
Polytasks: A Compressed Task Representation
for HPC Runtimes

Daniel Orozco1,2, Elkin Garcia1, Robert Pavel1, Rishi Khan2 and Guang Gao1

orozco@udel.edu, egarcia@udel.edu, rspavel@udel.edu,
rishi@etinternational.com, ggao@capsl.udel.edu

1University of Delaware
2ET International

Abstract. The increased number of execution units in many-core pro-
cessors is driving numerous paradigm changes in parallel systems. Pre-
vious techniques that focused solely upon obtaining correct results are
being rendered obsolete unless they can also provide results efficiently.
This paper dives into the particular problem of efficiently supporting
fine-grained task creation and task termination for runtime systems in
shared memory processors.
Our contributions are inspired by our observation of High Performance
Computing (HPC) programs, where it is common for a large number of
similar fine-grained tasks to become enabled at the same time.
We present evidence showing that task creation, assignment of tasks to
processors, and task termination represent a significant overhead when
executing fine-grained applications in many-core processors.
We introduce the concept of the polytask, wherein the similarity of tasks
created at the same time is exploited to allow faster task creation, as-
signment and termination. The polytask technique can be applied to any
runtime system where tasks are managed through queues.
The main contributions of this work are:
1. The observation that task management may generate substantial

overhead in fine-grained parallel programs for many core processors.
2. The introduction of the polytask concept: A data structure that can

be added to queue-centric scheduling systems to represent groups of
similar tasks.

3. Experimental evidence showing that the polytask is an effective way
to implement fine-grained task creation/termination primitives for
parallel runtime systems in many-core processors.

We use microbenchmarks to show that queues modified to handle poly-
tasks perform orders of magnitude faster than traditional queues in some
scenarios. Furthermore, we use microbenchmarks to measure the amount
of time spent executing tasks. We show situations where fine-grained pro-
grams using polytasks are able to achieve efficiencies close to 100% while
their efficiency becomes only 20% when not using polytasks. Finally, we
use several applications with fine granularity to show that the use of
polytasks results in average speedups from 1.4X to 100X depending on
the queue implementation used.

This research was, in part, funded by the U.S. Government. The views and conclusions contained
in this document are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the U.S. Government.

2 Daniel Orozco, Elkin Garcia, Robert Pavel et. al.

1 Introduction

The development of processor chip architectures containing hundreds of exe-
cution units has unleashed challenges that span from efficient development to
efficient execution of applications.

The idea of partitioning computations into tasks (or equivalent concepts) has
been used by a number of execution paradigms such as pthreads[3], OpenMP
[7], Cilk[2] and others to address the efficiency of execution. Our techniques,
results and conclusions focus on the aspect of viewing tasks as units of computa-
tion, and they are orthogonal to implementation of tasks in particular execution
paradigms.

Execution of tasks varies from paradigm to paradigm, and generally includes
the use of queues to produce and consume (or execute) tasks as the program
progresses. It is a common occurrence in previous research to assume that tasks
that become enabled can be executed immediately, overlooking the fact that
enqueueing a task to make it available to other threads takes a nonzero time.
This assumption is reasonable in systems with few processors or coarse task
granularity because the time taken to enqueue a task is negligible compared to
the time taken to execute it. However, the enqueueing process can become a
significant source of overhead for systems where a large number of processors
participate in fine-grained execution.

A simple observation can be used to illustrate the problem: A system that
uses a queue (centralized or distributed) for task management where there are
P idle processors requires at least P tasks to be enqueued to allow execution
in all processors. Even if enough tasks are available, the time to enqueue them
becomes relevant as P grows. Advanced algorithms based on distributed struc-
tures or trees softens this problem by providing faster primitives due to lower
contention, but ultimately they do not intrinsically reduce the total number of
queue operations needed.

The overhead of assigning tasks in systems with many processors can be
solved by leveraging on a simple observation: Tasks that become enabled at the
same time are frequently very similar because, in many cases, all tasks direct
processors to execute the same instructions, using the same shared data, and
only a few parameters and local variables differentiate tasks from one another.

Our contributions are inspired by the idea that similar tasks can be efficiently
compressed and represented as a single task, that we refer to as a polytask. We
address the specific case in which tasks can be written in such a way that only
a single integer number can be used to retrieve their task-specific data. Many
programs have that property: iterations of parallel loops are differentiated by
their iteration index, threads in fork-join applications can be differentiated by
their thread identifier and so on.

We show that most queue primitives can support compression of tasks if a
small data structure containing two integers is added to the task description.
Using the added integers, we show that it is possible to efficiently perform task
management on compressed tasks.

Polytasks: A Compressed Task Representation for HPC Runtimes 3

The effectiveness of compressing tasks into polytasks is shown in experiments
where three traditional queueing techniques are modified to allow compression.
Our results show that compression of tasks, when possible, allows much faster
queue primitives than their noncompressed counterparts because (1) compressed
tasks represent several tasks, making a queue operation on them equivalent to
several queue operations on noncompressed tasks and (2) queue operations on
compressed tasks are frequently faster than queue operations on regular tasks.
We show that queues modified to handle polytasks perform at par with their
non-modified versions when compression is not possible.

Our contributions are relevant to queue-centric runtime systems whether they
have one queue or many. Other runtime systems that are not necessarily queue
centric, such as OpenMP [7] have developed alternatives that are very similar in
their implementation and their objective. Our contribution is the presentation of
a systematic way to modify queue-centric systems to address task compression.

The advantages of task compression in larger applications are shown in Sec-
tion 5 using microbenchmarks and applications. All cases present evidence sup-
porting our claims regarding the effectiveness of task compression.

The rest of the paper is organized as follows: Section 2 presents relevant
background, Section 3 presents some motivation as well as the specific definition
of the problem addressed in this paper, Section 4 represents the core of our
paper, presenting our technique for task compression, Section 5 describes our
experiments and results, Section 6 presents related work and Section 7 presents
conclusions and future work.

2 Background

This section presents background related to our contributions, including a brief
summary of the queue algorithms referred throughout the paper, and a descrip-
tion of the processor used for our experiments.

2.1 Queue Algorithms

The central work of this paper tries to enhance the capabilities of existing queue
algorithms for the particular case of task management. A large number of queue
algorithms exist, for example, Shafiei [16] shows a survey summarizing the rela-
tive advantages of many different algorithms. We have chosen three queue algo-
rithms that cover a significant portion of the design space.

The first algorithm, which we refer to as the SpinQueue algorithm, uses a
linked list as the basic data structure for the queue and a spinlock to avoid data
races on processors accessing the queue. The SpinQueue is a simple implemen-
tation, that is easy to understand, easy to program, and that offers excellent
performance if there is low contention at the queue. The simple implementation
of the SpinQueue makes it suitable for quick development of parallel applications.

The MS-Queue is an advanced non-blocking algorithm, presented by Michael
and Scott [12], that uses a Compare and Swap operation to allow concurrent

4 Daniel Orozco, Elkin Garcia, Robert Pavel et. al.

operations on the queue. The MS-Queue algorithm has become an industry de
facto standard, being used in the Java Concurrency Constructs, and in many
other high-profile implementations.

The MC-Queue is a queue algorithm presented by Mellor-Crummey[11] that
distributes queue operations over a group of nonblocking queues to maximize
performance. In the MC-Queue, the queue structure is composed of several in-
dependent nonblocking queue implementations. When queue operations are re-
quested, an atomic addition is used to select one of the available nonblocking
queues, effectively distributing the operations across them. The MC-Queue is
an excellent choice for applications where a large number processors attempt to
execute operations concurrently.

2.2 Cyclops-64 architecture

Cyclops-64 (C64) is a processor developed by IBM. The architecture and features
of C64 have been described extensively in previous publications [6, 5].

Each C64 chip has 80 computational cores, no automatic data cache, and
1GB of addressable memory. Each core contains two single-issue thread units,
60KB of user-addressable memory that is divided into stack space and shared
memory, a 64 bit floating point unit, and one memory controller.

One of the main features of the C64 chip is that memory controllers can ex-
ecute atomic operations. In C64, each memory controller contains its own Arith-
metic and Logical Unit that allows the memory controller to execute integer and
logical atomic operations in memory without the intervention of a processor or a
thread unit. Atomic operations in C64 take 3 cycles to complete at the memory
controller. All memory controllers in C64 have the capability to execute atomic
operations.

Under the default configuration, C64 has 16KB of stack space for each thread
unit, 2.5MB of shared on-chip memory, and 1GB of DRAM memory.

3 Motivation

The difficulties in traditional task management as well as the possibilities of task
compression can be illustrated using the kernel of a simulation of an electromag-
netic wave propagating using the Finite Difference Time Domain algorithm in 1
Dimension (FDTD1D), shown in Figure 1.

The parallel loops in Figure 1 can be efficiently executed in a many-core
processor such as C64 if the iterations in the parallel loops are expressed as tasks.
The granularity of the execution can be varied through the tile size (TileSize
in Figure 1). A small tile size will result in finer grain and more parallelism, but
it will also incur a higher runtime system overhead because of the additional
burden in task management.

The main problem is that fine-grained execution is difficult: The granular-
ity of tasks is limited by the overhead of task management. In general, fine
grain execution is useful only when the overhead associated with the execution

Polytasks: A Compressed Task Representation for HPC Runtimes 5

// TileSize controls the granularity
#define TileSize 16
void FDTD1D(double *E, double *H, int N,
int Timesteps,
const double k1, const double k2)

{
int i, t;
for (t=0;t<Timesteps;t++)
{

parallel for (i=1; i<N/TileSize; i++)
{
E_Tile(i, E, H, N, k1, k2);

}

parallel for (i=1; i<N/TileSize; i++)
{
H_Tile(i, E, H, N, k1, k2);

}
}

}

Fig. 1. FDTD1D Kernel

void E_Tile(int TileID,
double *E, double *H, int N,
int Timesteps,
const double k1, const double k2) {
int i, Start, End;
Start = TileID * TileSize;
End = Start + TileSize;
for (i = Start; i < End; i++)
E[i]=k1*E[i]+k2*(H[i]-H[i-1]);

}

void H_Tile(int TileID,
double *E, double *H, int N,
int Timesteps,
const double k1, const double k2) {
int i, Start, End;
Start = TileID * TileSize;
End = Start + TileSize;
for (i = Start; i < End; i++)
H[i]+=E[i]-E[i+1];

}

Fig. 2. FDTD1D Compute Tiles

is acceptable. In contrast, coarse-grained executions decrease the proportional
overhead of task management at the cost of reducing parallelism and reducing
the opportunities for load balancing in many-core systems [9].

Traces of several executions of FDTD1D, executed using the TIDeFlow run-
time system [13] with the SpinQueue algorithm in C64 were obtained to show
the limits in granularity:

Process Cycles Process Cycles

Enqueue one task 6200 Enqueue a task for each processor 9.9 × 105

Execute a tile of size 1 180 Execute a tile of size 256 16000
Execute a tile of size 1024 56000 Execute a tile of size 16384 9.0 × 105

Execute a tile of size 65536 3.6 × 106

Table 1. Task duration and enqueueing overhead for C64 (SpinQueue Algorithm)

Table 1 exposes the problem faced by programs with fine granularity: If the
tile size is set to 1, approximately 106 cycles will be required to enqueue one
task for each one of the 160 processors in C64 while a single processor executes
one task in only 180 cycles. The conclusion is that programs where tiles take less
than 106 cycles to execute result in poor performance because processors will
consume tasks faster than they are written to the queue.

The solution that we pursue in this paper is based on the observation that
in many programs, tasks are very similar, and they may be compressed into a
single task to reduce the total time for task creation. Task compression opens a
number of questions that we intend to address.

6 Daniel Orozco, Elkin Garcia, Robert Pavel et. al.

3.1 Problem Formulation

The following question summarizes our research goals:

How is it possible to exploit the commonly found similarities between
tasks created at the same time to achieve efficient representation of tasks?

The main question opens related questions:

– How can several, similar tasks be efficiently compressed into a polytask?
– Is it possible to concurrently and efficiently extract a task from a polytask?
– Is it possible to efficiently support termination operations such as join when

using compressed task representations such as polytasks?
– Does task compression introduce additional overheads in applications where

tasks are dissimilar making task compression unnecessary?

We intend to fully answer these questions in the following sections. We also
provide experimental results to back our claims regarding the usability of poly-
tasks.

4 Polytasks: efficient building blocks for runtime systems.

Creation of similar tasks at the same time is common in scientific programs
using execution models that support parallel execution of loops. Figure 1 shows
one such example where a parallel loop results in creation of a large number of
similar tasks, that execute the same instructions, that access the same global
variables and that are distinguished only by their loop index, or rather, by their
execution instance.

The main idea in our proposed solution is to represent all the tasks related to
a parallel loop with a single data structure that we call a polytask. A polytask
is a data structure that includes all the information commonly found in a task
plus additional information describing the number of tasks it represents (N , the
number of iterations in the parallel loop) and their state.

typedef struct task_s {
// Task Information:
// Environment information
// Code to be executed
...

} task_t

Fig. 3. Original task data structure

typedef struct polytask_s {
int TasksAvailable;
int TasksPending;

// Task Information:
// Environment information
// Code to be executed
...

} polytask_t

Fig. 4. Polytask data structure

A generic structure that can be used to represent a single, particular task
is presented in Figure 3. The structure of Figure 3 has been upgraded (Figure

Polytasks: A Compressed Task Representation for HPC Runtimes 7

4) to allow representation of several, similar tasks as a polytask. The polytask
structure contains a counter that specifies the number of tasks that are available
in the polytask (TasksAvailable) and a counter containing the number of tasks
that have not finished (TasksPending). The TasksPending counter facilitates
implicit join operations at the end of parallel loops. At initialization, both coun-
ters are initialized to N to indicate that N tasks are available and that none of
them have finished execution.

Note that any queue algorithm can be used to implement polytasks opera-
tions: A polytask can be enqueued into the work queue in the same way as a
single task can be enqueued. The algorithm in Figure 6 shows how to upgrade
a generic runtime system to support polytasks by introducing three operations
for task management: PolyEnqueue is used to create N tasks of a particular
type. PolyDequeue is used to extract the next available task from the queue
and TaskCompleted is used to count the number of tasks that have finished
execution.

A significant advantage of polytasks over individual tasks is that a polytask
is enqueued once into the work queue. PolyEnqueue, when called, initializes the
information in the task structure to specify that N tasks must be created and
N tasks must complete. PolyEnqueue enqueues a single queue item containing
the polytask to the queue. In general, only minimum modifications to the data
structures and to the original enqueueing algorithm are required to support
polytasks.

Extracting individual tasks from a polytask is more challenging because an
unmodified dequeue operation will remove the polytask from the queue. Instead,
PolyDequeue extracts a single task from the polytask at the head of the queue
using an atomic decrement on its TasksAvailable counter. The value returned
by the atomic decrement is used as the execution instance for the execution of
the task (e.g. iteration index of a parallel loop) if it is positive. It is possible to
obtain invalid (non-positive) execution instances during the extraction process
because the atomic decrement is a concurrent process. This is not a problem
since polytasks are quickly removed from the queue after all their available tasks
have been claimed, effectively presenting a new polytask at the head of the
queue. Processors that did not obtain valid execution instances during their fist
attempt can retry until the polytask at the head of the queue contains enough
available tasks.

Execution instances are assigned to processors starting from N and going
down to 1. When a processor extracts the last task from the polytask, (i.e. when
the execution instance obtained is 1), the processor dequeues the polytask from
the queue using the original queue algorithm selected.

TaskCompleted implements join behavior for tasks in a particular polytask.
The TasksPending counter in the polytask structure can be used as a synchro-
nization point to reliably know the number of tasks that have not finished execu-
tion in a particular polytask. Processors atomically decrement the TasksPending
counter to indicate termination of individual tasks in the polytask. A processor
can know if it executed the last task in the polytask (i.e. the join operation

8 Daniel Orozco, Elkin Garcia, Robert Pavel et. al.

/* --- Queue Variables --- */
typedef struct QueueItem_s {
polytask_t PolyTask;
// Other Queue-Specific Members
...

}
QueueItem_t;

QueueItem_t *Head, *Tail;

/* --- PolyTask Functions --- */
task_t * PolyDequeue(void) {
StartDequeue:
polytask_t PolyTask = Head->PolyTask;
int ExecutionInstance =

Atomic_Decrement(
&(PolyTask->TasksAvailable));

if (ExecutionInstance == 1) {
// Removes Task from Queue
Dequeue();

}

if (ExecutionInstance > 0) {
return(PolyTask);

}

goto StartDequeue;
}

Fig. 5. Polytask Dequeue

void PolyEnqueue(PolyTask_t *PolyTask,
int N)

{
PolyTask.TasksAvailable = N;
PolyTask.TasksPending = N;
Enqueue(PolyTask);

}

void TaskCompleted(PolyTask_t *PolyTask)
{
int PendingTasks =
Atomic_Decrement(
&(PolyTask->TasksPending));

if (PendingTasks == 1) {
// This is the last task
// Join operation successful
....

}
}

Fig. 6. Polytask Enqueue and Com-
plete Task operations

is complete) by inspecting the return value of the atomic decrement. Figure 6
shows the structure of the TaskCompleted function and how it can be used to
handle the behavior of join operations by the runtime system.

Polytask operations are faster than traditional task operations on queues.
When task compression is possible (N > 1), they provide flexible mechanisms
for synchronization and continuation of tasks. The speed up will be significant,
especially when fine granularity is used and the number of processors increase.
The synchronization between tasks of the same type (i.e. in a polytask) is easier
and allows smooth support for control flow mechanisms such as creation, termi-
nation and continuation found in parallel loops. The reasons for faster operations
and easier synchronization and continuation are:

– Task Creation: N tasks can be written with a single queue operation.
– Task Assignment: In most cases, the concurrent part of the algorithm that

assigns a single task to a processor is a single atomic decrement, that can
be executed in parallel by all processors with very little contention. This is
an improvement over a single task-based approach where the algorithm to
access the queue is based on locks and it could be better even on queues
using Compare-and-Swap operations. However, on C64, atomic decrements
are faster than compare and swap operations because atomic decrements can
be executed directly in memory by the memory controller (see section 2.2).

– Join and Continuation Operations: The use of a single counter
(TasksPending) modified through atomic operations allows fast task syn-

Polytasks: A Compressed Task Representation for HPC Runtimes 9

chronization during the termination phase of parallel loops. The decentral-
ized nature of the count, where any processor may be the last one, reduces
the overhead of other implementations where a particular, centralized pro-
cess is responsible for the termination and continuation of the parallel loop.

Section 5 uses microbenchmarks and some applications to show the advan-
tages of polytasks over traditional queue techniques.

5 Experiments

The effectiveness of compressing tasks into polytasks is analyzed in this sec-
tion. We have designed experiments that show the effect of task compression
in an isolated scenario –using microbenchmarks– and in a full production run-
time system –using full applications–. Our results show that applications with
many similar tasks greatly benefit from the use of polytasks, without adversely
affecting applications without good task similarity.

We have chosen C64, a many-core processor architecture (Section 2.2) as the
testbed architecture because it is a logical choice to support task-based runtime
systems due to its large number of processors in a shared memory environment
and its non-preemptive execution model.

All of our experiments where written in C and they were compiled with ET
International’s C64 C compiler, version 4.3.2, with compilation flags -O3. We
ran all of our experiments using FAST[5], a highly accurate C64 simulator.

5.1 Microbenchmarks

In our first study, we analyze the advantages and disadvantages of polytasks in
a controlled environment that attempts to show the behavior of the required
queue primitive operations without external perturbations.

In our first set of experiments, we isolate the behavior of queue operations
by running programs where all processors in a C64 chip continuously produce
and consume randomly generated tasks without executing them. In these exper-
iments, each processor produces 512 tasks and consumes 512 tasks. Embedded
hardware performance counters are used to collect timing data. To illustrate the
effectiveness of polytasks, the number of tasks that are similar in each exper-
iment was modified. A task similarity of N (See Figures 7 and 8) indicates
that groups of N tasks are similar and can be potentially compressed into a
single polytask. Our experiments show results that range from task similarity of
1, where each task is unique, to task similarity of 256, where groups of 256 tasks
are compressed into a single polytask. When the results are reported, enqueue-
ing one polytask that contains N tasks is considered equivalent to enqueueing
N tasks directly because a runtime system will observe, in both cases, that N
tasks have been created.

We have explored the sensitivity of polytasks to the underlying queueing
algorithm used. From the many queue algorithms that exist (Shafiei [16] has

10 Daniel Orozco, Elkin Garcia, Robert Pavel et. al.

Fig. 7. Effect of polytask compression on throughput

compiled an excellent summary) we have chosen three algorithms that cover
a significant portion of the design space, a spinlock-based queue (SpinQueue,
the simplest to implement), the MS-Queue algorithm[12] (the most famous non-
blocking algorithm) and the MC-Queue algorithm[11] (a distributed queue with
very high performance). We implemented polytasks on each one of the selected
queue algorithms in an effort to present quality over quantity.

Figures 7 and 8 show the results of our experiments. Inspection of the figures
allows us to reach important conclusions:

– Polytasks increase the performance of runtime operations, both in total (ag-
gregated) operations per second in the whole system as well as in terms of
reducing the latency of individual operations.

– The overhead of polytask compression is very small. Both in terms of latency
and throughput there is not a significant overhead (less than 2% in all but
one case) when polytasks are used in situations where tasks are not similar.

– The advantages of polytasks are not dependent on the queue algorithm used
to implement the polytask operations: All queue algorithms tested present
excellent performance gains, and very low overhead.

– When task similarity is high, the average performance of task operations is
improved by up to two orders of magnitude. The reason for the increase in
performance is that calls to polytask operations that do not result in calls
to queue operations finish quickly.

The results shown in Figures 7 and 8 show that polytasks can benefit appli-
cations where task compression is possible without degrading the performance
of applications where task compression is not possible.

The second set of experiments was designed to show the advantages of the use
of polytasks in applications with varying levels of granularity. To avoid external
perturbations, synthetic tasks that execute a delay loop of varying duration were
used.

Polytasks: A Compressed Task Representation for HPC Runtimes 11

Fig. 8. Effect of polytask compression on latency

Fig. 9. Advantages of polytasks as a function of program granularity

Figure 9 shows the results of our experiments. In the figure, the efficiency is
the fraction of time that the processor spends executing tasks, and it is calculated
as the ratio between the time executing tasks and the total execution time,
including overheads. The Task Granularity is the duration of the tasks executed.
Each data point reported in the figure was obtained by running 40960 tasks that
execute a delay loop whose duration is specified in the figure as Task Granularity.

Our results show that fine grained applications greatly benefit from the use
of polytasks. Polytasks enable greater runtime system efficiencies at very fine
grain synchronization while traditional approaches only allow coarser grain syn-
chronization.

As is to be expected, if the application uses very coarse grained parallelism the
burden of task management does not affect the efficiency of the system because
the time to perform a queue operation will not be significant when compared to
the execution time of a task.

12 Daniel Orozco, Elkin Garcia, Robert Pavel et. al.

The results of Figure 9 show that the advantages of polytasks under varying
task granularity remain, independent of the queue algorithm used. In our exper-
iments, we observe that polytasks provide significant advantages in efficiency for
all three of the queue algorithms used (SpinQueue, MC-Queue and MS-Queue)
in fine-grained environments.

5.2 Applications

The advantages of polytasks in production systems was tested using scientific
applications running in typical environments.

Several applications were tested: Fast Fourier Transforms that use the Cooley-
Tukey algorithm with two-point butterflies (FFT) and simulations of electromag-
netic waves propagating using the Finite Difference Time Domain algorithm in 1
Dimension (FDTD1D)[15] and 2 dimensions (FDTD2D)[14]. FFT was run with
input sizes 29 (FFT2P 29) through 212 (FFT2P 212), FDTD1D runs a problem of
size 20000 with 3 timesteps and tiles of width 16, and FDTD2D runs a problem
of size 128 by 128 with 2 timesteps and tiles of width 4 by 4.

The results reported for all applications reflect the complete program and
include memory allocation, initialization, computation and reporting of results.

In all cases, the programs were developed to use the TIDeFlow [13] runtime
system. TIDeFlow uses a priority queue to assign work to processors in the
system.

We compared the effect of polytasks by running several sets of experiments:
The first set of experiments consists of pairing each one of the programs with
each one of the versions of the TIDeFlow runtime system that use each one
of the possible underlying queue algorithms described (SpinQueue, MC-Queue
and MS-Queue) without the advantage of polytasks. For the second set of ex-
periments, we ran all combinations of programs and TIDeFlow implementations
using polytasks.

Figure 10 reports the speedup of each program with reference to an execution
using the unmodified runtime system (Single Task). The objective of showing a
comparison of polytasks against single tasks for each one of several underlying
queue algorithms is to show that the advantages of polytasks are not exclusive
to a particular queue algorithm. Such advantages are primarily the result of a
runtime that operates more efficiently.

The reasons for the excellent speedup in the programs tested are: (1) The
applications use very fine grain synchronization and a significant portion of the
time is spent in task management. As explained in Section 5.1 and in Figure
9, these results hold for fine-grained applications. The impact of polytasks on
other coarse-grained applications not considered here may not be as pronounced
as the impact in the fine-grained applications that we tested. (2) The applications
exhibit a large degree of task similarity because their main computational kernel
consists mainly of parallel for loops.

Polytasks: A Compressed Task Representation for HPC Runtimes 13

Fig. 10. Advantages of polytasks on applications

6 Related Work

Several execution paradigms based in tasks have been presented in the past.
Intel’s Concurrent Collections (CnC)[10] is an execution paradigm where

programs are expressed in terms of computational tasks (or steps in the CnC
terminology), data dependencies and control dependencies. The current gener-
ation of CnC implementations represent tasks as individual items in the work
pool. However, polytasks could be a promising addition to CnC because it is
frequent that several computation steps are similar in everything except in their
control tag value, making the addition of polytasks a natural extension to allow
higher scalability and performance.

The University of Delaware’s Codelet Model[8], part of the ongoing DARPA
UHPC project, is an initiative to achieve unprecedented parallelism in programs
by expressing computations as dataflow graphs composed of codelets (compu-
tational tasks) that can migrate across large systems. Polytasks can potentially
impact the effectiveness of the codelet model because it may help migration of
tasks to remote locations if several tasks are compressed to a single polytask.

Other execution paradigms that use tasks in a way or another, and queues to
manage tasks include X10[4], EARTH[17], Cilk[2] and Habanero C[1]. Polytasks
offer interesting opportunities for those execution paradigms, and may poten-
tially be used to improve their performance and scalability.

7 Conclusions and Future Work

We have shown that polytasks are an effective way to exploit the similarity
between tasks that is commonly found in scientific programs that use a queue-
centric approach for execution. The polytask technique allows queue-centric run-
times to exploit the same parallel loops as the OpenMP dynamic construct. Our

14 Daniel Orozco, Elkin Garcia, Robert Pavel et. al.

research focus on how to develop a systematic technique for task compression
rather than addressing particular situations in particular systems. Future work
will compare the differences in performance between OpenMP’s dynamic con-
struct and polytasks.

We have presented a line of thought that concludes that there is a high degree
of similarity in tasks that are enabled at the same time in scientific programs,
mostly resulting from parallel loops that are expressed as a set of embarrassingly
parallel tasks that become enabled.

We have taken advantage of the similarity of tasks and their proximity in
time to invent a way to express them in a compressed form, that we call a
polytask. We have shown that the data structures and algorithms of runtime
systems require only minor modifications to support polytasks.

We have provided evidence, both in our informal analysis and in our experi-
ments of the usability of polytasks for runtime systems.

The polytasks improve the performance of the runtime system when the
programs run exhibit high task similarity. In cases where task compression is
not possible, polytasks do not introduce significant overhead, and can be used
safely.

The effect of polytasks on the speed of the runtime system can only be no-
ticed in applications with fine granularity. In applications where parallelism has
been exposed at a coarse-grain level, the issue of task management overhead is
not as relevant because most of the application time is spent executing tasks.
Nevertheless, if significant parallelism is required in future generations of multi-
processors with a large number of processing units per chip, fine grain parallelism
will become a necessity.

We have shown that polytasks are effective for C64, a system that is non-
preemptive, that has no cache and that supports atomic operations in-memory.
Polytasks are effective for C64 because processors have very little overhead when
they start executing a task: There is no cache that needs to be filled, there is no
thread-state that needs to be put in place and there is no virtual memory that
needs to be made available.

Although future work may analyze the usability of polytasks for preemptive
systems, with few cores, caches, and other architectural features, it is the im-
pression of the authors that queue-based runtime systems will primarily benefit
systems with massive hardware parallelism where the architecture is directly
exposed to the users.

Future work will focus on extending the polytask concept beyond the imple-
mentation of runtime systems, including the development of language or compiler
extensions to indicate or hint task similarity outside of the trivial case of parallel
loops.

References

1. Barik, R., Budimlic, Z., Cave, V., Chatterjee, S., Guo, Y., Peixotto, D., Raman,
R., Shirako, J., Tasirlar, S., Yan, Y., Zhao, Y., Sarkar, V.: The habanero multicore

Polytasks: A Compressed Task Representation for HPC Runtimes 15

software research project. In: Proceeding of the 24th ACM SIGPLAN conference
companion on Object oriented programming systems languages and applications.
pp. 735–736. OOPSLA ’09, ACM, New York, NY, USA (2009)

2. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. In: Proceedings of the fifth
ACM SIGPLAN symposium on Principles and practice of parallel programming.
pp. 207–216. PPOPP ’95, ACM, New York, NY, USA (1995)

3. Butenhof, D.R.: Programming with POSIX threads. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA (1997)

4. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. SIGPLAN Not. 40, 519–538 (October 2005)

5. del Cuvillo, J., Zhu, W., Hu, Z., Gao, G.: Fast: A functionally accurate simulation
toolset for the cyclops-64 cellular architecture. CAPSL Technical Memo 062 (2005)

6. del Cuvillo, J., Zhu, W., Hu, Z., Gao, G.R.: Toward a software infrastructure for the
cyclops-64 cellular architecture. In: High-Performance Computing in an Advanced
Collaborative Environment, 2006. p. 9 (May 2006)

7. Dagum, L., Menon, R.: Openmp: an industry standard api for shared-memory
programming. Computational Science Engineering, IEEE 5(1), 46 –55 (jan-mar
1998)

8. Gao, G., Suetterlein, J., Zuckerman, S.: Toward an execution model for extreme-
scale systems -runnemede and beyond. CAPSL Technical Memo 104

9. Garcia, E., Venetis, I.E., Khan, R., Gao, G.: Optimized Dense Matrix Multiplica-
tion on a Many-Core Architecture. In: Proceedings of the Sixteenth International
Conference on Parallel Computing (Euro-Par 2010), Part II. Lecture Notes in Com-
puter Science, vol. 6272, pp. 316–327. Springer, Ischia, Italy (2010)

10. Knobe, K.: Ease of use with concurrent collections (cnc). In: Proceedings of the
First USENIX conference on Hot topics in parallelism. pp. 17–17. HotPar’09,
USENIX Association, Berkeley, CA, USA (2009)

11. Mellor-Crummey, J.: Concurrent queues: Practical fetch and phi algorithms. Tech.
Rep. 229, Dep. of CS, University of Rochester (1987)

12. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proc. of the 15th ACM symposium on Principles
of distributed computing. pp. 267–275. PODC ’96, ACM, New York, NY, USA
(1996)

13. Orozco, D., Garcia, E., Pavel, R., Khan, R., Gao, G.: Tideflow: The time iterated
dependency flow execution model. CAPSL Technical Memo 107 (2011)

14. Orozco, D., Garcia, E., Gao, G.: Locality optimization of stencil applications using
data dependency graphs. In: Proceedings of the 23rd international conference on
Languages and compilers for parallel computing. pp. 77–91. LCPC’10, Springer-
Verlag, Berlin, Heidelberg (2011)

15. Orozco, D.A., Gao, G.R.: Mapping the fdtd application to many-core chip architec-
tures. In: Proceedings of the 2009 International Conference on Parallel Processing.
pp. 309–316. ICPP ’09, IEEE Computer Society, Washington, DC, USA (2009)

16. Shafiei, N.: Non-blocking array-based algorithms for stacks and queues. In: Pro-
ceedings of the 10th International Conference on Distributed Computing and Net-
working. pp. 55–66. ICDCN ’09, Springer-Verlag, Berlin, Heidelberg (2009)

17. Theobald, K.: EARTH: An Efficient Architecture for Running Threads. Ph.D.
thesis (1999)

