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Abstract. Recent emerging many-core-on-a-chip architectures presestuaas
on-chip parallelism through hardware support for multithreading. breoto
achieve fast development of parallel applications that exploit this neasgra-
chip parallelism to achieve highly sustainable performance, suitable gmegr
ming models are needed. OpenMP, the industry de facto standardifiogvpar-
allel programs on shared memory systems, could become a re&soantiidate.
To increase our understanding of the behavior and performancactbastics of
OpenMP programs on many-core-on-a-chip architectures, this papsents a
performance study of basic OpenMP language constructs on the IBNb®y
64 architecture, which consists of 160 hardware thread units in a single ch
Compared with previous work on conventional SMP systems [1], theheael of
OpenMP language constructs on C64 many-core architecture is abteastder
of magnitude lower.

1 Introduction

Although advances in IC processing technology have led talfads of millions (now
reaching 1 billion) of transistors to be fabricated on a k&rsilicon die, the delivered
performance versus number of transistors integrated iripafoh conventional single-
thread wide-issue superscalar architectures keep deglavier time. In order to utilize
the transistor budget and mitigate the effects of high auwenect delay, multi-core or
many-core-on-a-chip architectures are emerging. Instéaldvoting the entire die to
a single and complex processor, this new generation oftathral technology pro-
poses to integrate a large number of tightly-coupled sirppteessor cores on a sin-
gle chip. The many-core-on-a-chip architecture naturaXyloits the thread-level and
process-level parallelism, which are expected to be wigaebin future applications
and multiprocessor-aware operating system and envirotsnfizin

Cyclops-64 (C64) [3,4] is a petaflop supercomputer projecten development at
IBM T.J. Watson Research Laboratory. The C64 chip architecemploys the many-
core-on-a-chip approach by integrating 160 processingscon a single chip. To the
best of our knowledge, the C64 project is one of the most anulsitprojects currently
under development. Unlike other academia projects, a @gefigl system is planned to
be delivered in 2007.

Given the intra-chip parallelism presented by a many-@ore-chip architecture,
such as C64, it is important and challenging to provide héykll parallel programming



models for application developers to efficiently map thesigimt parallelism in appli-
cations to a large number of on-chip processing cores. Asfaatie industry standard
for writing parallel programs on shared memory systems @ [5] is considered as
one of the possible candidates. Parallel application deess express parallelism, work
sharing, and synchronization through the OpenMP languaggtiaicts. For the purpose
of understanding the behavior and performance charatitsrisf OpenMP-based par-
allel programs on many-core architectures, it is importargvaluate the performance
of OpenMP basic language constructs, whose overhead asdoump to 12% of the
total execution time in some instances [1].

To conduct a prototype study on high level parallel programgrmodels, we ported
the Omni-1.6 OpenMP compiler [6] to C64, and optimized thenD@penMP runtime
system to adapt to the C64 hardware features [7]. In thisrpapsed on the number
reported by the EPCC microbenchmarks [8], we measure ahadstgahe performance
characteristics of major OpenMP language constructs ondantgy-core-on-a-chip
architecture with up to 160 cores. In addition, we compareesults to previous work
on conventional SMP systems and find remarkable differenneme instances, the
overhead on C64 is one order of magnitude lower.

With our study we provide insight regarding the followingasts of software de-
velopment on many-core architectures: (1) we provide appbtn developers a better
understanding of the behavior of OpenMP programs on a marg/architecture; (2)
we give library and compiler developers hints regardingsfide optimizations and/or
language extensions specific to many-core architectupesjfcally, to efficiently ex-
ploit multi-level memory hierarchies and fast intra-chijmehronization mechanisms;
(3) using the OpenMP runtime library optimization as an egkento understand the
pros and cons of the C64 architecture, we provide softwareldgers hints on how to
write and optimize programs for this type of architecturetffe best of our knowledge,
this paper is the first attempt that measures and evaluaggsetfiormance character-
istics of OpenMP language constructs on many-core-ongaarichitecture with up to
160 cores.

2 Cyclops-64 Architecture

The Cyclops-64 (C64) [3, 4] is designed to serve as a dedigattaflop compute en-
gine for running high performance applications. A C64 gyste built out of tens of

thousands of C64 chips connected through a 3D-mesh netivbekC64 chip employs
the many-core-on-a-chip technology by integrating 16@Wware thread units, half as
many floating point units, the same number of embedded SRAKang banks, and

the communication hardware in the same piece of siliconFspeae 1).

A thread unit, the C64 computation cell, is a simple 64-bitgke issue, in-order
RISC processor operating at a moderate clock rate (500MEffigient support for
thread level execution, such as thread sleep/wakeup,@sgarated in the thread unit.
Resource virtualization mechanisms are not provided byhHrdware. For instance,
thread execution is non-preemptive, and there is no virhexhory manager.

The three-level (SP, on-chip SRAM, off-chip DRAM) memorgrarchy of the C64
chip is visible to the programmer. C64 does not employ dataeanstead, a portion
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of each SRAM bank can be configured as scratch-pad memorghvpinovides a fast
temporary storage to exploit locality under software colntfhe integration of thread
units and memory banks on a single chip is further leverag#dawich set of hardware
supported in-memory atomic instructions. Atomic instioes in C64 only block the
memory bank where they operate upon, while the remaininggbproceed servicing
other requests. This functionality facilitates the scaitgtof multithreading programs
with intensive synchronization operations.

C64 also employs the Network-on-Chip (NoC) concept, alchip resources are
connected to an on-chip crossbar network, which sustaif@Bigibandwidth per port
per direction, 384 GB/s per direction in total. Besides thessbar network, all the
thread units within a chip connect to a 16-bit signal bus,clviprovides a means to
efficiently implement barriers.

3 Experimental Infrastructure

As shown in Figure 2, the C64 system software toolchain [®hésinfrastructure for
software and application prototype development on thennog C64 system. The
toolchain provides binary utilities (assembler, linkerg. e GNU CC compilers (3.2.3
and 4.0.2), standard C and math libraries that are derived fhose in newlib-1.10.0.
A microkernel and the TiNy Threa®¥(TNT) runtime system are customized for the
unique features of the C64 architecture [10]. The TNT liprprovides user and li-
brary developers an efficient Pthread-like API for threagtlgoarallel programming
purpose. The OpenMP compiler and runtime environment iegddrom Omni-1.6 [6].
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We investigated and optimized the Omni OpenMP runtime tiptgy exploring C64
hardware features, such as the explicitly visible and Eagnable memory hierarchy,
the efficient in-memory atomic instructions, the threactlexecution support, and the
fast barrier synchronization through the on-chip signal [3i).

All the experiments are conducted on a functionally aceusahulator (FAST) [11].
FAST is an execution-driven, binary-compatible simulatba multi-chip C64 system.
It accurately reproduces the functional behavior and cotihtirdware components of
a C64 system. In addition, it generates timing informatioat taccounts for the main
sources of pipeline delays and stalls such as contentiormary, the crossbar, and/or
other functional units. Although not cycle accurate, tmformation has proven to be
useful for performance estimation, characterization gplieation tuning as well [11].
FAST has been extensively used by the C64 architecture rdéssgn at IBM for the
purpose of chip design verification, and dozens of systetwaoé developer and ap-
plication scientists for early application development.

4 EPCC Microbenchmarks

In order to understand the performance behavior of an Opeapfffication, we use
EPCC microbenchmarks [8] to measure the overheads of OpéemMdBage constructs.
The basic methodology employed by EPCC is as follows. Farsgference time is
obtained by executing a loop (or loop nests) sequentialthaut using any OpenMP
directive. Then, the overhead is calculated by comparimgyréference time with the
execution time of the same code extended with OpenMP cartstru



There are three components of the EPCC microbenchmark syfiolronization
benchmark measures the overhead of OpenMP work-sharing and mutulaiséxe di-
rectives, such as PARALLEL, PARALLEL FOR, BARRIER, CRITICAATOMIC,
and REDUCTION etc.. Thecheduling benchmark compares different scheduling poli-
cies — STATIC, DYNAMIC, and GUIDED. Thearray benchmark measures the over-
head of the PARALLEL directives with the PRIVATE, FIRSTPRME, and COPYIN
clauses. We execute all three benchmarks on a single C64nithipip to 128 threads
and report the experiment results in the next section.

5 Experimental Results

5.1 Synchronization Microbenchmark
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Fig. 3. Overhead (cycles) of Synchronization Directives (a) PARALLELRF®ARALLEL FOR
(b) BARRIER, SINGLE (c) Mutual Exclusion (d) Reduction

Figure 3(a) compares the overhead of the PARALLEL , the laopl, the combined
parallel work-sharing PARALLEL FOR constructs. It showattthe PARALLEL FOR



construct has overhead similar to that of PARALLEL. This ecéuse the overhead
of the FOR construct is much smaller than PARALLEL and remaimost constant.
From Figure 3(a) and (b), we can also see that the overhea®RfiE only slightly
higher than the overhead of BARRIER, which implies that thstof FOR is mainly
due to the implicit BARRIER at the end of the loop.

Note the high overhead of the SINGLE directive, especialhewthe number of
threads increases to 128. This is because the implementdt®INGLE is very expen-
sive in order to guarantee the semantics of SINGLE. The mgwuamtention incurred
to complete the SINGLE operation rises dramatically whenrthmber of threads in-
creases. SINGLE also suggests an implicit barrier.

Because the OpenMP runtime library is carefully designetitaned to map to the
C64 hardware features, and the hardware components of @a#ghatly coupled in a
single chip, the PARALLEL and BARRIER constructs incur mimiver overhead than
on conventional SMP systems. For example, a previous stljdshpws that the over-
head of the PARALLEL construct reaches 120 microsecond8,(00 cycles) when
running with 70 threads on a 72-node Sun Fire 15K system. Etele running with
128 threads, the same construct only presents a 63,02Gayaehead. This observa-
tion implies that the thread management on a C64 like mang-g&hitecture is much
more efficient than common SMP environments.

We customized the well-known linked-list-based MCS spickl algorithm [12] to
implement the low level lock acquisition and release piie in the OpenMP runtime
library [7]. Unlike common SMP systems where the overhedda¥ increases with the
number of threads, Figure 3(c) shows that the overhead afahakclusion constructs
in OpenMP remain within the same range without increasirsgn@tically. Even for
128 threads, the CRITICAL directive costs only 154 cycles.

The of overhead of the REDUCTION construct increases expitally, as shown
in Figure 3(d). As future work, the reduction operation carobtimized in the runtime
library by taking advantage of the C64’s rich set of in-meynatomic instructions,
which can perform certain operations, such as additiortracton, and various logical
operations, atomically in memory. From our previous exgrezes with other bench-
marks, such as Table Toy [11], we expect to improve the perdioce of REDUCTION
dramatically.

5.2 Scheduling Microbenchmark

In OpenMP, there are three means for scheduling loop itereamong threads: STATIC,
DYNAMIC, and GUIDED [5]. Please note that EPCC only repohs tverhead of the
GUIDED(n) scheduling policy for small values af. Figure 4 compares different loop
scheduling policies when running on 1 to 128 threads. It gaagnt that STATIC and
STATIC(128) always incur the lowest overhead in all casestire STATIC{) policy,
STATIC(1) causes the largest overhead, and the overheadadss to the overhead of
STATIC with increasing chunk size. Actually, the overhed&dATIC and STATIC(n)
increases slowly for runs from 2 threads to 64 threads. Whértlir2ads are executed
concurrently, the overhead is much larger than running édttthreads because of the
high memory contention.
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DYNAMIC(1), which is the most fine-grained scheduling pgligenerates huge
overheads (3,621 microseconds) when running on 128 thréaidss because the small
chunk size causes frequent dynamic scheduling functids, sa@hose execution time is
counted as the overhead. As a result, the overhead of sthgdsling is multiple orders
of magnitude smaller than dynamic scheduling.

The overhead of the GUIDER] scheduling is always better than the DYNAMIg(
The GUIDEDf) policy starts with a large chunk size, then gradually deses it tos.
Figure 4 also demonstrates that the STATIC policy alwaysarsitower overhead than
the GUIDED policy. The overheads measurement suggesteth@s4 OpenMP pro-
grammer should consider the STATIC scheduling policy asfitisé option for loop
scheduling, given the tasks can be statically balancedy ®tthe benefit of dynamic
load balancing surpasses the scheduling overhead, thenityaad guided scheduling
policy are worth being chosen.

In the OpenMP runtime library, the dynamic and guided schiegdunctions are
implemented to frequently access the thread descriptdrsametimes access the mas-
ter thread’s descriptor by acquiring a lock first. By takindvantage of the explicit
programmable multi-level memory hierarchy of C64, we pléue thread descriptor
of each work thread into its own scratchpad memory, whichrantaes very fast ac-
cesses, i.e., 1 cycle for a store, 2 cycles for a load. Theem#stead’s descriptor is
placed in on-chip global memory, whose access latency gelothan scratchpad but
smaller than off-chip memory. By leveraging the C64’s inmugy atomic instruction
and thread level execution support, the lock/unlock pireg used to guarantee the mu-
tual exclusion for accessing the master thread’s descrgptoefficiently implemented
as demonstrated in Figure 3(c) [7]. Therefore, compared @gotnmon SMP systems,
the overhead of loop scheduling is at least an order of magmitower on a C64-like
many-core-on-a-chip architecture. For example, as redart [1], when running on
a 72-node Sun Fire 15K, the DYNAMIC(1) incurs an overhead rouad 27M cy-
cles (30,000 microseconds) with 24 threads, while on C64stx0.44M cycles with
32 threads, and 1.8M cycles with 128 threads. The overhe&IATIC scheduling is
9,000 cycles with 24 threads on a Sun Fire 15K [1], but only @#3es with 32 threads,
and 4,298 cycles with 128 threads on C64.

5.3 Array Microbenchmark

The array microbenchmark measures the overhead of the PARALLEL directive with
the PRIVATE, FIRSTPRIVATE, and COPYIN clauses. In the catrdesign of C64
system software, the stack of a thread is placed in its onatcgpad memory and the
size of the stack is limited. As a result, in our experimewss,can only run the bench-
mark with an array size smaller than or equal to 729. As a wontrogress, the C64
toolchain will provide support for automatic stack extemsia feature that allows ap-
plications that require more stack than available to camtirunning at the expense of
performance. When the stack area is exhausted, the runtstensyutomatically relo-
cates the stack into off-chip memory. Notice the relocatsoperformed very quickly,
as it requires setting a few registers and copying a few ilmeafrom the stack (but not
all). If at a later point, the stack shrinks, the runtime systundoes the changes and
sets the program stack back to scratchpad memory. Howewverder to achieve good



performance, it is not recommended to declare large armykestack (as automatic
variables), or make deep recursive function invocatiorthéprogram.

As shown in Figure 5, the PRIVATE and FIRSTPRIVATE clauseg&imilar over-
heads (the overhead of FIRSTPRIVATE is slightly higher)n(pared with the PAR-
ALLEL constructs without any data-sharing attribute andadeopying clauses, it is
also clear that the curves of PRIVATE and FIRSTPRIVATE altmoatch the curve of
PARALLEL constructs. This means attaching the PRIVATE dRETPRIVATE clause
to the PARALLEL construct incurs negligible costs. In bothses, the compiler di-
rectly allocates the private array in the stack of each thredich incurs no overhead
at runtime.

For FIRSTPRIVATE, the C library functiobcopy is used to initialize the private
array by copying the contents of a global array. In the stah@dibrary of C64, routines
like memcpy, andbcopy, are optimized and fine tuned. They are aware of the explicit
memory hierarchy. The C64 load and store multiple instamstiare used to exploit the
memory bandwidth and save cycles from not issuing multipériictions. In addition,
the instruction sequences are manually scheduled to hideonyeaccessing latencies.
Since the array size used in our experiments is small, thgiggs performed very
efficiently. Therefore, no significant overhead is obselfeed- IRSTPRIVATE.

From Figure 5, the COPYIN clause generates one order of matgiarger over-
head than the other two clauses. By attaching the COPYINselétwthe PARALLEL
directive, the Omni OpenMP compiler generates codes thaarmdically allocate the
storage for thread private data. The heap manager allotteabread private data in
the on-chip global memory. There are also overheads frokiuatock operations for
using the memory allocator. Moreover, since the data isatkxd in the global memory
at runtime, the latency of memory accesses in the loop bodywish higher than ac-
cessing scratchpad memory. This is the reason why COPYIkhbiak larger overhead
than PRIVATE and FIRSTPRIVATE. This suggests a scope fosides optimizations
either in the compiler or the runtime system.

6 Reated Work

Previous work [7] demonstrated a set of optimizations on@mneni OpenMP run-
time library by exploiting C64 hardware features. We introeld the optimization tech-
niques and demonstrated the effectiveness by showing terpance improvement
of OpenMP synchronization constructs compared to the imied OpenMP runtime
library. This paper presents the measurement and evatuaitiall major OpenMP lan-
guage constructs, including synchronization directigededuling policies, and array
clauses, with the optimized runtime library on C64. We atsmpare our results to those
previously reported on conventional SMPs. The purposeisfwirk is to provide the
application programmers, compiler and library developdsstter understanding of the
behavior of OpenMP programs on a many-core architecture.

Most of the previous work on performance characterizatio®@@enMP were con-
ducted on the general purpose commercial shared memory $8téhss [8, 6, 13—15,
1]. Liao et. al. [16] evaluated OpenMP on chip multithreadatatforms. However, the
chip multiprocessor (UltraSPARC lll) evaluated in the papely has two cores. To
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the best of our knowledge, this paper is the first attempt tasues and evaluate the
performance characteristics of OpenMP language constaich C64-like (160 cores)
like many-core-on-a-chip architecture.

In [17,18], the authors presented the experiment resul@penMP NAS bench-
marks on an experimental Cyclops architecture. It is wooting that this experimental
architecture was a preliminary design of the Cyclops agechitre and it is never to be
built, while the first C64 system is planned to be delivere@@97. Also, this exper-
imental Cyclops architecture included data caches in tsggdeand the C64 system
employs scratchpad memory technology instead of data cilghther [17] nor [18]
conducted performance characterization of the OpenMRukagg constructs, since that
was not the purpose of those two papers.

7 Conclusion and Future Work

Multi-core or many-core-on-a-chip architecture tendseaidely accepted in the near
future. Given the massive intra-chip parallelism, a higbeleparallel programming
model is needed for fast and efficient application develagm@penMP is considered
as one reasonable candidate. In order to help the applicd¢ieeloper and system soft-
ware designer to increase the understanding of the perfarenaehavior of OpenMP
programs on many-core-on-a-chip architecture, this pegparts the performance char-
acteristics of OpenMP language constructs on the Cycldpship architecture, which
integrates 160 cores in a single chip. As for the future warwould like to evaluate
the performance of OpenMP on C64 with application kernetslanchmarks, such as
NAS parallel benchmarks, and the SPEC OMP Benchmark suite.
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