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Abstract. Recent emerging many-core-on-a-chip architectures present massive
on-chip parallelism through hardware support for multithreading. In order to
achieve fast development of parallel applications that exploit this massive intra-
chip parallelism to achieve highly sustainable performance, suitable program-
ming models are needed. OpenMP, the industry de facto standard for writing par-
allel programs on shared memory systems, could become a reasonable candidate.
To increase our understanding of the behavior and performance characteristics of
OpenMP programs on many-core-on-a-chip architectures, this paper presents a
performance study of basic OpenMP language constructs on the IBM Cyclops-
64 architecture, which consists of 160 hardware thread units in a single chip.
Compared with previous work on conventional SMP systems [1], the overhead of
OpenMP language constructs on C64 many-core architecture is at leastone order
of magnitude lower.

1 Introduction

Although advances in IC processing technology have led to hundreds of millions (now
reaching 1 billion) of transistors to be fabricated on a single silicon die, the delivered
performance versus number of transistors integrated in a chip for conventional single-
thread wide-issue superscalar architectures keep declining over time. In order to utilize
the transistor budget and mitigate the effects of high interconnect delay, multi-core or
many-core-on-a-chip architectures are emerging. Insteadof devoting the entire die to
a single and complex processor, this new generation of architectural technology pro-
poses to integrate a large number of tightly-coupled simpleprocessor cores on a sin-
gle chip. The many-core-on-a-chip architecture naturallyexploits the thread-level and
process-level parallelism, which are expected to be widespread in future applications
and multiprocessor-aware operating system and environments [2].

Cyclops-64 (C64) [3, 4] is a petaflop supercomputer project under development at
IBM T.J. Watson Research Laboratory. The C64 chip architecture employs the many-
core-on-a-chip approach by integrating 160 processing cores on a single chip. To the
best of our knowledge, the C64 project is one of the most ambitious projects currently
under development. Unlike other academia projects, a Cyclops-64 system is planned to
be delivered in 2007.

Given the intra-chip parallelism presented by a many-core-on-a-chip architecture,
such as C64, it is important and challenging to provide high level parallel programming



models for application developers to efficiently map the inherent parallelism in appli-
cations to a large number of on-chip processing cores. As a defacto industry standard
for writing parallel programs on shared memory systems, OpenMP [5] is considered as
one of the possible candidates. Parallel application developers express parallelism, work
sharing, and synchronization through the OpenMP language constructs. For the purpose
of understanding the behavior and performance characteristics of OpenMP-based par-
allel programs on many-core architectures, it is importantto evaluate the performance
of OpenMP basic language constructs, whose overhead accounts for up to 12% of the
total execution time in some instances [1].

To conduct a prototype study on high level parallel programming models, we ported
the Omni-1.6 OpenMP compiler [6] to C64, and optimized the Omni OpenMP runtime
system to adapt to the C64 hardware features [7]. In this paper, based on the number
reported by the EPCC microbenchmarks [8], we measure and evaluate the performance
characteristics of major OpenMP language constructs on a C64 many-core-on-a-chip
architecture with up to 160 cores. In addition, we compare our results to previous work
on conventional SMP systems and find remarkable differences. In some instances, the
overhead on C64 is one order of magnitude lower.

With our study we provide insight regarding the following aspects of software de-
velopment on many-core architectures: (1) we provide application developers a better
understanding of the behavior of OpenMP programs on a many-core architecture; (2)
we give library and compiler developers hints regarding possible optimizations and/or
language extensions specific to many-core architectures, specifically, to efficiently ex-
ploit multi-level memory hierarchies and fast intra-chip synchronization mechanisms;
(3) using the OpenMP runtime library optimization as an example to understand the
pros and cons of the C64 architecture, we provide software developers hints on how to
write and optimize programs for this type of architecture. To the best of our knowledge,
this paper is the first attempt that measures and evaluates the performance character-
istics of OpenMP language constructs on many-core-on-a-chip architecture with up to
160 cores.

2 Cyclops-64 Architecture

The Cyclops-64 (C64) [3, 4] is designed to serve as a dedicated petaflop compute en-
gine for running high performance applications. A C64 system is built out of tens of
thousands of C64 chips connected through a 3D-mesh network.The C64 chip employs
the many-core-on-a-chip technology by integrating 160 hardware thread units, half as
many floating point units, the same number of embedded SRAM memory banks, and
the communication hardware in the same piece of silicon (seeFigure 1).

A thread unit, the C64 computation cell, is a simple 64-bit, single issue, in-order
RISC processor operating at a moderate clock rate (500MHz).Efficient support for
thread level execution, such as thread sleep/wakeup, is incorporated in the thread unit.
Resource virtualization mechanisms are not provided by thehardware. For instance,
thread execution is non-preemptive, and there is no virtualmemory manager.

The three-level (SP, on-chip SRAM, off-chip DRAM) memory hierarchy of the C64
chip is visible to the programmer. C64 does not employ data cache. Instead, a portion
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Fig. 1. Cyclops-64 node

of each SRAM bank can be configured as scratch-pad memory, which provides a fast
temporary storage to exploit locality under software control. The integration of thread
units and memory banks on a single chip is further leveraged with a rich set of hardware
supported in-memory atomic instructions. Atomic instructions in C64 only block the
memory bank where they operate upon, while the remaining banks proceed servicing
other requests. This functionality facilitates the scalability of multithreading programs
with intensive synchronization operations.

C64 also employs the Network-on-Chip (NoC) concept, all on-chip resources are
connected to an on-chip crossbar network, which sustains a 4GB/s bandwidth per port
per direction, 384 GB/s per direction in total. Besides the crossbar network, all the
thread units within a chip connect to a 16-bit signal bus, which provides a means to
efficiently implement barriers.

3 Experimental Infrastructure

As shown in Figure 2, the C64 system software toolchain [9] isthe infrastructure for
software and application prototype development on the incoming C64 system. The
toolchain provides binary utilities (assembler, linker, etc.), GNU CC compilers (3.2.3
and 4.0.2), standard C and math libraries that are derived from those in newlib-1.10.0.
A microkernel and the TiNy ThreadsTM(TNT) runtime system are customized for the
unique features of the C64 architecture [10]. The TNT library provides user and li-
brary developers an efficient Pthread-like API for thread level parallel programming
purpose. The OpenMP compiler and runtime environment is ported from Omni-1.6 [6].
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We investigated and optimized the Omni OpenMP runtime library by exploring C64
hardware features, such as the explicitly visible and programmable memory hierarchy,
the efficient in-memory atomic instructions, the thread level execution support, and the
fast barrier synchronization through the on-chip signal bus [7].

All the experiments are conducted on a functionally accurate simulator (FAST) [11].
FAST is an execution-driven, binary-compatible simulatorof a multi-chip C64 system.
It accurately reproduces the functional behavior and countof hardware components of
a C64 system. In addition, it generates timing information that accounts for the main
sources of pipeline delays and stalls such as contention in memory, the crossbar, and/or
other functional units. Although not cycle accurate, this information has proven to be
useful for performance estimation, characterization and application tuning as well [11].
FAST has been extensively used by the C64 architecture design team at IBM for the
purpose of chip design verification, and dozens of system software developer and ap-
plication scientists for early application development.

4 EPCC Microbenchmarks

In order to understand the performance behavior of an OpenMPapplication, we use
EPCC microbenchmarks [8] to measure the overheads of OpenMPlanguage constructs.
The basic methodology employed by EPCC is as follows. First,a reference time is
obtained by executing a loop (or loop nests) sequentially without using any OpenMP
directive. Then, the overhead is calculated by comparing this reference time with the
execution time of the same code extended with OpenMP constructs.



There are three components of the EPCC microbenchmark. Thesynchronization
benchmark measures the overhead of OpenMP work-sharing and mutual exclusion di-
rectives, such as PARALLEL, PARALLEL FOR, BARRIER, CRITICAL, ATOMIC,
and REDUCTION etc.. Thescheduling benchmark compares different scheduling poli-
cies – STATIC, DYNAMIC, and GUIDED. Thearray benchmark measures the over-
head of the PARALLEL directives with the PRIVATE, FIRSTPRIVATE, and COPYIN
clauses. We execute all three benchmarks on a single C64 chipwith up to 128 threads
and report the experiment results in the next section.

5 Experimental Results

5.1 Synchronization Microbenchmark
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Figure 3(a) compares the overhead of the PARALLEL , the loop,and the combined
parallel work-sharing PARALLEL FOR constructs. It shows that the PARALLEL FOR



construct has overhead similar to that of PARALLEL. This is because the overhead
of the FOR construct is much smaller than PARALLEL and remains almost constant.
From Figure 3(a) and (b), we can also see that the overhead of FOR is only slightly
higher than the overhead of BARRIER, which implies that the cost of FOR is mainly
due to the implicit BARRIER at the end of the loop.

Note the high overhead of the SINGLE directive, especially when the number of
threads increases to 128. This is because the implementation of SINGLE is very expen-
sive in order to guarantee the semantics of SINGLE. The memory contention incurred
to complete the SINGLE operation rises dramatically when the number of threads in-
creases. SINGLE also suggests an implicit barrier.

Because the OpenMP runtime library is carefully designed and tuned to map to the
C64 hardware features, and the hardware components of C64 are tightly coupled in a
single chip, the PARALLEL and BARRIER constructs incur muchlower overhead than
on conventional SMP systems. For example, a previous study [1] shows that the over-
head of the PARALLEL construct reaches 120 microseconds (108,000 cycles) when
running with 70 threads on a 72-node Sun Fire 15K system. Evenwhile running with
128 threads, the same construct only presents a 63,020 cycles overhead. This observa-
tion implies that the thread management on a C64 like many-core architecture is much
more efficient than common SMP environments.

We customized the well-known linked-list-based MCS spin-lock algorithm [12] to
implement the low level lock acquisition and release primitives in the OpenMP runtime
library [7]. Unlike common SMP systems where the overhead oflock increases with the
number of threads, Figure 3(c) shows that the overhead of mutual exclusion constructs
in OpenMP remain within the same range without increasing dramatically. Even for
128 threads, the CRITICAL directive costs only 154 cycles.

The of overhead of the REDUCTION construct increases exponentially, as shown
in Figure 3(d). As future work, the reduction operation can be optimized in the runtime
library by taking advantage of the C64’s rich set of in-memory atomic instructions,
which can perform certain operations, such as addition, subtraction, and various logical
operations, atomically in memory. From our previous experiences with other bench-
marks, such as Table Toy [11], we expect to improve the performance of REDUCTION
dramatically.

5.2 Scheduling Microbenchmark

In OpenMP, there are three means for scheduling loop iterations among threads: STATIC,
DYNAMIC, and GUIDED [5]. Please note that EPCC only reports the overhead of the
GUIDED(n) scheduling policy for small values ofn. Figure 4 compares different loop
scheduling policies when running on 1 to 128 threads. It is apparent that STATIC and
STATIC(128) always incur the lowest overhead in all cases. For the STATIC(n) policy,
STATIC(1) causes the largest overhead, and the overhead decreases to the overhead of
STATIC with increasing chunk size. Actually, the overhead of STATIC and STATIC(n)
increases slowly for runs from 2 threads to 64 threads. When 128 threads are executed
concurrently, the overhead is much larger than running with64 threads because of the
high memory contention.
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DYNAMIC(1), which is the most fine-grained scheduling policy, generates huge
overheads (3,621 microseconds) when running on 128 threads. This is because the small
chunk size causes frequent dynamic scheduling function calls, whose execution time is
counted as the overhead. As a result, the overhead of static scheduling is multiple orders
of magnitude smaller than dynamic scheduling.

The overhead of the GUIDED(n) scheduling is always better than the DYNAMIC(n).
The GUIDED(n) policy starts with a large chunk size, then gradually decreases it ton.
Figure 4 also demonstrates that the STATIC policy always incurs lower overhead than
the GUIDED policy. The overheads measurement suggests thaton C64 OpenMP pro-
grammer should consider the STATIC scheduling policy as thefirst option for loop
scheduling, given the tasks can be statically balanced. Only if the benefit of dynamic
load balancing surpasses the scheduling overhead, the dynamic and guided scheduling
policy are worth being chosen.

In the OpenMP runtime library, the dynamic and guided scheduling functions are
implemented to frequently access the thread descriptor, and sometimes access the mas-
ter thread’s descriptor by acquiring a lock first. By taking advantage of the explicit
programmable multi-level memory hierarchy of C64, we placethe thread descriptor
of each work thread into its own scratchpad memory, which guarantees very fast ac-
cesses, i.e., 1 cycle for a store, 2 cycles for a load. The master thread’s descriptor is
placed in on-chip global memory, whose access latency is longer than scratchpad but
smaller than off-chip memory. By leveraging the C64’s in-memory atomic instruction
and thread level execution support, the lock/unlock primitives used to guarantee the mu-
tual exclusion for accessing the master thread’s descriptor are efficiently implemented
as demonstrated in Figure 3(c) [7]. Therefore, compared with common SMP systems,
the overhead of loop scheduling is at least an order of magnitude lower on a C64-like
many-core-on-a-chip architecture. For example, as reported in [1], when running on
a 72-node Sun Fire 15K, the DYNAMIC(1) incurs an overhead of around 27M cy-
cles (30,000 microseconds) with 24 threads, while on C64 it costs 0.44M cycles with
32 threads, and 1.8M cycles with 128 threads. The overhead ofSTATIC scheduling is
9,000 cycles with 24 threads on a Sun Fire 15K [1], but only 743cycles with 32 threads,
and 4,298 cycles with 128 threads on C64.

5.3 Array Microbenchmark

The array microbenchmark measures the overhead of the PARALLEL directive with
the PRIVATE, FIRSTPRIVATE, and COPYIN clauses. In the current design of C64
system software, the stack of a thread is placed in its own scratchpad memory and the
size of the stack is limited. As a result, in our experiments,we can only run the bench-
mark with an array size smaller than or equal to 729. As a work in progress, the C64
toolchain will provide support for automatic stack extension, a feature that allows ap-
plications that require more stack than available to continue running at the expense of
performance. When the stack area is exhausted, the runtime system automatically relo-
cates the stack into off-chip memory. Notice the relocationis performed very quickly,
as it requires setting a few registers and copying a few locations from the stack (but not
all). If at a later point, the stack shrinks, the runtime system undoes the changes and
sets the program stack back to scratchpad memory. However, in order to achieve good



performance, it is not recommended to declare large arrays on the stack (as automatic
variables), or make deep recursive function invocations inthe program.

As shown in Figure 5, the PRIVATE and FIRSTPRIVATE clauses have similar over-
heads (the overhead of FIRSTPRIVATE is slightly higher). Compared with the PAR-
ALLEL constructs without any data-sharing attribute and data copying clauses, it is
also clear that the curves of PRIVATE and FIRSTPRIVATE almost match the curve of
PARALLEL constructs. This means attaching the PRIVATE or FIRSTPRIVATE clause
to the PARALLEL construct incurs negligible costs. In both cases, the compiler di-
rectly allocates the private array in the stack of each thread, which incurs no overhead
at runtime.

For FIRSTPRIVATE, the C library functionbcopy is used to initialize the private
array by copying the contents of a global array. In the standard C library of C64, routines
like memcpy, andbcopy, are optimized and fine tuned. They are aware of the explicit
memory hierarchy. The C64 load and store multiple instructions are used to exploit the
memory bandwidth and save cycles from not issuing multiple instructions. In addition,
the instruction sequences are manually scheduled to hide memory accessing latencies.
Since the array size used in our experiments is small, the copying is performed very
efficiently. Therefore, no significant overhead is observedfor FIRSTPRIVATE.

From Figure 5, the COPYIN clause generates one order of magnitude larger over-
head than the other two clauses. By attaching the COPYIN clause to the PARALLEL
directive, the Omni OpenMP compiler generates codes that dynamically allocate the
storage for thread private data. The heap manager allocatesthe thread private data in
the on-chip global memory. There are also overheads from lock/unlock operations for
using the memory allocator. Moreover, since the data is allocated in the global memory
at runtime, the latency of memory accesses in the loop body ismuch higher than ac-
cessing scratchpad memory. This is the reason why COPYIN hasmuch larger overhead
than PRIVATE and FIRSTPRIVATE. This suggests a scope for possible optimizations
either in the compiler or the runtime system.

6 Related Work

Previous work [7] demonstrated a set of optimizations on theOmni OpenMP run-
time library by exploiting C64 hardware features. We introduced the optimization tech-
niques and demonstrated the effectiveness by showing the performance improvement
of OpenMP synchronization constructs compared to the unoptimized OpenMP runtime
library. This paper presents the measurement and evaluation of all major OpenMP lan-
guage constructs, including synchronization directives,scheduling policies, and array
clauses, with the optimized runtime library on C64. We also compare our results to those
previously reported on conventional SMPs. The purpose of this work is to provide the
application programmers, compiler and library developersa better understanding of the
behavior of OpenMP programs on a many-core architecture.

Most of the previous work on performance characterization of OpenMP were con-
ducted on the general purpose commercial shared memory SMP systems [8, 6, 13–15,
1]. Liao et. al. [16] evaluated OpenMP on chip multithreading platforms. However, the
chip multiprocessor (UltraSPARC III) evaluated in the paper only has two cores. To
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the best of our knowledge, this paper is the first attempt to measure and evaluate the
performance characteristics of OpenMP language constructs on a C64-like (160 cores)
like many-core-on-a-chip architecture.

In [17, 18], the authors presented the experiment results ofOpenMP NAS bench-
marks on an experimental Cyclops architecture. It is worth noting that this experimental
architecture was a preliminary design of the Cyclops architecture and it is never to be
built, while the first C64 system is planned to be delivered in2007. Also, this exper-
imental Cyclops architecture included data caches in the design, and the C64 system
employs scratchpad memory technology instead of data cache. Neither [17] nor [18]
conducted performance characterization of the OpenMP language constructs, since that
was not the purpose of those two papers.

7 Conclusion and Future Work

Multi-core or many-core-on-a-chip architecture tends to be widely accepted in the near
future. Given the massive intra-chip parallelism, a high level parallel programming
model is needed for fast and efficient application development. OpenMP is considered
as one reasonable candidate. In order to help the application developer and system soft-
ware designer to increase the understanding of the performance behavior of OpenMP
programs on many-core-on-a-chip architecture, this paperreports the performance char-
acteristics of OpenMP language constructs on the Cyclops-64 chip architecture, which
integrates 160 cores in a single chip. As for the future work,we would like to evaluate
the performance of OpenMP on C64 with application kernels and benchmarks, such as
NAS parallel benchmarks, and the SPEC OMP Benchmark suite.
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