 1 then
par[v]← u;

The algorithm is shown in Algorithm 2. Initially, all the
edges are put into an edge pool. Then the algorithm picks
the max edge (i.e., the one with highest weight) from the
pool. The two ends of the edge will be scheduled to the
same core in some adjacent position. The edges against
the scheduling will be removed from the edge pool. The
algorithm continues this process of picking and removing
until the edge pool is empty.

The max first algorithm has lower time complexity than
the min-cost flow based algorithm. If we use a heap as the
data structure to store the edge pool, its time complexity is
O(nlog(n) + m) where n is the total number of codelets
and m is the total number of dependencies.

Algorithm 2: Max first algorithm
input : A weighted codelet graph G(V,E,W )
output: A vector par stores the parent of each codelet.

Codelets par[i] and i will be scheduled to the
same core and executed one after the other. If
codelet i is the first codelet scheduled to some
core, then par[i] equals -1.

Data: P is an edge pool stored in a binary heap

PSEUDO CODE:
P ← G.E;
for each v in G.V do par[v]← −1;
while P 6= ∅ do

(u, v)← MaxElement(P );
P ← P − (u, v);
par[v]← u;
for (u, z) ∈ P do

P ← P − (u, z);
for (z, v) ∈ P do

P ← P − (z, v);

As a heuristic algorithm, the max first algorithm does
not guarantee optimal solution. One example is shown in
Fig. 2. The max first algorithm will exploit 30KB locality by
scheduling AC on one core and BD on the other. However,
the optimal solution can exploit 31KB locality by scheduling
AD on one core and BC on the other. In practice, we found
that the max first algorithm always finds nearly optimal
solution (no more than 7.0% worse). The details will be
explained in Section V.

C. Graph Partitioning Based Algorithm

We can also convert the Best Scheduling Problem to a
graph partitioning problem. A graph partitioning algorithm
[7] partitions the vertices of a weighted graph into multiple
groups. It guarantees that the sum of inter-group weights
(i.e., the weights of edges that go across groups) is mini-
mum or nearly minimal. By applying the graph partitioning
algorithm on a codelet graph, we may partition the codelets
into n groups where n is the total number of cores. Then the
codelets in the same group will be scheduled to the same
core. The minimum sum of inter-group weights indicates
that the schedule minimizes the waste of inter-core locality.

The benefit of the graph partition algorithm is that it can
handle any given number of cores. However, it has two
problems: (1) it may reduce parallelism of the codelet graph.
This is because the two codelets with no dependency may be
scheduled to the same core in its solution. So the scheduling
plan may need to add extra dependencies to maintain total
order of codelets on the same core. (2) The algorithm cannot
guarantee optimal solution because it counts false locality.
This is because the algorithm only minimize the waste of
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inter-core locality. For two codelets scheduled to the same
core, the false locality is counted even if the two codelets are
not adjacent. In practice it is unsafe to exploit such locality
because it requires data to overstay in the local storage,
which reduces the available space of local storage for the
execution of other codelets and may cause overflow.

V. EXPERIMENT

We evaluate the three algorithms on the C64 architecture
model. Section V-A introduces our experimental design. Sec-
tion V-B summarizes our major experimental observations.
Finally, section V-C reports our experimental results.

A. Experimental Design

Fig. 5 shows the overview of our experiment design. We
developed the following two modules for the experiments.

• Scheduling plan generator: This module uses our
proposed algorithms in Section IV to automatically
generate the codelet scheduling plan for locality ex-
ploitation. The inputs of the module are the static
codelet graph, the potential locality information among
the codelets, and the total number of cores. To fit the
C64 architecture feature, we assume that each core
will execute one codelet at a time. The output of the
module are the scheduling plans generated by the three
algorithms.

• Runtime Scheduling Emulator: This module emulates
the codelet runtime that schedules the codelet on a
C64 chip. The emulator could use either the default
scheduling approach or the input scheduling plan. The
default scheduling focuses on workload balancing but
no locality exploitation, which matches the state-of-the-
art codelet scheduling approaches. The input scheduling
plan may exhibit various locality exploitation, depend-
ing on the algorithm that generates the plan. The
other inputs of the module are the codelet graph, the
total number of cores, and the numbers and types of

instructions in each codelet. The output of the module
are the exploited locality, performance, and energy
consumption by using the different scheduling on the
codelet graph, respectively.

We use the following six applications in our experiments:

• mm (matrix multiplication kernel): This benchmark is
based on the previous study of matrix multiplication
on C64 [8]. It computes C = A × B where A,B, and
C are all 192×192 matrices that store double precision
floating point numbers. C is further partitioned into
many 6 × 6 tiles. Therefore, each codelet computes
the multiplication of a 6 × 192 matrix and a 192 × 6
matrix to generate a 6 × 6 tile in C. Since there are
1024 tiles in C, the amount of the codelets are the
same. Each codelet executes 6 × 6 × 192 = 6912
float multiply-add and 192 × 6 × 2 = 2304 load
instructions (half on A and half on B). For two codelets
that load the same part of A, the potential locality is
16Bytes× 2304/2 = 18432Bytes.

• ms (merge sort kernel): This benchmark computes a
sorting of 10K integers via a 7-level merge process.
Therefore, the codelet graph is a 7-level binary tree
with 127 codelets. A codelet at level l (0 ≤ l ≤ 6)
needs to execute 10K/2l times of comparisons, loads,
and stores, respectively. Half of the loads in a codelet
is from one child and the other half is from the other
child. Therefore, the potential locality between a parent
codelet at level l and one of its child is 8Bytes ×
10K/2(l+1).

• rt_ci (random tree with computation-intensive
codelets): This is a randomly generated tree-structure
codelet graph. The total number of codelets is 160
which matches the total number of cores on C64.
Each codelet is computation-intensive. The amount of
computation instructions is 6 times of the amount of
memory access instructions. This ratio matches the
ratio in mm because it is also a computation-intensive
benchmark.

• rt_mi (random tree with memory-intensive codelets):
This is also a randomly generated tree-structure codelet
graph with 160 codelets. Each codelet is memory-
intensive. The amount of computation instruction
equals to the amount of memory access instructions.
This ratio matches the ration in ms because it is also a
memory-intensive benchmark.

• rg_ci (random graph with computation-intensive
codelets): This benchmark is similar to rt_ci. How-
ever, the codelet graph is a randomly generated graph
with 160 codelets and 320 dependency edges. In our
observation, most codelet graphs have low average
fanout (e.g., around 2 for a codelet graph that represents
a parallel for loop). That is why we set the average
fanout to be 2.



• rg_mi (random graph with memory-intensive
codelets): This benchmark is similar to rt_mi.
However, the codelet graph is a randomly generated
graph with 160 codelets and 320 dependency edges.

We assume that the data of all the applications are initially
stored in the off-chip DRAM. For computation-intensive ap-
plications (i.e., mm, rt_ci, and rg_ci), we assume that the
application can fully hide the latency of memory accesses.
Therefore, each memory access instruction only takes one
cycle to issue. For memory-intensive applications (i.e., ms,
rt_mi, and rg_mi), we assume that the application is
unable to hide the latency of memory accesses. Therefore,
a load on the scratchpad memory will cause 2 cycles delay
and a load on the off-chip DRAM will cause 57 cycles delay
according to the C64 feature. Since a store on C64 does not
have acknowledgement, it only takes one cycle to issue.

In the experiments, we tested 4 scheduling algorithms.
They are described in Table I: Base, MCF, MF, and
GP. Base focuses on workload balancing but no local-
ity exploitation, which matches the state-of-the-art codelet
scheduling approaches. In Base, the codelet runtime main-
tains a global codelet queue. Whenever a codelet has
satisfied all of its dependencies, the codelet runtime will
put it in the codelet queue. Then the runtime will look
for an available core to execute the codelet. If there are
multiple available cores, the runtime will arbitrarily pick
one. The other three algorithms have different tradeoffs on
locality exploitation, algorithm complexity, etc. Without loss
of generality, we assume that the scheduling takes trivial
overhead. That is because the execution time of a codelet is
normally much larger than the overhead of the scheduling.

B. Major Observations

The major observations of our experimental results are
summarized as follows:

• MCF always exhibits best locality exploitation. It re-
duces up to 59.7% of global memory accesses. MF is
the second best (within 7.0% of difference comparing
to MCF).

• The applications using MCF outperform the same ap-
plications using the other scheduling algorithms. MCF

Table I
DESCRIPTION OF THE VARIOUS ALGORITHMS USED TO
SCHEDULE CODELETS ON C64. DESCRIPTION OF EACH

ALGORITHM IS IN THE RIGHT HAND SIDE COLUMN.

Name Description
Base Basic scheduling without locality ex-

ploitation
MCF Min-cost flow based algorithm (see

Section IV-A)
MF Max-first algorithm (see Section IV-B)
GP Graph partitioning based algorithm

(see Section IV-C)

achieves up to 68.1% of performance improvement
comparing to Base. MF is the second best (within 9.1%
of difference comparing to MCF).

• MCF exhibits best energy reduction on both overall and
dynamic energy consumptions. It reduces up to 40.7%
overall energy and 59.2% dynamic energy comparing
to Base. MF is the second best (within 8.5% of
difference on overall energy and 3.6% on dynamic
energy comparing to MCF).

C. Experimental Result

In this section, we report and analyze the experimental re-
sults of the evaluation on locality exploitation, performance,
and energy efficiency of the four scheduling algorithms.
Locality exploitation

Fig. 6 shows the best locality exploitation of three algo-
rithms (MCF, MF, and GP) applied on the six applications.
We do not show the result of Base because it does not
exploit locality. In the figure, the x-axis represents the six
applications. The y-axis represents the locality exploitation,
that is, the percentage of global memory accesses that have
been reduced via buffer in local storages. We have the
following observations from Fig. 6:

• MCF exhibits better locality exploitation than the other
two algorithms. This is because MCF guarantees optimal
solution that maximizes the locality exploitation. The
other two algorithms may not reach optimal solution
because they are heuristic algorithms.

• MF provides nearly optimal solutions. The difference
of locality exploitation is within 7.0% between MF and
MCF. The worst case of MF happens on rg_ci and
rg_mi because the codelet graphs are too complicated.
The other four applications have simpler codelet graphs
(either tree structure or uniformed weight). So MF finds
optimal (or very close to optimal) solutions for them.

• GP finds worst solutions. This is because GP suffers
from false locality between two codelets that are sched-
uled to the same core but not adjacent. The reason was
explained earlier in Section IV.

Performance
Fig. 7 shows the performance evaluation of the four

algorithms on various applications. The x-axis represents the
various applications. The y-axis features the normalized exe-
cution time of each application by using the four scheduling
algorithms, respectively. To make the comparison fair, all
the algorithms use the same amount of cores. We set the
amount to be equivalent to the requirement of MF because it
is the only algorithm that does not support arbitrary number
of cores. We have the following observations from Fig. 7:

• MCF outperforms the other three algorithms. It achieves
up to 68.1% of performance improvement comparing to
Base on rg_mi. For memory-intensive applications,
the latency of global memory accesses on DRAM is
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Figure 6. Best locality exploitation on various applications by using
the three algorithms from Section IV. X-axis represents the various ap-
plications. Y-axis features the percentage of global memory accesses that
have been reduced by each algorithm. Higher is better. MCF exhibits best
locality exploitation. It reduces up to 59.7% of global memory accesses
on application rt_ci and rt_mi. MF provides a good quality solutions
(within 7.0% of difference comparing to MCF). GP is the worst.

much longer than that of local storage accesses. So
the locality exploitation greatly reduces execution time
of each codelet. Therefore, the performance of the
application is improved. However, the performance of
computation-intensive applications is not affected by
the locality exploitation. The reason is that such ap-
plications may fully hide latency of memory accesses.
So both DRAM access and local storage access take
same execution time.

• MF is the second best. This is because its local-
ity exploitation is worse than MCF. In special cases,
better locality exploitation may not guarantee better
performance. However, in our experiments we haven’t
observed such a special case.

• GP performs worse than MCF and MF. There are two
reasons: (1) GP exhibits worst locality exploitation in
the three algorithms; and (2) GP may introduce extra
dependency edges to the codelet graph, which may
reduce the parallelism of the application. However,
GP still outperforms Base for memory-intensive ap-
plications because the locality exploitation reduces the
latency of memory accesses. For computation-intensive
applications, GP may slowdown the performance be-
cause it may reduce parallelism of the application. One
example is that GP is slower than Base on rg_ci.

Energy efficiency
The overall energy consumption of an application consists

of static and dynamic energy consumptions. The static
energy consumption is determined by the execution time.
On C64 it is 64.11W as explained in [9]. The dynamic
energy is determined by the number and type of the executed
instructions. Table II shows the energy consumption of
various instructions on C64 that was earlier tested in [9].
ldddram, lddsram, and lddspm are double-word load
instructions on DRAM memory, SRAM memory, and SPM,
respectively. Similarly, stddram, stdsram, and stdspm
are the corresponding store instructions. mov is the access
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Figure 7. Performance evaluation of the four algorithms on various
applications. X-axis represents the various applications. Y-axis features the
normalized execution time of the applications by using the four scheduling
algorithms. Lower is better. MCF outperforms the other algorithms (up to
68.1% of performance improvement comparing to Base). MF is the second
best (no more than 9.1% slower comparing to MCF). Base is the worst in
most of the cases but it outperforms GP on rg_ci.
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Figure 8. Overall energy consumption on various applications by using the
four algorithms. X-axis represents the various applications. Y-axis features
the normalized overall energy consumption of each algorithm applied to
various applications. Lower is better. MCF exhibits best energy efficiency.
It reduces up to 40.7% of overall energy comparing to Base. MF is the
second best (within 8.5% difference comparing to MCF).

on a double-word register. fmad is the multiple and add
computation on double precision floating point numbers.
Integer and logical operations consume similar energy. We
use add to represent them. Since [9] does not provide the
energy consumption of lddspm and stdspm, we use the
following formula to estimate them: lddspm (or stdspm)
= (lddsram (or stdsram) - mov) × ratio + mov. We
set ratio as 1/3 because the energy consumption of SPM
accesses is closer to register accesses than SRAM accesses.

Fig. 8 and Fig. 9 show the normalized overall and dynamic

Table II
ENERGY CONSUMPTION PER INSTRUCTION.

Instruction Energy (pJ/Operation)
ldddram 48924.10
stddram 51488.99
lddsram 964.65
stdsram 548.31

mov 105.48
lddspm 535.065
stdspm 326.895
fmad 245.27
add 127.65



energy consumption of the four algorithms on various ap-
plications, respectively. We have the following observations
from the two figures.

• MCF is the most energy efficient algorithm. It reduces
up to 40.7% of overall energy and 59.2% of dynamic
energy compared to Base. That is because MCF ex-
hibits both the best locality exploitation and the best
performance.

• MF is the second best due to its relatively good solution
for both locality exploitation and performance.

• GP is worse than the above two due to its poor solution
for both locality exploitation and performance.

VI. RELATED WORK

The Codelet execution model finds its roots in the classical
dataflow model originally proposed by Dennis[5]. Dataflow
has undergone several iterations which have served as inspi-
rations for the Codelet model including dynamic dataflow,
macro dataflow[10], and the EARTH system[1]. The most
closely related is the EARTH system as it incorporates
dual level parallelism in the form of data-driven fibers
and functionally invoked threaded procedures. The primary
difference between EARTH and the Codelet model is the
operational semantics of fibers versus codelets as fibers are
data-driven and codelets are event-driven.

Dataflow based execution models have received more
interest as multi and many-core architectures have become
more popular. These include several codelet based efforts
such as SWARM[6], FreshBreeze[11], and the ParalleX ex-
ecution model[12] which can directly benefit from our pro-
posed techniques. In addition, we believe our approach may
extend beyond codelet based execution models to more gen-
eral dataflow related technologies including Intel’s Thread-
ing Building Blocks’ augmented flow graphs[13], pragma
based StarSs[14], and the OpenMP-based OpenStream[15].

In the data-flow processor design[16][17][18], the similar
problem also exists, called program allocation. This posed
the problem of maximize concurrency while minimizing
contention for processing resources. In addressing this prob-
lem static scheduling was proposed[19]. This work utilizes
execution time and communication costs to determine an
appropriate schedule. Our methods differ since codelets are
much coarser than the originally proposed dataflow actors
and their execution time can not be guaranteed.

Currently there are several approaches to addressing lo-
cality at vary levels. A number of HPCS languages permit
locality abstractions permitting users to express relations be-
tween data and processing elements. Examples of these ab-
stractions include X10’s places[20] and Chapel’s locales[21].
For distributed systems, PGAS languages have included
data distribution features such as UPC[22] and CAF[23]. In
shared memory systems OpenMP is most popular, however it
has no inherent mechanism for locality. As NUMA effects
are becoming more prevalent within a single node efforts
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Figure 9. Dynamic energy consumption on various applications by using
the four algorithms. X-axis represents the various applications. Y-axis
features the normalized dynamic energy consumption of each algorithm
applying on various applications. Lower is better. MCF exhibits best energy
efficiency. It reduces up to 59.2% of dynamic energy comparing to Base.
MF is the second best (within 3.6% difference comparing to MCF).

to introduce notions of locality have been proposed[24].
Besides, multiple efforts to introduce locality aware work
stealing have been explored in such works as SLAW[25],
CATS[26]. Lastly, locality optimization is used in compiler
optimization. [27] and [28] show the way to reuse the cache
and register with help of compiler, resulting in significant
performance improvement.

VII. CONCLUSION

In this paper, we propose and study the codelet schedul-
ing problem for maximizing locality exploitation among
codelets. The solution provides a codelet scheduling that
improves performance and saves energy by reducing the total
amount of global memory access. To solve this scheduling
problem, we propose one polynomial time algorithm to-
gether with two other heuristic algorithms, each of which
has different trade-offs in algorithmic complexity, locality
exploitation, program execution time, and computation time.
We analyze and show suitable algorithms which should be
used in different circumstances. We evaluate our algorithms
on an emulator based on the IBM Cyclops-64 many-core
architecture. The experimental result shows that our algo-
rithms reduce up to 59.7% of global memory access via the
locality exploitation. We also observe that our algorithms
give up to 68.1% performance improvement and 40.7%
energy reduction comparing to the state-of-the-art codelet
scheduling approach.
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