OPELL and PM: A Case Study on Porting Shared Memory
Programming Models to Accelerators Architectures

Joseph B. Manzano, Ge Gan, Juergen Ributzka, Sunil Shrestha, and Guang R. Gao

Department of Electrical and Computer Engineering
University of Delaware
[jmanzano,gan,ggao]@capsl.udel.edu
[ributzka,sunilaachaju]@gmail.com

No Institute Given

Abstract. Limits on applications and hardware technologies have put a stop to the frequency race
during the 2000s. Designs now can be divided into homogeneous and heterogeneous ones. Homogeneous
types are the easiest to use since most toolchains and system software do not need too much of a rewrite.
On the other end of the spectrum, there are the type two heterogeneous designs. These designs offer
tremendous computational raw power, but at the cost of hardware features that might be necessary
or even essential for certain types of system software and programming languages. An example of
this architectural design is the Cell processor which exhibits both a heavy core and a group of simple
cores designed as a computational engine. Even though the Cell processor is very well known for its
accomplishments, it is also well known for its low programmability. Among many efforts to increase
its programmability, there is the Open OPELL project. This framework tries to port the OpenMP
programming model to the Cell architecture. The OPELL framework is composed of four components:
a single source toolchain, a very light SPU kernel, a software cache and a partition / code overlay
manager. To reduce the overhead, each of these components can be further optimized. This paper
concentrates on optimizing the partition manager by reducing the number of long latency transactions.
The contributions of this work are as follows.

1. The development of a dynamic framework that loads and manages partitions across function calls

to bypass the problem with restrictive memory spaces.
2. The implementation of replacement policies that are useful to reduce the number of DMA calls
across partitions.
3. A quantification of such replacement policies given a selected set of applications
4. An API which can be easily ported and extended to several types of architectures.

1 Introduction

During this decade, the multi / many core architectures have seen a renaissance, due to the insatiable hunger
for performance. Limits on applications and hardware technologies have put a stop to the frequency race
around 2006. Designs now can be divided into homogeneous and heterogeneous ones. Homogeneous designs
are the easiest to use since most toolchain and system software do not need too much of a rewrite. On the
other end of the spectrum, there are heterogeneous designs. These designs offer tremendous computational
raw power, but at the cost of hardware features that might be necessary or even essential for certain types of
system software and programming languages. An example of this architectural design is the Cell processor
which will be explained in the next section.

1.1 The Cell Broadband Engine

The Cell B.E. has been placed in the public eye thanks to being a central component in one of the fastest super
computer, being the main processing unit of the Sony’s Playstation 3 videogame console, and being the bane
of programmers everywhere. This architecture is a project in which three of the big computer / entertainment
companies, IBM, Sony and Toshiba, worked together to create a new chip for the seventh generation of home
video game consoles[1]. The chip possesses a heavy core, called the PowerPC Processing Element (or PPE
for short), which acts as the system’s brain. The workers for the chip are called the Synergistic Processing

Elements (or SPE for short) which are modified vector architectures which huge computational power. The
SPE possesses 256 KiB of local memory and a Memory Flow Controller which takes care of external Input
/ Output operations.

Both processing elements coexist on the die with a ratio of 1 to 8 (one PPE to eight SPEs), but more
configurations are possible. Finally, all the components are interconnected by a four-ring bus called the
Element Interconnect Bus (or EIB for short). Figure 1 shows a high level overview of the Cell B.E. This
chip is capable of around 200 Giga Floating Point Operations Per Seconds (FLOPS) for single precision and
around 102.4 Giga FLOPS for double precision!.

Although the heavy core possesses all the “standard” hardware components, the computational engine
lacks many of these features. The SPEs exhibit limited local memory, lack caches of any type, and it has no
virtual memory support. Communication between the host (PPE) and the computational engine (the SPEs) is
achieved through explicit Direct Memory Access (DMA) operations between the main memory and the local
memory of the computational engine. This puts more responsibilities on the system software, programmers
and users to take advantage of the system raw computational power by orchestrating all components using
the features of the computational engine.

PowerPC Processing Synergistic Processing Element
Element

Synergistic Processing Unit

= . - -
SPU
I I Registers

PowerPC Processing Element

Inst Unit Vector & || Fixed

L1 Instr calay ot
i nit
Cache gt

Load /
Store Unit
Branch

L1 Data| MMU Unit
Cache

Local Store Fixed
Even ||Fioating

Point
Memory Flow Fixed Point

Unit
[
Controller Point Unit
Unit

Registers

PowerPC Processor Storage
Subsystem
PPSS

L2 Cache

Fig. 1. Block Diagram of the Cell Broadband engine

1.2 Problem Formulation

The lack of programmability in the heterogeneous designs, especially in the Cell B.E., can be attributed to
the loss of many hardware features, such as caches, reorder buffers, etc and a lack of runtime systems to take
advantage of the architecture’s performance. The need for new software stacks is evident. Due to this need, the
OPELL framework was introduced. This framework tries to bring the OpenMP parallel programming model
(De facto shared memory parallel programming paradigm) to the Cell architecture. The OPELL framework
is composed of four components: a single source toolchain, a very light SPU kernel, a software cache and
a partition / code overlay manager. This extra layer greatly increases the system’s programmability, but it
comes at the cost of additional overhead from the framework. To reduce the overhead, each of the components
can be further optimized. This paper concentrates on optimizing the partition manager components by
reducing the number of long latency transactions (DMA operations) that it produces. The contribution of
this paper can be summarized as follows:

! These numbers come from the revised PowerXCell 8i Boards

1. The development of a dynamic framework that loads and manages partitions across function calls. In
this manner, the restrictive memory problem can be alleviated and the range of applications that can be
run on the co-processing unit is expanded.

2. The implementation of replacement policies that are useful to reduce the number of DMA calls across
partitions. Such replacement policies aim to optimize the most costly operations in the proposed frame-
work. Such replacements can be of the form of buffer divisions, rules about eviction and loading, etc.

3. A quantification of such replacement policies given a selected set of applications and a report of the
overhead of such policies. Several policies can be given but a quantitative study is necessary to analyze
which policy is best in which application since the code can have different behaviors.

4. An API which can be easily ported and extended to several types of architectures. The problem of
restricted space is not going away. The new trend seems to favor an increasing number of cores (with local
memories) instead of more hardware features and heavy system software. This means that frameworks
like the one proposed in this paper will become more and more important as the wave of multi / many
core continues its ascent. Moreover, the same concepts presented here can be extended to run on other
heterogeneous accelerator type architecture like GPGPUs and FPGAs.

This paper is divided as follows. Section 2 introduces relevant related work. Section 3 introduces the
OPELL framework and each of its components. Section 4 shows the partition manager framework and its
features. Section 5 presents the results for the partition manager different features. Finally, Section 7 shows
the conclusions and future work.

2 Related Work

There have been many attempts to increase the programmability in the Cell B.E. The most famous ones are
the ALF and DaCS]3] frameworks and the CellSS project[2]. The ALF and DaCS§ frameworks are designed to
facilitate the creation of tasks and data communication respectively for the Cell B.E. The Accelerator Library
Framework (ALF) is designed to provide a user-level programming framework for people developing for the
Cell Architecture. It takes care of many low level approaches (like data transfers, task management, data
layout communication, etc). The DaCS framework provides support for process management, accelerator
topology services and several data movement schemas. It is designed to provide a higher abstraction to the
DMA engine communication. Both frameworks can work together and they are definitely a step forward from
the original Cell B.E. primitives. They are not targeted to Cell B.E. application programmers, but to library
creators. Thus, the frameworks are designed to be lower level than expected for an OpenMP programmer.

The Cell SuperScalar project (the CellSS) [2] is designed to automatically exploit the function parallelism
of a sequential program and distribute them across the Cell B.E. architecture. It accomplishes this with a
set of pragma based directives. It has a locality aware scheduler to better utilize the memory spaces. It
uses a very similar approach as OpenMP. However, it is restricted to task level parallelism in comparison to
OpenMP that can handle data level parallelism. Under our framework, the parallel functions are analogous
to CellSS tasks and the partition manager is their scheduler. Many of the required attributes of the tasks
under CellSS are hidden by the OpenMP directives and pragmas which make them more programmable.

Finally, there have been efforts to port OpenMP to the Cell B.E.. The most successful one is the im-
plementation in IBM’s XL compiler[7]. The implementation under the XL compiler is analogous to the
OPELL implementation with very important differences. The software cache under the XL compiler is not
configurable with respect to the number of dirty bytes that can be monitored in the line. This allows the
implementation of novel memory models and frameworks as shown in [4]. The other difference is that the par-
tition manager under the XL uses static GCC like overlays. Under OPELL, the partitions can be dynamically
loaded anywhere in the memory which is not possible under the XL compiler.

3 Opell Framework

The Open Source OpenMP on CELL (or Open OPELL for short) developed at the University of Delaware
[6] is a porting of a very popular high performance parallel language to a heterogeneous accelerator type
architecture. Its main objective is to provide an open source OpenMP framework for the Cell B.E. architec-
ture. It is composed of an OpenMP toolchain, which produces Cell B.E. code from a single OpenMP source

tree; and a runtime that hides the heterogeneity of the architecture from the user. The framework provides
the following features: a single source compiler, a simple micro kernel, software cache, and the partition /
overlay manager.

3.1 Single Source Compilation.

The Cell B.E uses two distinct toolchains to compile its code for the architecture. This adds more complica-
tions to an already complex programming environment. In OPELL, the OpenMP source code is read by the
driver program. The driver clones the OpenMP source for both toolchains and calls the respective compiler
to do the work. The PPU compiler continues as expected, even creating a copy of the parallel function (which
is the body of the parallel region in OpenMP) and inserting the appropriate OpenMP runtime function calls
when needed. The SPU compiler has a different set of jobs. First, it keeps the parallel functions and discards
the serial part of the source code. Second, it inserts calls to the SPU execution handler and its framework to
handle the parallel calls and OpenMP runtime calls. Third, it inserts any extra function calls necessary to
keep the semantics of the program. Finally, it creates any structures needed for the other components of the
runtime system, links the correct libraries and generates the binary. After this step is completed, the control
returns to the driver which merges both executables into a single one. Figure 2 shows a high level graphical
overview of the whole single source process.

Source Code
——| Splitter / Cloner

Outlined Parallel Functions SPU Compiler

{, SPU Libraries plus Partition Outlines parallel functions

Ma"age_""d_soﬁwarecame Insert runtime libraries calls
PPU Object File plus GOMP
‘ runtime Calls
ler .
\:_ SPU Binary l SPU Linker
Creates partitions and
partition related structures
SPU Embedded Object Generates the SPU binary
¢ PPULibraries

L; Final Executable ‘ PPU Embedder ‘

Creates the SPU binary
will be inserted in the
final executable

Splitter / Cloner Generates two copies of the PPU Linker
same source

Joins everything together

PPU Compiler | Inserts stub functions for parallel calls ina single executable

Fig. 2. A high level overview of the single source toolchain. Under this framework the SPU Embedder will “generate”
a new SPU binary (i.e it wraps it with a special API) so it can communicate with the host

3.2 Simple Execution Handler

This small piece of code? deals with the communication between the PPU and SPU during runtime and how
runtime and parallel function calls are handled. Since each of the SPUs have very limited memory, it is in
everybody best interest to keep the SPU threads very light. To achieve this, the SPU thread will be loaded
only with a minimal set of the code (the simple execution handler and a set of libraries). This SPU resident
code does not include the parallel regions of the OpenMP code nor the OpenMP runtime libraries. Since both
are needed during runtime, they are both loaded or executed on demand, but by different mechanisms. The
parallel regions are loaded and executed by another component, i.e. the partition manager, which loads and

2 In this paper, the terms simple execution handler and SPU micro kernel will be used interchangeably

overlays code transparently. The OpenMP runtime libraries require another framework to execute. Under
this framework, there exists an extra command buffer per thread that is used to communicate between the
SPE and PPE frameworks. Moreover, there exists a complementary PPE thread for each SPE thread which
is called the mirror or shadow threads which services all the requests from its SPE.

When a SPE thread is created®, the simple execution handler starts and goes immediately to polling.
When a parallel region is found by the master thread (which runs on the PPE), a message is sent to the
simple execution handler with the identifier’s ID and its arguments’ address. When it is received, the SPU
calls the code in the parallel region (through the partition manager). The SPU continues executing the code,
until an OpenMP runtime call is found. In the SPU, this call creates a PPU request to the command buffer.
This request is composed of the operation type (e.g. limit calculations for iteration space) and its arguments.
While the SPU waits for the results, the PPU calls the runtime function and calculates the results. The PPU
saves the results back to the Command buffer and sends a signal to the SPE to continue. Finally the SPU
receives the signal and reads the results. The SPU thread ends polling when the PPU shadow thread sends
a self terminate signal, effectively ending the thread’s life. Figure 3a shows a graphical representation of the
SPE micro kernel and communication framework.

Thr 0 serves as the
Master Thread and
creates all other
threads

- POSIX Thread
£ «—0-16b 4 byte: 128 bytes
I SPU Thread = &

tv bit vector 1z & status ta
ly 12 & status ta

/\Communlcatiun vy : ; status ita
tv bit vector status 1t
tv bit vector| tag & status ta
ty Vi) d 12 & status ta
tv bit vector statas ta
ty bit vector| tag & status ta

Element Interconnect Bus

(a) A high level overview of the (b) A high level overview of the Soft-
OPELL runtime ware cache structure

Fig. 3. Components of the Simple Execution handler and the Software cache

3.3 Software Cache

As stated before, the SPU component of the Cell B.E. does not have caches (at least not across the SPU local
storages) or any other way to maintain coherence. This presents a peculiar problem for the pseudo shared
memory which Open OPELL presents?. This heterogeneity hindrance is resolved by the software cache. This
framework component is designed to work like a normal hardware cache with the following characteristics.
It has 64 sets with 4-way associativity and a cache line of 128 bytes (most efficient size for DMA transfers).
Tts total size is 32 KiB and it has a write back and write allocate update policy. As a normal cache, each line
possesses a dirty-bit vector which keeps track of the modified bytes of the line. When the effective (global)
address is found in the cache, a hit is produced and the operation is performed, i.e. read or write.

In case that the effective address is not in the cache, a miss is produced. A read miss or write miss causes
an atomic DMA operation to be issued to load the desired value from memory and may produce a write
back operation if any of the bits in the dirty bit vector are set. The write process only touches the dirty

3 which happens before the application code is run
* Open OPELL is designed to support OpenMP which is a shared memory programming model

bytes and leaves the clean ones untouched. A graphical overview of the software cache is presented by figure
3b.
This component has been used in the testing and creation of weak memory models presented in [4].

3.4 Overlay / Partition Manager.

As the software cache is used for data, the partition manager is used for code. This small component is
designed to load code on demand and manage the code overlay space when needed. When compiling the
source code, certain functions are selected to be partitioned (not loaded with the original source code in the
SPU memory). The criteria to select these functions are based on the Function Call Graph, their size and
their runtime purpose, e.g. like parallel regions in OpenMP. Finally, the partitions are created, descriptive
structures are formed and special calling code is inserted when appropriate. During runtime, the function
call proceeds as usual (i.e. save registers, load parameters, etc), up to the point of the actual call. Instead of
jumping to the function, the control is given to the partition manager runtime and several decoding steps are
done. With information extracted from the actual symbol address, a loading decision is made and the code is
loaded into memory or not (if the code already resides in the overlay). Then, the partition manager runtime
passes control to the function. When the function finishes, the control returns to the partition manager so
any cleaning task can be performed, like loading the caller partition if it was previously evicted. Finally, the
partition manager returns to its caller without leaving any trace of its activities.
A more detailed description of this component is given in the next section.

4 The Partition Manager

The Partition Manager framework depends on four structures and some binary image changes. Some of them
are created by the compiler, while others are created and maintained during runtime. The partition manager
major components are described next.

4.1 Major Toolchain Changes

Under the Partition Manager framework, all partitionable code’s symbols will be modified. These symbols
represents the offset in bytes of the given symbol in its partition. The symbol’s partition id is saved in the
upper 14 bits. If the symbol is not in a partition, the upper 14 bits are zero and the lower bits represents
the absolute address of the function. The format of symbol is described in figure 4a

Extendable!!!

Symbol Offset Length: 128 bits ‘—'—’
The Format of a Symbol
(a) A symbol address bit range (b) The Partition list entry

Fig. 4. The symbol address bit range and the Partition list entry format

4.2 The Partition List

This structure is created by the toolchain. It consists of two parts which defines the partition offset on the
file and the partition size. Moreover, the partition list resides in the computational element local memory;

just after the program’s data section. Under this framework, a partition is defined as a set of functions for
which their code has been created to be position independent (PIC); thus they can be moved around the
memory as the framework sees fit. The actual partition code is not loaded with the program, but left in the
global memory of the machine. The partition offset part of a list element shows the offset (in bytes) from
the binary entry point. Finally, the size section of the entry contains the size in bytes of the partition on
the memory image. Under this model, each of the partitions is identified by a unique number that index
them into this list. When a partition is required, the element’s partition is loaded using the partition list
information and the correct buffer state is set before calling the function. The format and the bit range of
the partition list entries are described in figure 4b

4.3 The Partition Stack

The Partition Stack is a meta-structure which records the calling activity between partitions. It was designed
to solve a very simple problem: how to return from a function call which was called from another partition?
By keeping the partition stack, the framework can know who the caller of the current function call is, load
the partition back if it is required and save function state, i.e. registers which must be saved across partition
manager calls. Although the partition code is defined as PIC, when returning from a function call, the
framework must load the partition back to its original position. If this is not the case then a large amount
of binary rewriting and register manipulation is needed to ensure the correct execution of the function. This
is true even for PIC code since registers might have stale addresses to the original sub-buffer location.

4.4 The Partition Buffer

The Partition Buffer is a special region of the local memory, in which the partition code is swap in and out. It
is designed to have a fixed value per application, but it can be divided into sub-buffers if required. Moreover,
it contains certain state, like the current Partition index and the lifetime of the code in this partition; which
is used for book-keeping and replacement policies. This buffer is managed by the partition manager kernel.

The partition buffer and the partition list modifies the SPE binary image a bit. It adds the list to the end
of the data segment and the buffer after the interrupt table. The modified image compared with a normal
SPE image is given in figure 5

0x40000 0x40000

Loader and Loader and
Stack Areas Stack Areas
[) [) [] [) [) []

TOE Section
TOE Section

Data Section

(plus Partition List)

Data Section

Program Entry Point

Program Entry Point

0x00000

PM Buffer Area

Interrupt Handler(s]

Interrupt Handler(e)
!) 0x00000

Normal SPU loaded binary Enhanced SPU loaded binary

Fig.5. A comparison between the modified SPE binary image and a normal one

4.5 The Partition Manager Kernel

At the center of all these structures lies the Partition Manager. This small function takes care of the loading
and management of the partitions in the system. During initialization, the partition manager may statically
divide the partition buffer so that several partitions can co-exist with each other. It also applies the replace-
ment policy to the buffers if required. The sequence of operations involve in a simple partition manager call
is presented in Figure 6

Partition Stack

Partition List //

i
|
Vs

i
- Z
5 - Element’s Memory /5
. — — 4
5 [Partition Manager is called |
E % o | |Partition State is saved and
2 —— 1 3 —_— lsymbol’s address is decoded
. &
u;i ! 5 L [Request to load]
£) SR I—% X [Obtain external partition address |
& a $2,$14,52 PM J Load Partition via DMA
2 ori $8,$2,0 6 Call function
o pmecall main e 1 -
b 7 Return from function to PM
o brsl $lr,test_p)
ila $3,.LC7 I @ Restore partition state
E] Return to caller

Fig. 6. A typical partition manager call

The next section explains a replacement policy and an enhancement which is applied to the partition
manager framework and its effect on the number of operations.

5 The N Buffer: The Lazy Reuse Approaches

Since the partition buffer might be mostly empty most of the time, it can be broken down into sub-buffers
to further utilize the hardware resources. This opens many interesting possibilities on how to manage the
sub-buffers to increase performance. Even though this area is not new, these techniques are usually applied
in hardware. The techniques applied for replacement in this buffer are cache like in which that they try to
take advantage of partition locality. The first technique is when the buffer subdivisions are treated as FIFO
(first in first out) structures. In this context, this technique is called Modulus due to the operation used
to select the next replacement. The second one is based on one of the most famous (and successful) cache
replacement policies: Least Recently Used (LRU). First, we need to introduce the challenges of dividing the
buffer under our framework and how it affects each component.

The partition buffer is enhanced by adding extra state. Each sub-buffer must contain the partition index
residing inside of it and an extra integer value to help achieve advanced replacement features (i.e. the integer
can represent lifetime for LRU or the next partition index on a pre-fetching mechanism). Moreover, the
partition that resides in local memory becomes stateful under this model. A partition now can be active,
in-active, evicted or evicted with the opportunity of reuse. For a description of the new states and their
meanings, please refer to table 1.

Every partition begins in the evicted state in main memory. When a partition is used, the partition is
loaded and becomes active. From this state the partition can become in-active, if a new partition is needed
and this one resides into a sub-buffer which is not replaced; back to evicted, if it replaced and it doesn’t

| State | Location |Description |

Evicted | Main Memory |Partition was not loaded into local memory or it was loaded, evicted and it will
not be popped out from the partition stack.

Active |Local Memory|Partition is loaded and it is currently in use

In-active|Local Memory|Partition is not being used, but still resides in local memory
EWOR |Main Memory [Evicted With the Opportunity of Reuse. This partition was evicted from local
memory but one of the element of the partition stack will pop its partition id in
the near future.

Table 1. The Four States of a Partition

belong to the return path of a chain of partitioned function calls; or Fuicted with an Opportunity to Reuse,
in the case that a partition is kicked out but it lies on the return path of a chain of partitioned function
calls. An in-active partition may transition to evicted and FWOR under the same conditions as an active
one. An EWOR partition can only transition to an active partition.

These states can be used to implement several levels of partitioning. One of them is described in Section
5.3.

When returning from a chain the partition function calls, the partition must be loaded into the same sub-
buffers that they were called from. To achieve this, the partition stack node must know where the partition
originally resided. Thus, this structure must save the sub-buffer id.

5.1 Replacement Policies: The Modulus Approach

Under this approach, sub-buffers form a type of First-In First-Out (FIFO) structure in which the oldest
partition is always replaced. It follows the normal formula in which the next sub-buffer to be replaced is
selected by the formula next = (next + 1)modNSB where the next is the sub-buffer in which the new
partition is loaded and N.SB represents the total number of sub-buffers.

5.2 Replacement Policies: The LRU Approach

Under this approach, each of the sub-buffers has a lifetime counter which decrements every time that a
function is called on another partition. The formula to select the next buffer to be replaced becomes next =
MIN(LTA) where next is the sub-buffer where the next partition is put and LT A is the Lifetime Array
of values. In case that the minimum of the array is a set, this group of elements is managed as if it was
a FIFO buffer across different calls of the replacement policy functions. It is important to note that by
having multiple sub-buffers, duplication might be possible, the partition framework disallows this. In this
way, the framework would not get “confused” when figuring out which sub-buffer to jump in. In the case
that a partition is duplicated (for example when returning from a function call into a different sub-buffer),
the framework moves the partition to the correct sub-buffer and nullify its old locations. This move saves
a load to main memory or prevents the need to adjust all the address in the partition to match the new
sub-buffer.

5.3 The Victim Cache for the Partition Framework

Under this framework, the victim cache is a dynamically allocated piece of memory that is created when
EWOR partition are called. The EWOR partition is recognized by setting a bit in a partition mask (which
has support for 128 partition indexes) every time that a partition stack frame is pushed. When the partition
stack frame is popped, the bit on the mask is unset®. When a new partition is being loaded into the main
memory, the evicted partition index is checked against the partition mask. If they match, the partition code
which resides on the sub-buffer is copied to a newly allocated memory block. When an EWOR partition is
needed back, the victim cache is checked and the partition is copied back to the sub-buffer if found. Under
the current implementation, there is only a single entry on the victim cache. This means that it can only

5 This might create false positives in long chain of functions, but it is acceptable in practice

SPE's Local Storage

Fig. 7. The victim cache scheme

provide support for the most recent EWOR partition on the function chain. A high level overview of the
victim cache is given in figure 7.

Since the victim cache can be created dynamically, it can also be brought down in the same way. The
framework offers two wrappers for the memory allocators (i.e. malloc and free) which can check the memory
pool for availability. If the pool is empty or near it, the victim cache can be brought down to free up memory
for the application.

6 Experimental Testbed and Results

The partition manager framework uses a small suite of test programs dedicated to test its functionality and
correctness. The testbed framework is called Harahel and it is composed of several Perl scripts and test
applications. The next subsections will explain the hardware and software testbeds and presents results for
each of the test programs.

6.1 Hardware Testbed

For these experiments, we use the Playstation 3’s CBE configuration. This means a Cell processor with 6
functional SPE, 256 MiB of main memory, and 80 GiB of hard drive space. The two disabled SPEs are used
for redundancy and to support the hypervisor functionality. Besides these changes, the CBE processor has
the same facilities as high end first generation CBE processors. We take advantage of the timing capabilities
of the CBE engine. The CBE engine has hardware time counters which ticks at a slower rate than the
main processor (in our case, they click at 79.8 MHz). Since they are hardware based, the counters provided
minimal interference with the main program. Each of the SPEs contains a single counter register which can
be accessed through our own timing facilities.

6.2 Software Testbed

For our experiments, we use a version of Linux running on the CBE, i.e. Yellow Dog with a 2.6.16 kernel.
Furthermore, we use the CBE toolchain version 1.1 but with an upgraded GCC compiler, 4.2.0, which was
ported to the CBE architecture for OpenOPELL purposes.

The applications being tested include kernels used in many famous benchmarks. This testbed includes
the GZIP compression and decompression application which is our main testing program. Besides these
applications, there is also a set of micro-benchmarks designed to test certain functionality for the partition
manager. For a complete list, please refer to 2.

In the next section, we will present the overhead of the framework using a very small example.

| Name |Description

DSP A set of DSP kernels (a simple MAC, Codebook encoding, and JPEG compres-
sion) used at the heart of several signal processing applications.
GZIP The SPEC benchmark compression utility.
Jacobi A benchmark which attempts to solve a system of equations using the Jacobi
method.
Laplace A program which approximate the result of an integral using the Laplace method.
MD A toy benchmark which simulates a molecular dynamic simulation.
MGRID A simplified program used to calculate Multi grid solver for computing a 3-D

potential field.

Micro-Benchmark 1|Simple test of one level partitioned calls.

Micro-Benchmark 2|Simple chain of functions across multiple files.

Micro-Benchmark 3|Complete argument register set test.

Micro-Benchmark 5|Long function chain example 2.

Micro-Benchmark 6|Long function chain example 3: Longer function chain and reuse.
Micro-Benchmark 7|Long function chain example 4: Return values and reuse.
Micro-Benchmark 8|Long function chain example 5: Victim cache example.

Table 2. Applications used in the Harahel testbed

6.3 Partition Manager Overhead

Since this framework represents an initial implementation, the main metric on the studies presented will be
the number of DMA transfer produced by an specific replacement policy or/and partition feature. However,
we are going to present the overhead for each feature and policy.

The first version represents the original design of the partition manager in which every register is saved
and the sub-buffer is not subdivided. The improved version is with the reduction of saved registers but
without any subdivision. The final sections represent the policy methods with and without victim cache.

On this model, the overhead with the DMA is between 160 to 200 monitoring cycles. Although this is a
high number, these implementations are proof of concepts and they can be greatly optimized. For this reason,
we concentrate on the number of DMA transfers since they are the most cycle consuming operation on the
partition manager. Moreover, some of these applications will not even run without the partition manager.

6.4 Partition Manager Policies and DMA counts

Figure 9 and 8 show the relation between the number of DMA and the number of cycles that the application
takes using a unoptimized buffer (saving all register file), optimized one buffer (rescheduled and reduction
of the number of registers saved), optimized two buffers and optimized four buffers. For most applications,
there are a correlation between a DMA’s reduction and a reduction of execution time. However, for cases in
which the number of partition can fit in the buffers, the cycles mismatch like in Synthetic case 1 and 6.

Figure 10 show the ratio of Partition manager calls versus the number of DMA transfers. The X axis
represents the applications tested and the ratios of calls versus one, two and four buffers. As the graph shows,
adding the extra buffers will dramatically lower the number of DMA transfers in each partition manager
call.

Figure 11 selects the GZIP and MGRID applications to show the advantage of using both replacement
policies. In the case of MGRID, both policies gives the same counts because the number of partitions is very
low. In the case of the GZIP compression, the LRU policy wins over the Modulus policy. However, in the
case of decompression, the Modulus policy wins over the LRU one. This means that the policy depends on
the application behavior which opens the door to smart application selection policies in the future.

Finally, in Figure 12, we show that the victim cache can have drastically effects on the number of DMA
transfers on a given application (Synthetic case 8). As the graph shows, it can produce a 88x reduction in
the number of DMA transfers.

e czeo

(a)jSP (b) TZIPC | (c):ZIPD | (d) S;I”ACOBI
|||| “I 5||| ‘ |I
L/j’LACE | (f)“ j@ | . () 1\fRID | N (h) Sj\ITHl
NRIITRII
(i) SYNTH2 | G) Sill\ITHS | | (k) S:NTH5 | 1) ‘SYNT.HG
1 1h
- (m) ‘SYer‘“H7 | a (n))SYer;HS I

Fig. 8. DMA counts for all applications for an unoptimized one buffer, an optimized one buffer, optimized two buffers
and optimized four buffer versions

=1 2po JAcoB!

Illl “II-- 'II|| SERE
(a) DSP (b) GZIPC (c) GZIPD (d) JACOBI
(e) LAPLACE (f) MD (g) MGRID (h) SYNTH1
(i) SYNTH2 (j) SYNTH3 (k) SYNTH5 (1) SYNTH6
(m) SYNTH7 (n) SYNTHS

Fig. 9. Cycle counts for all applications for an unoptimized one buffer, an optimized one buffer, optimized two buffers
and optimized four buffer versions

Hsingle

Wratio 2

= ratio 4

DSP GZIPC GZPD JACOBI LAPLACE WD MGRID SYNTL SYNT2 SYNT3 SYNTS SYNTG SYNT7 SYNTS

Fig. 10. Ratio of Partition Manager calls versus DMA transfers

30
25
20
15 W LRU Partition
W MODULUS
10
5
0

GIP C GZIP D MGRID

Fig.11. LRU versus Modulus DMA counts for selected applications

victim LRU Vietim MOD Normal LRU Narmal MoD

Fig. 12. The victim cache comparison with LRU and Modulus policies

7 Conclusions and Future Work

Ideas presented in this paper show the trend of software in the many core age: the software renaissance. Under
this trend, old ideas are coming back to the plate: Overlays, software caches, dataflow execution models,
micro kernels, among others. This trend is best shown in architectures like Cyclops-64[5] and the Cell B.E.’s
SPE units. Both designs exhibit explicit memory hierarchy, simple pipelines and the lack of virtual memory.
The software stacks on these architectures are in a heavily state of flux to better utilize the hardware. This
fertile research ground allows the reinvention of these classic ideas. The partition manager frameworks rise
from this flux.

This paper shows a framework to support the code movements across heterogeneous accelerators com-
ponents. It shows how these effort spans across all components of the software stack. Moreover, it depicts
its place on a higher abstraction framework for a high level parallel programming language. It shows the
effect of several policies dedicated to reduce the number of high latency operations. Future work on this area
include the creation of a partition based function call graph which can be used for pre-fetching schemes and
the extension of task based framework that allows percolation of code.

References

1. CBE Architectural Manual.

2. Pieter Bellens, Josep M. Perez, Rosa M. Badia, and Jesus Labarta. Cellss: a programming model for the cell be
architecture. In ACM/IEEE CONFERENCE ON SUPERCOMPUTING, page 86. ACM, 2006.

3. Jordi Caubet. Programming ibm powerxcell 8i / qs22 libspe2, alf, dacs, may 2009.

4. Chen Chen, Joseph B. Manzano, Ge Gan, Guang R. Gao, and Vivek Sarkar. A study of a software cache imple-
mentation of the openmp memory model for multicore and manycore architectures. In Euro-Par (2)’10, pages
341-352, 2010.

5. Juan del Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. Gao. Tiny threads: A thread virtual machine for the
cyclops64 cellular architecture. Parallel and Distributed Processing Symposium, International, 15:265b, 2005.

6. Joseph B. Manzano, Ziang Hu, Yi Jiang, Ge Gan, Hyo-Jung Song, and Jung-Gyu Park. Toward an automatic
code layout methodology. In IWOMP, pages 157160, 2007.

7. Kevin O’Brien, Kathryn O’Brien, Zehra Sura, Tong Chen, and Tao Zhang. Supporting openmp on cell. Int. J.
Parallel Program., 36:289-311, June 2008.

