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Abstract—Implementing locality-aware scheduling algo-
rithms using fine-programming models may generate schedul-
ing overheads due to the potential elevated number of tasks.
In order to reduce such overhead, while increasing at the
same time data locality in multithreaded applications, this
paper proposes a new technique named Locality-Driven Code
Scheduling (LDCS). LDCS uses the data dependency graph of
an application to identify the tasks writing to a common chunk
of data and groups them into a single coarse-grain construct
called super-task. LDCS uses fine-grain synchronization to start
the execution of a super-task, but relaxes the constraints of
classical macro-dataflow models by signaling a super-task in
the middle of its execution to fire each of its internal phases.
Since all the phases of a super-task process the same block of
data and the scheduling of work to hardware threads is made
in terms of super-tasks, long latency operations are significantly
reduced. Preliminary results show that LDCS can improve the
performance of a linear algebra kernel by 72% on average
for weak scaling in comparison with a dynamic scheduling
version of the kernel when using an architecture with software-
managed memory hierarchy.
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I. INTRODUCTION

Over the last decade, computer architects and program-
mers have relied mainly on multi and many-core archi-
tectures to boost the performance of scientific and every-
day applications. Traditional numerical methods (such as
linear algebra kernels and applications) have already been
decomposed to be executed concurrently and to utilize these
machines to the fullest. However, new algorithms must be
proposed to better take advantage of these massively parallel
chips and to reduce the latency of applications running on
such systems. Given good prior knowledge of a regular
application, it is possible to determine its data access patterns
and thus try to reduce the amount of data movement while
executing—exploiting data locality as much as possible.

Scheduling techniques based on data locality have been
studied for multicore architectures using common multi-
threaded programming models and different levels of task
granularity [1], [2], [3], [4].

For applications requiring fine-grain parallelism, other
works have used the dataflow and the codelet model for the

implementation of such techniques [5], [6], [7]. Even though
these models are preferred for applications that need to adapt
dynamically during runtime, overheads could be produced
in the scheduling of the many small tasks generated by the
model.

We believe that an application can benefit more from
a locality-aware scheduling technique in a fine-grain pro-
gramming model by grouping tasks that process a common
block of data in a single coarse-grain construct called super-
task, which requires dependence satisfaction in the middle of
its execution. We call this technique Locality-Driven Code
Scheduling (LDCS).

Operational semantics of super-tasks are derived from
dataflow semantics [8], and in particular macro-dataflow [9].
A super-task is comprised of several phases that execute in
sequence. Each phase is tied to a set of dependence signals
and is triggered when external data it depends on has been
fully updated. Super-tasks provide several advantages: they
improve data reuse, drastically reduce scheduling overheads,
and, as phases are inlined within a super-task, they make the
economy of function calls. This reduction in the amount of
data movement is directly translated into improvements in
the execution time of the application [10].

LDCS is presented in this paper with the following main
contributions:

1) The description of the technique.
2) An analysis of the impact that LDCS has on an

application’s performance.
3) Preliminary experimental evaluation of the technique

in an architecture with software-managed memory
hierarchy.

The paper is organized as follows: First, we introduce
LDCS using the LU factorization as example in Section
II, followed by some preliminary experimental results in a
software-managed memory hierarchy in Section III. Then,
we review some of the related work and analyze their
differences with LDCS in Section IV. Finally, we outline
our conclusions and ongoing and future work in Section V.



II. LOCALITY-DRIVEN CODE SCHEDULING

Locality-Driven Code Scheduling (LDCS) is a locality-
aware scheduling algorithm based on the use of coarse-
grain constructs named super-tasks. If the data dependency
graph (DDG) of the target application is known by the
programmer, then the tasks writing the same block of data
can be grouped in a single super-task, which is computed
by the same hardware thread. Each task of the super-task
becomes a phase of computation of the super-task and starts
execution only when its corresponding dependencies have
been satisfied. In this sense, LDCS relaxes dataflow models
specifications by allowing super-tasks to be signaled in the
middle of their execution, in order to fire each of their
internal phases. Moreover, LDCS decreases the number of
long latency operations because only the first and last phases
of the super-task are required to access main memory to
read and write, respectively, the block of data processed by
all the tasks of the super-task. In order to achieve this, the
programmer must select an appropriate size for the block
of data so this one can fit in one of the upper levels of
the memory hierarchy of the target platform, along with any
other data required by the super-task for its processing.

If the DDG of an application is known, the steps a
programmer needs to follow to implement LDCS are:

1) Determine the number of blocks of data to be produced
by the application and their associated tasks.

2) For each block, create a super-task with all the corre-
sponding tasks.

3) Assign dynamically super-tasks to available hardware
threads. Prioritize super-tasks containing tasks in the
critical path of the DDG.

4) Execute each super-task following Algorithm 1.
5) Repeat steps 3 and 4 until all super-tasks have been

assigned and processed.

Algorithm 1 LDCS: Execution of a Super-Task by a Hard-
ware Thread

1: procedure PROCDATABLOCK(NP = Number of
Phases, ND[NP] = Number of Dependencies for each
Phase)

2: for (p=0; p < NP; p++) do
3: Wait for ND[p]’s dependencies to be satisfied
4: if p==0 then
5: Read the block of data of the super-task.
6: end if
7: Read any other data required.
8: Process the block of data with phase p
9: end for

10: Write the block of data back into main memory
11: Signal any thread(s) waiting for this block of data
12: Make hardware thread available
13: end procedure

The implementation of an application using LDCS can
effectively improve its performance since the number of long
latency operations is reduced. LDCS may also improve its
power efficiency due to the cost (in terms of energy) that
must be paid when moving data across the different memory
levels of a multi or many-core architecture [10].

LDCS is especially suitable for blocked linear algebra
kernels such as LU factorization, which is commonly used
for the benchmarking of high-performance systems( [11],
[12], [13]). Figure 1 presents the DDG of a typical blocked
implementation of this algorithm. As can be seen, several
blocks of data are processed more than once using different
tasks (defined as GETRF, GESSM, TSTRF, and SSSSM [14]).
If a typical fine-programming model is used for the im-
plementation of this kernel, then each block of data must
be read and written by each task that processes it. In this
implementation, the number of units of work to be scheduled
to hardware threads is equal to the number of tasks.

In order to reduce both the number of long latency
operations performed by the kernel and the number of units
of work to be mapped to hardware threads, LDCS can be
applied to the DDG of LU factorization as shown in Figure
2. In this figure, different tasks that process the same block
of data have been grouped in the same super-task. Block
(3, 3), for instance, is processed by three SSSSM tasks and
one GETRF task, which are now phases of the same super-
task. Only the first SSSM and the GETRF tasks must access
to main memory to read and write this block of data, while
the other phases rely on its presence in the upper levels of
the memory hierarchy.
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(b) Data Dependence Graph

Figure 1. Classical Blocked LU factorization: GETRF tasks are dark gray,
TSTRF tasks are purple, GESSM tasks are yellow, SSSSM tasks are green.
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Figure 2. DDG of the LU factorization algorithm using LDCS: GETRF
tasks are dark gray, TSTRF tasks are purple, GESSM tasks are yellow,
SSSSM tasks are green, and light-orange dashed boxes enclose tasks
computed by the same hardware thread and conforming a super-thread.

III. EXPERIMENTAL EVALUATION

This section presents a preliminary experimental evalua-
tion of LDCS using the IBM Cyclops-64 (C64) [15]. C64 is
a homogeneous many-core architecture featuring 160 single-
issue thread units (TU) per chip running at 500 MHz and a
peak performance of 80 GFLOPS. C64 features a three-level
software-managed memory hierarchy completely visible to
the programmer. For the experiments, a highly accurate C64
simulator was used [16].

Several versions of LU factorization were designed in
order to evaluate the performance of LDCS, some of which
are based on those presented in [17]:

1) Stat. Sched.: Static scheduling version using C-Tiny-
Threads [16].

2) +ASM: Optimized with GETRF, TSTRF, GESSM, and
SSSSM tasks written in assembly.

3) +Data Pref.: Optimized with software pipelining and
loop unrolling.

4) Dyn. Sched.: As the previous one but using dynamic
scheduling of tasks.

5) LDCS: Optimized with LDCS.
6) +Column Transp.: Optimized with column transposi-

tion to take advantage of the instructions available on
C64’s ISA for the reading and writing of several data
elements in a single transaction.

A tile of 6 × 6 was used so the block of data to be
processed and any other data required by the super-task
could fit in the highest level of the C64’s memory hierarchy.
On the LDCS versions, the first super-tasks to be scheduled
to hardware threads were those containing tasks in the
critical path of LU factorization, favoring GETRF tasks
which are the bottleneck of the algorithm (see Figure 2).
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(a) Weak Scaling using 156 Thread Units.
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(b) Strong Scaling using an 840 × 840 Matrix.

Figure 3. Performance of LU factorization using LDCS on C64.

Figure 3 presents the performance results for the LU fac-
torization running on C64. LDCS with column transposition
delivers the best performance in weak and strong scaling,
achieving a maximum of 46.3 GFLOPS when a matrix of
840×840 is processed with 156 TUs. This is followed by the
LU factorization version using only LDCS with a maximum
performance of 42.8 GFLOPS and the dynamic scheduling
version with 30.62 GFLOPS.

These results also surpass those reported on [17], where a
maximum performance of 39 GFLOPS was obtained with a
dynamic scheduling of tasks and a diagonal tile of 12× 12.

The two variants of LDCS (with and without column
transposition) exhibit an almost linear scalability with re-
spect to the number of TUs. Moreover, the only versions
exhibiting a good scalability in Figure 3b are those using
dynamic scheduling.

IV. RELATED WORK

The combination of tasks in a super-task is similar to the
concept of task aggregation used by the QUARK scheduler
in PLASMA [18]. Task aggregation’s objectives are to
reduce the overhead of scheduling fine-grain tasks and to
group several kernels to be computed by GPUs. The main



difference of this concept with LDCS’ super-tasks is that
the kernels must not have dependencies among them in
order to take full advantage of the GPU, whereas in LDCS
dependencies among the tasks grouped in a super-task exist,
mainly because all the tasks process the same block of data.

As LDCS, the technical report by Chan [6] proposes an
approach to schedule to the same hardware thread the tasks
overwriting a particular block of data. However, his work
is bound to the specifications of the dataflow model with
dataflow actors as unit of scheduling. This means that each
task must read and write the block of data that processes and
must perform the mandatory register book-keeping on each
function call. LDCS, on the other hand, uses super-tasks
as unit of scheduling, which can be signaled in the middle
of their execution. Moreover, LDCS reduces the number of
register book-keeping operations by inlining tasks inside a
super-task. Additionally, Chan’s work implements software
caches (that follow the content of the hardware caches and
which are analyzed in terms of hits and misses) to determine
the assignment of a task to a specific hardware thread. LDCS
does not need this mechanism since it uses an a priori
knowledge of the DDG of the application to map super-tasks
to hardware threads.

The work of Gautier et. al [5] proposes a locality-aware
work stealing algorithm for dataflow programming that com-
putes dependencies between tasks before assigning a new
task to a hardware thread. Recursive applications can benefit
from this approach, at the expense of producing a larger
critical path. LDCS instead, computes the dependencies
among tasks from the beginning if the DDG is previously
known, reducing the overhead of the application during
runtime and keeping the DDG of the application (and its
critical path) unchanged.

The work of Chen et. al [7] in the codelet model [19]
uses a codelet graph to find the best scheduling algorithm
of an application targeting a many core architecture. In the
graph, edges are annotated with the amount of data shared
by a source and a sink codelet and codelets are grouped in
order to minimize the sum of intergroup weights. As stated
by the authors, the algorithm could schedule to the same
hardware thread two codelets with no dependencies among
them, forcing the creation of new dependencies to maintain
the total order of codelets and reducing the parallelism of
the application. LDCS guarantees that tasks scheduled to
the same hardware thread have dependencies between them
(since they overwrite a common block of data), so no extra
dependencies are needed.

The works of Muddukrishna et. al [1], [2] propose a
locality-aware scheduling algorithm that uses data footprint
information to increase the locality of data. Unlike LDCS
that uses one single queue for the scheduling of super-tasks
to hardware threads, Muddukrishna et. al work’s implements
one queue per NUMA node and schedules each new task to
the queue with the least total memory latency between the

node’s DRAM and last level of cache. The work of Yoo et.
al [3] studies locality-aware scheduling techniques for un-
structured programs (i.e. tasks have no explicit dependencies
among them), while LDCS targets applications with explicit
dependency information. Finally, Ding et. al [4] propose a
scheduling strategy to schedule iterations of dependence-free
loop nests to cores based on the reduction of data reuse
distances and cache hierarchy.

V. CONCLUSIONS AND ONGOING AND FUTURE WORK

The efficient implementation of a locality-aware schedul-
ing algorithm in a fine-grain programming model has been
proposed in the form a new technique named Locality-
Driven Code Scheduling (LDCS). This technique relaxes
dataflow model specifications by using coarse-grain con-
structs named super-tasks that may be signaled in the middle
of their execution. Since these constructs are composed of
tasks that process a common block of data, the number of
long latency memory accesses is reduced, which is translated
into a reduction of the execution time of an application.

Experiments on an architecture with software-managed
memory hierarchy show that LDCS can effectively improve
the performance of a linear algebra kernel by 72% on
average for weak scaling when compared with a dynamic
scheduling version.

Current work is focused on the implementation of the
technique in an architecture with hardware data caches and
on its experimental evaluation in terms of energy consump-
tion and power efficiency for LU factorization and other
linear algebra kernels such as Cholesky and QR decomposi-
tion. Future work will focus on the analysis of the potential
benefits that LDCS can have in heterogeneous systems using
accelerators and in the possible addition of the technique to a
compiler, given the systematic analysis performed by LDCS
on the DDG of an application.
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