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Abstract. In this paper, we have developed a novel methodology that
takes into consideration multithreaded many-core designs to better uti-
lize memory/processing resources and improve memory residence on tileable
applications. It takes advantage of polyhedral analysis and transforma-
tion in the form of PLUTO[6], combined with a highly optimized fine
grain tile runtime to exploit parallelism at all levels. The main contri-
butions of this paper include the introduction of multi-hierarchical tiling
techniques that increases intra tile parallelism; and a data-flow inspired
runtime library that allows the expression of parallel tiles with an effi-
cient synchronization registry. Our current implementation shows perfor-
mance improvements on an Intel Xeon Phi board up to 32.25% against
instances produced by state-of-the-art compiler frameworks for selected
stencil applications.

1 Introduction

With the increasing number of cores in current computing systems and the mas-
sive computational power they offer, one of the bottlenecks in achieving higher
performance has been the access to the memory. Along with the computation
power, memory speed has increased as well, however at a much slower pace. Mem-
ory access latency is determined by many factors such as bandwidth, intercon-
nect delay, memory bank contention, memory paging overhead and unbalanced
task distribution. Taking advantage of the locality principle, multiple efforts [13],
have been made so far to minimize the access time to memory in an integrated
framework, such as by storing recently used data in cache, efficient reuse of
cached data through tiling, data percolation using communication-avoiding al-
gorithms [9], code transformations and prefetching. Although, these approaches
work very well in pushing the “memory wall” farther, data movements end up
being performed in most cases for the benefit of a single thread or computational
unit.

An important class of optimization approaches tackling the “memory wall”
maximizes memory reuse inside the most computational expensive parts of an
applications – commonly nested loops. One of the most successful techniques to



date involves the concept of a “tile”. A tile is a sub-partition of a loop nests’
iteration space into blocks with the purpose of increasing the data locality and
reducing communication overhead across them. This approach is very effective
as we can see in classical tiling approaches where tile sizes are based on cache
sizes. In these techniques, a single thread effectively maximizes reuse from caches
before heading back to the main memory. As effective as this approach is, there
are few things that need consideration: Firstly, when processing resources are
in abundance and optimization is highly coarse grained, this may lead to idle
resources. One of the main reasons that this pathology has persisted is of the
limited memory bandwidth assumption. However, this assumption ignores the
possibility of memory reuse across processing units, especially when they share
different levels of the memory hierarchy. Secondly, when each thread performs
data movements for itself without a priori knowledge of concurrent thread exe-
cution and data movement pattern, they can interfere with each other to their
performance’s detriment. This could take the form of increased caches misses
and a higher strain on the entire memory subsystem.

In addition, the trend of increasing the number of processing elements in a
chip seems to be the norm for many years to come. In order to take advantage of
additional processing resources, current and new software stacks need to provide
concurrent units the ability to (re)act based on other threads execution and
the application data movement pattern. In other words, these stacks need to
update their machine models to reflect modern platforms. With the axiom that
the base optimization technique used would be tiling, memory reuse needs to
be considered in both the inter, as well as, the intra tile so that the strain or
underuse of resources can be alleviated. For the simple for-loop in Figure 1, a
classical approach produces tiling as shown in Figure 2. This is a very efficient
way of tiling as it is designed for minimal communication and coarse-grained
parallelism. However, given the enormous amount of processing power, can we
do better and utilize available resources while keeping communication overhead
relatively low? In this paper, we attempted to answer this question with an
approach that maximizes parallelism and improve locality for threads working
together in a highly synchronous fashion.

for ( int i =1; i<=n ; i ++){
for ( int j =1; j<=n ; j++){

A[ i ] [ j ] = A[ i −1] [ j ] + A[ i ] [ j −1] ;
}

}

Fig. 1. Stencil Example

Firstly, in order to maximize available processing resources while keeping
memory bandwidth strain low, we have developed a technique to exploit intra-
tile parallelism without compromising inter-tile parallelism. Using the existing



polyhedral framework PLUTO [6] and the code generator CLOOG [4], we cre-
ate a multi-hierarchical highly parallel tiles that reside at the lowest level cache
and communicate with minimal overhead. Sets of these inner tiles form outer
level tiles that can also run in parallel. Secondly, in order to execute these highly
parallel tiles, we have developed a data-flow inspired fine grained execution mech-
anism in which threads sync using atomic operations. Using locality provided by
higher level caches (e.g L2 cache) and parallelism provided by our tiling tech-
nique, we are able to improve locality and reuse, thus improving the overall
system performance.

Fig. 2. Classical Tiling

The main contributions of this pa-
per include multi-hierarchical tiling
technique that increase intra tile par-
allelism; and a data-flow inspired run-
time library that allows the expres-
sion of intra tile parallelism. The rest
of the paper is organized as follows.
Section 2 provides related work. Sec-
tion 3 explains our framework in de-
tail. Section 4 and 5 showcases experi-
ments, results and discussion. Section
6 presents our future work. Finally,
section 7 does the conclusion.

2 Related Work

The technique of Iteration Space Tiling proposed by Michael Wolfe [27][26], has
been widely used to aggregate different dimensions of loop iterations to improve
locality and reuse [25]. It improves performance by exploiting reuse beyond inner-
most loops. Such approach works very well for perfectly nested loops, although
it can be extended beyond. With the advancement made by the linear algebra
community, hierarchical tiling code can be generated automatically using tools
like PLUTO [6]. Using the polyhedral framework proposed by Feautrier [11][12],
PLUTO attempts to generate communication minimal tiling code. The main idea
here is to have efficient space and time mapping [15] while extracting multiple
degree of parallelism that can be tiled with cost efficient hyperplanes.

One of the difficulty of tiling is to find right shapes and sizes that can map
well to the iteration space and is also cost efficient [17]. Apart from classical
rectangular or cubical shaped tiles, other shaped tiling shapes (e.g. diamond,
hexagonal) has also been studied. These tiling shapes are selected based on
the access patterns of the loop nest such that communication becomes minimal
and/or allows parallel start for certain types of applications [16][2]. These tech-
niques are very effective, however are normally limited to tiling for only one level
of memory hierarchy.

Data centric approach used by Kodukula [20], uses blocking of data based on
its flow through memory hierarchy . His approach selects sequence of blocks that



is touched by a processor and executes statements associated with those blocks.
However, depending on dependence such transformation can be very complex.

Mitigating long latency cache miss penalties by overlapping data movement
with computation is another avenue for memory latency optimization. In order
to do so, memory access pattern needs to be known a priori to the actual use
of data. However, prefetching has to be timed such that data stay in cache and
do not get evicted before the use happens. Techniques such as loop splitting /
loop peeling [22] to divide the loop in multiple phases where one can be used to
prefetch data has been attempted before. However, loop peeling is not obvious
for all nested loops. Prefetch when done unnecessarily, becomes just an extra
overhead. To alleviate these shortcomings, systems like APACS [21] provide an
integrated solution for cache and prefetching with adaptive partitioning, prefetch
pipelining and prefetch buffer management techniques. Although such solutions
are promising, they require substantial hardware support. Moreover, techniques
like Intel helper threads [19] and Gan’s data percolation [14] allows “special”
threads to improve locality.

Bikshandi [5] introduced hierarchical tiled array (HTAs) that manipulates
tiles using array operations such that parallel computation takes array form in
distributed tiles. Baskaran [3] used explicit data movement and index trans-
formation to improve locality on scratchpad. These techniques benefit block of
threads when contiguous memory is used but they are less efficient when dealing
with strided or irregular accesses.

Current fine grain runtime concentrate on the interaction of many threads
and had dealt with memory bandwidth and contention problems in many in-
teresting ways. The Efficient Architecture for Running THreads (EARTH) [23]
uses the un-interruptable fine grain threads, called fibers, which shares their
activation frames. The SWARM framework developed by ET International [18]
has similar concepts as EARTH, but added support for direct access shared
memory structures, placement information and different “codelet” pattern oper-
ations that allow more efficient use of data. Finally, the most recent development
is Rice’s Open Community Runtime (OCR) [7] system. It is designed as a fertile
ground to experiment with new techniques and systems.

Most of the original compiler work presented here has a single thread focus
or starkly favors coarse grain parallelism. Improving on this, a fine-grain collab-
orative view on code generation for multiple threads can yield significant im-
provements. This thread collaboration can extend beyond scheduling techniques
and encompass data restructuring as well; a topic that was not considered in the
fine-grain multithreaded work presented above. The approach presented in [10]
aims to solve these issues with a hierarchical tiling framework for multicore
clusters. They exploit inter and intra (with threading) node parallelism using
tiling. Moreover, they exploit NUMA aware allocation and take advantage of
vector register blocking to further increase performance. Stencil codes are used
to showcase benefits. Although their approach is similar to our framework, key
differences in our favor are the creation of more intra-tile parallelism (similar to
their intra-node parallelism) with our jagged tiling technique.



Fig. 3. Framework

3 Framework

The overview of the framework is shown in Figure 3. The framework is designed
to maximize the use of parallel processing resources while keeping runtime over-
head low. It uses PLUTO [6] and CLOOG [4] as a compiler toolchain for highly
parallel tiled code generation as shown in Section 3.1. It is followed by data-
flow like execution where threads working in close proximity in time and space
form a thread group ThGrp and collaborate within with minimal overhead. Such
grouping is designed to take advantage of locality on L2 tiles while executing in
highly parallel and synchronous fashion.

3.1 Overview of Polyhedral Code Generation

In this subsection, we provide a brief overview of PLUTO, CLOOG and some of
the polyhedral terminologies used in this paper.

PLUTO takes a C code as an input and transforms it into a coarse-grain
parallel OpenMP code that is optimized for data locality. Using its affine trans-
formation framework, statement wise transformations are done to minimize com-
munication across boundaries. A cost function is used to reduce the communi-
cation distance and volume between tiling hyperplanes.

Under polyhedral terminology, a hyperplane φ(v) is a n−1 dimensional affine
subspace in n dimensional space. For statements S, a hyperplane φs(v) with
dimensionality m and normal (c1c2...cm) represents an affine transformation in
the form,

φs(v) = (c1c2...cm).v + c0 (1)

For given ’k’ statements, in order for statement-wise hyperplane (φs1 , φs2 ...φsk)
to be a legal tiling hyperplane, the following has to be satisfied between source
’s’ and target ’t’ along all dependence edge.

φSi
(t) − φSj

(s) ≥ 0 (2)



When a combination of ’m’3 hyperplanes, represented by φ1, φ2...φm, form tiles,
they are self-contained i.e dependencies for statements within tiles are either
satisfied or can be satisfied within.

PLUTO finds communication minimal tiling hyperplanes and uses them for
multiple level tiling targeting different levels of the memory hierarchy. Such
tiling creates supernodes for each different tiling levels. It uses CLOOG, which
is a code generation tool that scans the polyhedra in a global lexicographic or-
dering. Such scanning is performed as specified by the scattering function, which
is an affine transformation function. The code generator is oblivious to any in-
formation about the dependencies and, in absence of a scattering function, scans
the polyhedra in the lexicographic order as specified by the original iterator. It
uses PolyLib [24] for its polyhedral operations. Interested readers are strongly
encouraged to read references [6] and [4] for more information about PLUTO
and CLOOG respectively.

Our framework leverages the existing transformation framework, paralleliza-
tion and locality optimization that PLUTO uses for code generation. In order to
generate parallel inner tiles, our framework uses an external analyzer that calls
PLUTO using a modified Domain (iteration space polytope) and a updated
Scattering function (scanning order of polyhedra). We explain our algorithm in
the next section.

(a) Two level hierarchical Tiling with
(1,0) and (0,1) Tiling Hyperplanes

(b) Two level hierarchical Tiling with
(1,1) and (0,1) Tiling Hyperplanes

Fig. 4. Two level hierarchical Tiling: Classical and Jagged

3.2 Jagged Tiling for Intra-tile Parallelism

Our framework uses the tiling hyperplanes generated by PLUTO for the lowest
level memory hierarchy i.e. (L1 cache). These tiling hyperplanes are designed
to be communication minimal using a cost function that reduces the communi-
cation distance and volume. Under the PLUTO framework, these hyperplanes

3 where m is less or equal to the number of dimensions of the iteration space



are used for tiling multiple level of memory hierarchy. However, using the same
tiling hyperplanes for both levels come at the cost of sequential or pipeline par-
allel execution of inner L1 tiles as shown in figure 4(a). In our framework, we
solve this by constructing outer tiles in which at least one face of the polytope
has concurrent start. Given ’m’ hyperplanes, we create at least one parallel hy-
perplane and use it together with the other hyperplanes to create the L2 tiles.
For clarity, we represent all original hyperplanes by φ, L1 hyperplanes by ϕ and
L2 hyperplanes by Φ. The condition for such tiling is shown in equations below,

ϕ1
Si

(t) − ϕ1
Sj

(s) ≥ 1 for one hyperplane (3)

ϕl
Si

(t) − ϕl
Sj

(s) ≥ 0 for l hyperplanes where 1 < l ≤ m (4)

The algorithm to generate such tiles is shown in algorithm 1. Once the level 1
tiles are created, we use the L1 supernode hyperplanes ϕiL1s, ϕ

i+1
L1s...ϕ

i+m−1
L1s to

create the outer L2 tiles. The iteration space matrix representing the Domain is
updated to reflect the new L2 tile domain and its scattering function is updated
to mark outer and inner tiles parallel. Figure 4(b) shows the pictorial view of
jagged tiling.

For our stencil example, the tiling hyperplanes are (1,0) and (0,1). Using
these hyperplanes, we create L1 tiles and iterators ’i’ and ’j’ with tile size of 32.
Once the supernode iterator ’I’ and ’J ’ are created, hyperplanes (1,0) and (0,1)
are added and thus hyperplanes (1,1)4 and (0,1) are used to create L2 tiles using
the tile size of 8 (which gives L2 size 8*32). The resulting scattering functions
are used to create parallel code. The Domain and Scattering functions produced
by this process are shown below5 for the example stencil in Figure 1.

Domain Scattering

1 ≤ i ≤ n− 1 c1L2 = IL2 + JL2

1 ≤ j ≤ n− 1 c2L2 = JL2

32IL1 ≤ i ≤ 32IL1 + 31 c1L1 = IL1 + JL1

32JL1 ≤ j ≤ 32JL1 + 31 c2L1 = JL1

8IL2 ≤ IL1 + JL1 ≤ 8IL2 + 7 c1 = i

8JL2 ≤ JL1 ≤ 8JL2 + 7 c2 = j

3.3 Fine-Grain Execution

Codes that are designed to run at a very fine grain level suffer from communica-
tion overhead, reflected in its performance. With jagged tiling we have created a

4 the parallel hyperplane
5 where n is the size of a dimension in the iteration space. For our example, both

dimensions are the same



Algorithm 1 Generating Jagged Tiles

Input: Given tiling hyperplanes φi
s, φ

i+1
s ...φi+m−1

s , Domain Ds, L1 tile sizes
tL1i, tL1i+1...tL1i+m−1 and L2 tile sizes tL2i, tL2i+1...tL2i+m−1

1: TS1 = {tL1i, tL1i+1...tL1i+m−1} . A set of all L1 Tile sizes
2: TS2 = {tL2i, tL2i+1...tL2i+m−1} . A set of all L2 Tile sizes
3: φ = {φi

s, φ
i+1
s ...φi+m−1

s } . A set of the original tiling hyperplanes
4: PLUTO Tiling Algorithm(φ, Ds, TS1) . At this point, all ϕL1s(s) are created
5: Update Domain constraint to get parallel hyperplane ϕ1

L1s → ϕ1
L1s + ϕ2

L1s such
that ϕ1

L1s(t) − ϕ1
L1s(s) ≥ 1 leaving other hyperplanes as is

6: ϕ = {ϕi
L1s, ϕ

i+1
L1s...ϕ

i+m−1
L1s }

7: PLUTO Tiling Algorithm(ϕ, Ds, TS2) . At this point, all ΦL2s(s) are created
8: Perform Unimodular transformation on L1 scattering supernode: ϕT 1

L1s → ϕT 1
L1s+

ϕT 2
L1s to extract inner parallelism.

9: Perform Unimodular transformation on L2 scattering supernodes: ΦT 1
L2s →

ΦT 1
L2s + ΦT 2

L2s to extract outer parallelism.
Output: Updated domain and scattering function

highly parallel code that is capable of running multiple level of tiles in parallel.
In order to exploit available parallelism, we use a data-flow inspired low overhead
dependency and task update scheme, based on bit masking, that enables multiple
threads to work synchronously within a tile. Figure 5 shows the overview of our
fine grain execution approach. These mechanisms allows high performance, low
overhead communication within thread groups during the program execution.

Each group of threads grab a L2 task and initial dependency mask associated
with it. Such masks are repeatable across different L2 tiles for regular applica-
tions. Dependencies among the lowest level tiles are represented by different sets
of bits which are collectively updated by a group of threads working together in-
side the highest level tile. Each thread perform atomic bit-wise operations on the
dependency masks and creates a task mask that represents all the tasks ready
to execute. If the task mask is non-zero, thread finds the task, execute, update
dependencies and update the task. This happens in a highly parallel fashion
such that every thread is aware of the status of the tasks within the assigned
tile. The implementation of this approach of synchronization between threads is
done solely using atomic operations to keep the overhead low. This process is
shown in Figure 5, where the initial bit-mask is updated during the execution
until all tasks are completed.

Our goal is to exploit the parallelism for a given architecture. With such an
approach, threads can work in a collaborative fashion while reducing contention
and hence improving overall performance.

4 Experimental Setup

The experiments were done on Intel Xeon Phi 7110P coprocessor. Each coproces-
sor is equipped with 61 cores running at 1.1 GHz connected with FDR infiniband
interconnect. Each core can support up to 4 hyper-threads, totaling up to 244
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Fig. 5. Fine Grain Execution Example

threads. Each core has 32KB L1 cache per thread and 512KB L2 cache shared
by 4 threads. In addition to the private L2, cores in this system also have access
to L2s of all other cores via a ring topology. Only when there is a private L2
cache miss as well as ring L2 caches miss (shared L2s), the request is served by
the memory.
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Fig. 6. Stencil Example Execution times for PLUTO generated code (PLT) and our
framework (FG)

On the software side, we divided our experiments into three different sections.
In the first section, we selected an example stencil to explore the behavior of
parallelism at fine granularity. We ran the example stencil with sweeps from 4
to 128 threads with 4 threads per group with two workloads: 8k by 8k and 16k
by 16k elements, as shown in Figure 6.

In addition, we implemented two versions (1D and 2D) of the Seidel solver
loop, a well known scientific algorithm that computes the solution of a set of
linear equations. We selected these examples to showcase our framework against
PLUTO generated code using OpenMP as their parallel target. We selected
arrays of 4 million elements and 8 millions elements running 4k and 16k times
respectively for the one dimensional Seidel. The execution time for these runs
are presented in Figure 7. For our 2D Seidel, our selected workloads are a 4k by
4k array of elements ran over 2K times and a 10k by 10K element array ran over
6k times. The results of these runs are shown in Figure 8
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In the final section, we chose one Seidel example, the biggest 2D case, to
characterize the memory and remote cache misses. These results are shown in
Figure 9 for caches and in Figure 10 for memory.
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All our experiments were designed to utilize all 4 hyperthreads provided by
our target architecute. In order to do so, we did ’compact pinning’ such that
hyperthreads form a thread group in our fine-grain execution. Similary, we set
’KMP AFFINITY’ to compact for OpenMP code. Our experiments show better
runtime for fine grain execution compared to PLUTO generated parallel code
using OpenMP as a baseline – denoted as ’PLT’ in figures. In addition, our
results shows that when threads collaborate, we gain in performance. All our
codes were compiled using Intel’s icc version 13.1.1 and use the Linux Perf tool
[1] to collect the memory and cache related performance counter information.
The performance counters collected from our experiments are presented in Table
1.

5 Discussion

The benefit of execution with locality consideration comes from the amount of
reuse an application offers.The stencil in example in Figure 1 does not have much
reuse. Thus, when smaller number of threads are used, the generated PLUTO
code (represented as PLT in the charts) can outperform fine-grain execution
with jagged tiling (represented as FG in the charts) since only limited amount



Performance Counter Description

L2 DATA READ MISS CACHE FILL Level 2 Cache misses for reads ser-
viced by a remote cache

L2 DATA WRITE MISS CACHE FILL Level 2 Cache misses for writes ser-
viced by a remote cache

L2 DATA READ MISS MEM FILL Level 2 Cache misses for reads ser-
viced by the memory

L2 DATA WRITE MISS MEM FILL Level 2 Cache misses for writes ser-
viced by the memory

Table 1. Performance Counters collected for the Largest Seidel Example

of data is reused in few cores L2 caches and it is not enough to overcome the
slow start introduced by coarser outer L2 tiles. However, as number of threads
are incremented, FG show better execution time. This trend is visible in Figure
6.

Figures 7 and 8, on the other hand, have much better reuse since the Seidel
loops (for both 1D and 2D) have time dimensions in which the entire arrays
are reused. When L2 locality is not considered as is the case with the PLUTO
generated code, eviction rates increases and this is reflected in the performance
of this approach. However with FG, threads working as a group execute different
tiles within L2 in a synchronous fashion exploiting both parallelism and reuse
offered within outer tiles. In all these approaches, the performance gains are
clearly visible up to a number of threads and afterward the performance stay
constant. This plateau is reached when the available parallelism is exhausted
and the rest of the threads do not have any useful work. In Figures 7(a) and
8(a), the plateau is reached at 64 and 32 threads respectively. When increasing
the workload sizes (as in Figures 7(b) and 8(b)), the plateau is pushed further
(to 240 threads for the first case and 128 for the second).

In Intel Xeon Phi, when a thread misses a read or a write access to local L2
caches, it first checks if data is available in neighboring L2 caches and goes to the
memory only if there is both local and remote L2 misses. These events include
both demand fills as well as prefetches and is hence a close approximation for
demands hits and misses in local L2 caches. In the Intel Xeon Phi, the remote
cache accesses might be as expensive as an access to memory; thus, having a large
number of remote cache access might greatly affect performance [8]. Figures 9(a)
and 9(b) show amount of reads and write shared among caches within the L2
ring for the largest Seidel loop example (c.f. Figure 8(b)). Similarly, Figures
10(a) and 10(b) show amount of data brought from memory for the same test
case.

The information extracted from Figures 9(a) and 10(a) show that the PLUTO
generated code has a higher number of remote cache accesses and memory ser-
viced reads compared with the Fine grained approach. This tells us that for the
same workload, fine grained data is reused more often than its PLUTO coun-



terpart (i.e. low memory misses and low remote cache misses for the same data
set).

In the case of writes, Figures 9(b), 11 and 10(b), show interesting results. The
remote cache misses for the writes shows an inflection point around 64 threads.
After 64 threads, the FG approach shows improvements over the PLUTO gen-
erated code. However, before the inflection point, our approach incurs in more
share writes. The reason is that when using more cores more core caches can
participate into the computation.

Figure 11 show the original overhead for memory writes for our framework.
The Y axis in this figure is in log-scale to better show the differences between
the approaches. The original framework suffers from a large number of writes to
memory. This effect is due to a synchronization variable inside the framework.
However, the number of writes in this application are an order magnitude lower
than reads. Thus, their effect in performance is small. However, to obtain the
application’s memory-serviced writes, we modified the framework to bypass the
synchronization variable. This data is presented in Figure 10(b). In this case, we
have an increase on writes, but as expressed before, the sheer number of more
reads than writes, means that reads have a larger influence in the performance of
the application for this application. However, we are investigating how to reduce
this write pressure on the main memory.

These charts show that for application with plenty of reuse, threads can take
advantage of accesses by threads within group and hence collaborate to maximize
memory residence in nearby memory with minimal interference.

The balance between granularity of tasks and the amount of parallelism is
very crucial to maximize performance. Coarse grain execution can lead to un-
derutilization of resources whereas fine grain can lead to more conflicts and
contentions at different levels of memory hierarchy. Most of current architec-
tures offer vast amount of computing resources, some with hyperthreads sharing
caches and some with non-uniform memory access where accessing some address
ranges are cheaper than others. In such cases, taking advantage of shared re-
sources such as caches or address range in close proximity by threads working
together as a unit can have significant effect on performance.

6 Future Work

With our jagged tiling technique and fine grain execution, we improve both
locality and parallelism of an application. However, current implementation of
our jagged tile creation is limited to pipeline parallel applications. We plan to
extend our apporoach to include highly parallel algorithms that has parallel
start such that both inner and outer tile parallelism can be exploited. Also, the
concept of grouping of thread to improve locality with thread collaboration can
benefit many other applications besides stencils. We plan to look into different
applications with reuse and architectures that can take advantage of thread and
memory mapping. In addition, we plan to reduce synchronization overhead that
our framework currently incurs to make our framework more efficient.



7 Conclusion

Today’s systems poses tremendous computational power, however memory sub-
systems haven’t been able to keep up with the accelerating pace of computing
resources. Many optimization techniques over the years have provided significant
boosts in performance by reducing memory access latency. These techniques,
although very effective, often stay blindfolded towards collaboration chances
that processing resources in massively parallel systems present. This can lead
to resource underutilization and missed opportunities to maximize reuse among
threads working in close proximity in time and space. With our novel tiling
approach that exploits multi-level parallelism along with our fine grain execution
framework, we showed that when parallel threads collaborate, it leads to higher
cache reuse and better resource utilization.
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