
Exploring Fine-Grained Task-based Execution on Multi-GPU

Systems

Long Chen Oreste Villa Guang R. Gao
Qualcomm Incorporated Pacific Northwest National Laboratory University of Delaware
San Diego, CA 92121 Richland, WA 99352 Newark, DE 19716

longchen@qualcomm.com oreste.villa@pnl.gov ggao@capsl.udel.edu

Abstract

Using multi-GPU systems, including GPU clusters, is

gaining popularity in scientific computing. However,

when using multiple GPUs concurrently, the conventional

data parallel GPU programming paradigms, e.g., CUDA,

cannot satisfactorily address certain issues, such as load

balancing, GPU resource utilization, overlapping fine-

grained computation with communication, etc. In this pa-

per, we present a fine-grained task-based execution frame-

work for multi-GPU systems. By scheduling finer-grained

tasks than what is supported in the conventional CUDA

programming method among multiple GPUs, and allow-

ing concurrent task execution on a single GPU, our frame-

work provides means for solving the above issues and ef-

ficiently utilizing multi-GPU systems. Experiments with

a molecular dynamics application show that, for non-

uniform distributed workload, the solutions based on our

framework achieve good load balance, and considerable

performance improvement over other solutions based on

the standard CUDA programming methodologies.

Keywords: fine-grained, task, GPGPU, multi-GPU, dy-

namic load balance

1 Introduction

How to efficiently utilize single-GPU systems for gen-

eral purpose scientific computing has been investigated

for many applications. Beyond single-GPU systems, there

is a growing interest in exploiting multiple GPUs. The

main benefit of using multi-GPU systems is that such sys-

tems can provide a much higher performance potential

than the single-GPU systems. Further, multi-GPU sys-

tems can overcome certain limitations associated with the

single-GPU systems, e.g., limited global memory.

Ensuring a good dynmamic balanced load across mul-

tiple devices is critical to achieving strong performance

on multi-GPU systems. This is particularly true when

the target applications exhibit irregular, unbalanced work-

load, or the computation is to be carried out on heteroge-

neous platforms, e.g., consisting of both CPUs and GPUs,

or a diversity of GPUs of varying capability. A static

scheduling approach will not work since it lacks the abil-

ity to automatically adapt to the application irregularity

and system heterogeneity. One possible approach is to de-

compose the computation into small chunks. Whenever a

GPU is free, it receives a chunk for processing. While this

approach potentially can provide better load balancing be-

havior than the static approach, the overall performance of

the program is heavily affected by the granularity of the

chunks. Generally speaking, using finer-grained chunks

can achieve better load balancing. When the workload in

each chunk becomes smaller and smaller, a single chunk

may not be able to present enough parallelism to fully uti-

lize the GPU. However, the majority of the conventional

NVIDIA CUDA programming methodologies and tech-

niques implies that programmer-defined functions should

be executed sequentially on the GPU1. Therefore, using

these fine-grained chunks could result in the underutiliza-

tion of the GPUs, and degrade the overall performance.

On the other hand, some applications do require a more

refined execution behavior on GPU-enabled systems than

CUDA. For example, as suggested in [20], a fine-grained

GPU execution model would allow fine-grained message-

driven applications to overlap the communication with the

computation on GPU clusters.

Open Computing Language (OpenCL) [13] supports

the both data parallel programming model and task par-

allel programming model However, its task model is ba-

sically established for multi-core CPUs, and does not ad-

dress the characteristics of GPUs. Moreover, it does not

require a particular OpenCL implementation to actually

execute multiple tasks in parallel.

Our approach for solving these issues is to allow con-

1The latest NVIDIA Fermi architecture supports only 4 concurrent

kernels (will increase to 16). Our approach can provide even finer-

grained concurrent task execution, and can also be applied to this new

architecture to further improve its utilization.

1

current execution of fine-grained tasks on multi-GPU sys-

tems. Specifically, in our approach, the granularity of

task execution is finer than what is currently supported

in CUDA; the execution of a task only requires a subset

of the GPU hardware resources. While some tasks are

being processed by part of the GPU resources, CPU can

dispatch other homogeneous/heterogeneous tasks to this

GPU, and these tasks can be processed by using other part

of the GPU resources. All tasks can be processed con-

currently and independently, assuming there is no depen-

dence among them. While scheduling fine-grained tasks

enables good load balancing among multiple GPUs, con-

current execution of multiple tasks on each single GPU

solves the hardware underutilization issue when tasks are

small.

In our earlier work [3], we developed a task-queue

based load balancing scheme for single-GPU systems,

then we replicated the design to enable a rudimentary

form of multi-GPU support. While the proposed multi-

GPU mechanism was able to reduce multiple kernel calls

overhead as well as load balancing the execution of tasks

on each individual GPU (better than the CUDA sched-

uler), it was not able to efficiently balance workload

among multiple GPUs. The main reason was that the

granularity of tasks was too coarse grained and no effec-

tive coordination strategy among multiple GPUs was de-

fined. In this paper, we extend this previous work and

make the following contributions:

• We present a framework that coordinates the execu-

tion of tasks for multi-GPU systems, where one such

system is a compute node equipped with multiple

GPUs. This framework features fine task granulari-

ties and a task container hierarchy such that it main-

tains good dynamic load balancing while minimizing

the coordinating overhead.

• We propose a new GPU level, fine-grained execution

scheme that matches the GPU’s architectural fea-

tures. This scheme can achieve better dynamic load

balancing and potentially utilize the hardware more

efficiently than the one proposed in [3], when a task

exposes limited data parallelism.

• We evaluate the solutions based on our framework

with a molecular dynamics (MD) application with

the NVIDIA CUDA environment2. For systems of

non-uniform distributions of atoms, our solutions

achieve nearly optimal load balancing, and consider-

able performance improvement over alternative im-

plementations based on the canonical CUDA pro-

gramming paradigm.

2Although our current framework is built with NVIDIA CUDA de-

vices, it can also be implemented with AMD GPUs as well.

The rest of the paper is organized as follows. Section 2

presents a brief overview of the previous works on uti-

lizing multiple GPUs, and exploiting task parallelism on

GPUs. Section 3 describes the CUDA architecture and its

programming model. Section 4 discusses our fine-grained

task-based execution framework for multi-GPU systems.

Section 5 evaluates our design with a MD application on

a 4-GPU system. Section 6 concludes the paper.

2 Related Work

Using multi-GPU systems, including GPU clusters, is

gaining popularity in scientific computing [5, 8, 9, 11,

20, 23]. In general, these works demonstrate that such

platforms can be beneficial in terms of performance,

power, and price. There are continuing efforts to facil-

itate programming GPU clusters. The work in [6] em-

ploys Global Arrays [17] to simplify the communications

among GPUs. A memory consistency model is proposed

in [15] to enable a distributed shared memory system,

which consists of texture memory across multiple GPUs.

Performance modeling of multi-GPU systems and GPU

clusters is studied in [21]. Results show that such model-

ing techniques can be accurate for applications of a deter-

ministic execution manner.

Scheduling task execution on GPU-enabled systems

and other heterogeneous platforms has been investigated

in a few studies. Merge [14] is a programming frame-

work proposed for heterogeneous multi-core systems. It

employs a library-based method to automatically dis-

tribute computation across the underlying heterogeneous

computing devices. STARPU [1] is another framework

for task scheduling on heterogeneous platforms, in which

hints, including the performance models of tasks, can be

given to guide the scheduling policies. Our work is or-

thogonal to prior efforts in that our fine-grained approach

provides better performance on single-GPU systems[3]

and also additional design space for programmers to fur-

ther improve the performance on multi-GPU systems.

3 CUDA Architecture

In this section we provide a brief introduction of the

CUDA architecture and its programming model. More

details are available on the CUDA website [18].

In the literature, GPUs and CPUs are usually referred to

as the devices and the hosts, respectively. CUDA devices

have one or multiple streaming multiprocessors (SMs),

each of which consists of one instruction issue unit, eight

scalar processor (SP) cores, two transcendental function

units, and on-chip shared memory. For some high-end de-

vices, the SM also has one double-precision floating point

unit. CUDA architecture features both on-chip memory

2

and off-chip memory. The on-chip memory consists of the

register file, shared memory, constant cache and texture

cache. The off-chip memory consists of the local memory

and the global memory. Since there is no ordering guar-

antee of memory accesses on CUDA architectures, pro-

grammers may need to use memory fence instructions to

explicitly enforce the ordering, and thus the correctness of

the program. The host can only access the global memory

of the device. On some devices, part of the host mem-

ory can be pinned and mapped into the device’s memory

space, and both the host and the device can access that

memory region using normal memory load and store in-

structions.

A CUDA program consists of two parts. One part is

the portions to be executed on the CUDA device, which

are called kernels; another part is to be executed on the

host, which we call the host process. With the current

CUDA environment, one host process can communicate

with only one device, while one device can be shared by

multiple host processes. When a device is shared by mul-

tiple host processes, the resources created by a host pro-

cess, e.g., allocated memory segment, cannot be accessed

by other host processes, even they are sharing the same

physical device. The device executes one kernel at a time,

while subsequent kernels are queued by the CUDA run-

time. When launching a kernel, the host process speci-

fies how many threads are required to execute the kernel,

and how many thread blocks (TB) these threads should be

equally divided into. On the device, the CUDA hardware

schedules and distributes TBs to SMs with available exe-

cution capacity. Each thread is mapped to one SP core,

and has its own execution context. Moreover, the SM

manages the threads in groups of 32 threads called warps,

in the sense that all threads in a warp execute one common

instruction at a time. Because of this feature, no explicit

mechanism is needed for synchronizing threads within a

warp. Thread divergences occur when the threads within

a warp take different execution paths, and execution of

all taken paths will be serialized, which can significantly

degrade the performance.

4 A Fine-grained Task-based Exe-

cution Framework for Multi-GPU

Systems

The multi-GPU systems discussed in this paper can be

viewed as illustrated in Figure 1. In the system shown,

multiple devices are connected to the host via a PCIe bus.

With the current CUDA environment, devices cannot ex-

change data with each other directly. Instead, data move-

ments across devices have to be done by the host pro-

cesses.

Figure 1: A PCIe connected multi-GPU system

To efficiently utilize such multi-GPU systems, we

propose a fine-grained task-based execution framework,

which is demonstrated in Figure 2.

Figure 2: Fine-grained task-based execution framework

for multi-GPU systems

In our framework, for each host process-device pair,

one or more programmer-created local task containers are

used to enable the host-device communications when a

kernel is running on the device. Such local task containers

are only accessible by the corresponding host process and

the device. The computation to be carried out is first de-

composed into many fine-grained tasks3, which are kept

in a programmer-created global task container. All in-

dividual host processes can fetch/send tasks from/to this

global task container. Once a host process detects that its

own local task container has free space and some tasks

in the global task container are ready to start, it moves a

number of such tasks from the global task container to its

own local task container, and informs the device the avail-

ability of new tasks. This two-level task container hier-

archy enables minization of the access contentions on ei-

3Currently the task decomposition and data dependence is explicitly

handled at the application level by programmers.

3

ther level. On each device, a persistent kernel is launched

at the beginning of the computation. This kernel fetches

tasks from the local task container(s), and executes them

by groups of threads, which we call task execution units

(TEUs). Note that the processing of each task is car-

ried out by a single TEU, which can be at a granularity

finer than the entire device. Multiple tasks can be fetched

and processed by different TEUs (on a same device) con-

currently and independently, assuming there is no depen-

dence among them. Moreover, task sending (by the host

process) and task fetching (by the TEUs) can happen at

the same time. This device-scope fine-grained execution

scheme is illustrated in Figure 3.

Figure 3: Fine-grained execution scheme on a single de-

vice

One of the challenges to implement this device-scope

fine-grained execution scheme is to provide a correct and

efficient host-device communication mechanism when

a kernel is running on the device. As demonstrated

in [3], by judiciously utilizing the GPU’s architectural

features, such as the multiple memory spaces, and the

asynchronous concurrent execution, this mechanism can

be achieved for host-device communications.

Individual TBs are used as TEUs in [3]; each task is

executed by a single TB. We call this the TB-level task ex-

ecution scheme. While this scheme is finer-grained than

the normal CUDA scheme (where a function is executed

by the entire device), it is not necessarily the optimal gran-

ularity of TEUs. For example, if each task only exposes

limited data parallelism, which can be handled by a few

threads, using the TB-level task execution scheme simply

wastes the computation power of other threads in the same

TB. Therefore, we propose a warp-level task execution

scheme, where tasks are fetched and executed by individ-

ual warps on the device. Since, on the GPU, the SM cre-

ates, manages, schedules, and executes threads in warps,

the warp-level task execution scheme perfectly matches

this architectural feature, and therefore can potentially

utilize the hardware more efficiently than the TB-level

scheme, and the normal CUDA programming paradigm.

On the other hand, using even finer-grained TEUs, such as

individual threads, will not help. Since all threads within

a warp share an instruction issue unit, they cannot execute

different codes concurrently. In fact, the most efficient ex-

ecution on GPU is that all threads of a warp take the same

execution path [19].

4.1 Dynamic Load Balancing Design

Our design for dynamically balancing workload on multi-

GPU systems is based on our fine-grained task-based

framework described above. This design follows the ba-

sic structure illustrated in Figure 2. Specifically, the

work to be processed with a multi-GPU system is de-

composed into fine-grained tasks, which are to be exe-

cuted by individual warps. When a local task container

becomes empty, the corresponding host process fills it

with certain number of fine-grained tasks retrieved from

the global task container. Here we assume that the de-

pendencies among tasks have been taken care of by the

host processes, and all tasks in the local task containers

can be executed independently by devices. Since all host

processes share a host memory space, the orchestrations

among them can be accomplished with regular program-

ming methodologies and techniques for shared-memory

systems.

5 Experiments and Discussions

In this section, we evaluate the dynamic load balanc-

ing solutions based on our fine-grained task-based exe-

cution framework on a multi-GPU system, using a molec-

ular dynamics (MD) [7] application, for different work-

load distributions. We compare our solutions with other

techniques based on the standard CUDA programming

methodologies. The results show that, for non-uniform

distributed workload, our solutions achieve good load bal-

ancing across GPUs, with significant performance im-

provement over other alternative approaches.

5.1 Molecular Dynamics

MD is a simulation method of computing dynamic par-

ticle interactions on the molecular or atomic level. The

method is based on knowing, at the beginning of the sim-

ulation, the mass, position, and velocity of each particle in

the system. Each particle interacts with other particles in

the system, and such interaction is computed using a dis-

tance calculation, followed by a force calculation. When

the net force for each particle has been calculated, new

positions and velocities are computed through a series of

motion estimation equations. The process of net force cal-

culation and position integration repeats for each time step

of the simulation. Non-uniform distributions of atoms in

4

space are found in MD simulations and produce highly

irregular computational load [12].

In our experiments, we use synthetic systems of helium

atoms, where the force between atoms is calculated us-

ing both electrostatic potential and Lennard-Jones poten-

tial [7]. The systems are built by following 4 different

atom distributions in a 3D space. Uniform distribution ar-

ranges atoms uniformly distributed in the system. A sys-

tem built with Sphere distribution has a higher density in

the center than in periphery. The density decreases from

the center to the periphery following a Gaussian curve.

Equal-sized cluster distribution first partitions the system

into clusters of equal number of atoms, where the cen-

ters of clusters are randomly generated. Then each cluster

is built by following Sphere distribution. Random-sized

cluster distribution also generates clusters of atoms. Un-

like the Equal-size cluster distribution, for each cluster,

both the center and the number of atoms in this cluster are

randomly generated for the Random-size cluster distribu-

tion. Figure 4 shows example systems of these distribu-

tions. It is clear that systems built with last three atom dis-

tributions have irregular computational load in the space.

The reason for using synthetic systems is two-fold:

(1) synthetic systems can isolate the load balancing issue

from other complex facts exhibiting in the real life sys-

tems, and therefore facilitates the evaluations and analy-

ses of different solutions, (2) it is very difficult to find real

life examples where a particular atom distribution is con-

stant as the simulated system size scales up, and therefore

it makes very hard to objectively evaluate different solu-

tions with different system sizes.

For each system, the N atom positions are stored in a

linear array A. Specifically, the 3D space is first decom-

posed in boxes of size equal to the cutoff radius. Then,

atoms in each individual box are stored into the array con-

tiguously. Due to the effect of cutoff radius, the systems

built with non-uniform distributions exhibit irregular, un-

balanced computation workload for different boxes. Con-

sequently, using this data layout with multi-GPU systems

can be challenging, in terms of the load balancing and the

absolute performance.

5.2 Implementations

The platform used in our experiments has 1 quad-core

AMD Phenom II X4 940 processor and 4 NVIDIA Tesla

C1060 GPUs. The system is running 64-bit Ubuntu ver-

sion 8.10, with NVIDIA driver version 190.10. CUDA

Toolkit version 2.3, CUDA SDK version 2.3, and GCC

version 4.3.2 were used in the development.

We implement dynamic load balancing solutions based

on our fine-grained task-based execution framework for

this 4-GPU system, using both warp-level and TB-level

schemes. We also implement other load balance tech-

niques based on the conventional CUDA programming

method. Note that all solutions use the same device func-

tion to perform the force computation, which is based

on the atom-decomposition [22] technique. Also, before

computation, the array A is already available on devices.

In this way, we can ensure that all performance differences

are only due to the load balancing mechanisms employed.

Solution STATIC statically divides A into P contiguous

regions of equal size, where P is the number of devices

used. Each device is responsible for computing forces for

atoms within a region. For systems of unbalance work-

load in the space, although each region can be processed

efficiently on a separate device, the overall performance is

deemed to be low due to the poor load balance among de-

vices. The objective of having this solution is to use it as

a baseline to compare other load-balancing solutions for

the multi-GPU systems.

Solution RANDOM randomly permutes the elements in

A before the simulation, and/or after every certain amount

of time steps in the simulation. After the permutation,

the workload is distributed as Solution STATIC; the array

A is equally partitioned into P contiguous regions, one

for each device. By discarding the locality information of

atoms, this solution ensures almost perfect load balance

among multiple devices, since now each atom in the array

has a (nearly) equal probability to exert a force with all

other atoms in the array. This technique is used in paral-

lel implementations of state-of-the-art biological MD pro-

grams such as CHARMM [2] and GROMOS [4]. How-

ever, when applied to the GPU codes, it introduces the

problem of thread divergence inside a warp for simulating

systems of non-uniform atom distributions, as now atoms

with a lot of force interactions are mixed with atoms with

few force interactions.

Solution CHUNKING is a dynamic approach that uses

fine-grained workload to dynamically balance load across

multiple devices. Specifically, the array A is decomposed

into many data chunks of equal atoms. Whenever a host

process finds out that the corresponding device is free (on

kernel running on the device), it assigns the force com-

putation of atoms within a data chunk to the device, by

launching a kernel with the data chunk information. The

host process waits until this kernel completes the compu-

tation and the device becomes free again, then it launches

another kernel with a new data chunk. This solution is

designed to take advantage of both good load balancing

among multiple GPUs and thread convergence. Since a

device only receives a relatively small workload after it

finishes the current one, this approach potentially pro-

vides better load balancing than Solution STATIC, for

5

(a) Uniform (b) Sphere (c) Equal-size cluster (d) Random-size cluster

Figure 4: Example synthetic systems of different atom distributions

non-uniform distributed workload. Since the performance

of chunking is affected by the chunk size, we use an em-

pirically optimal size of 15, 360 atoms/chunk (120 TBs

× 128 atoms) for this solution, which achieves the best

absolute performance among all examined chunk sizes.

Solution WARP-TASK is an approach that employs the

dynamic load balancing design (presented in Section 4.1),

which is based on our warp-level task-based execution

scheme . In this solution, each task is the force evaluation

of 32 atoms (stored contiguously in A) with all atoms in

the system, and it is to be executed by a single warp. The

simulation of each time step is decomposed into tasks,

which are kept in the global task container. On each de-

vice, two local task containers are used to overlap the host

task sending with the device task fetching. Each local task

container holds up to 20 tasks. Whenever a task container

of a device becomes empty, the corresponding host pro-

cess tries to fetch as much as 20 tasks from the global task

container at a time, and sends them to the device with a

single task sending procedure. The kernel is run with 120

TBs, each of 128 threads, i.e., 512 warps on a single de-

vice. Note these configuration numbers are determined

empirically.

Solution TB-TASK is similar to Solution WARP-TASK,

except that now the TB-level task-based execution scheme

is used; TEUs are TBs. This approach is also utilized

in [3]. To accommodate this granularity change of TEUs,

the granularity of each task is accordingly increased to the

force evaluation of 128 atoms (stored contiguously in A)

with all atoms in the system. The kernel for this solution

is also run with 120 TBs, each of 128 threads.

5.3 Results and Discussions

We conduct our experiments on the 4-GPU system de-

scribed in 5.2; all 4 GPUs are used in the simulations. For

each run of the simulation, we start with a system gen-

erated by one of the 4 distributions described earlier in

Section 5.1, and we use the average runtime in the first 10

time steps as the metric for the absolute performance (the

runtime differences among these 10 time steps are trivial).

Moreover, we decompose the runtime into CPU time and

GPU time. CPU time denotes the time spent on the cor-

responding host process for the host-device data transfer,

position update, and communication with other host pro-

cesses. GPU time denotes the time spent on the device for

the force computation. In this way, the load balancing be-

havior is illustrated with the GPU times spent on different

devices.

We first investigate how different solutions behave for

systems of a particular size, i.e., 256K-atom. Figure 5

shows the average runtime per time step for all solutions

(without Solution RANDOM). Particularly, such timing

information is presented for each individual GPU (la-

belled with G0-G3). Solution RANDOM does achieve

excellent load balancing among GPUs, however, it is usu-

ally much slower than other solutions. Therefore we will

only describe its behaviors in text.

From Figure 5, it is clear that, in our experiments, the

systems built with non-uniform atom distributions require

much more computation time than the system built with

the uniform atom distribution. This is because that with

our particular Uniform distribution, there are only a few

atoms in the space determined by the cutoff radius. How-

ever, for other distributions, in average, each atom may

interact with up to hundreds of other atoms. Given the

force computation is the most expensive part in the MD

simulation, the number of force computations involved in

various systems causes huge differences among them, in

terms of the absolute performance.

For the Uniform distribution, Solution STATIC

achieves the best absolute performance and load balanc-

ing. It virtually balances the workload among GPUs per-

fectly with few overhead, while dynamic solutions suffer

from the additional overhead due to the runtime schedul-

ing. As we can see from the figure, this additional over-

head is quite noticeable when the GPU time is small.

However, for non-uniform distributed workload, dynamic

solutions show their strengths, in terms of load balancing.

6

CPU time

GPU time

 0

 0.5

 1

 1.5

 2

 2.5

G0G1G2G3 G0G1G2G3 G0G1G2G3 G0G1G2G3

T
im

e(
s)

STATIC CHUNKING WARP−TASK TB−TASK

(a) Uniform distribution

CPU time

GPU time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

G0 G1 G2 G3 G0 G1 G2G3 G0G1 G2G3 G0G1 G2 G3

T
im

e
(s

)

STATIC CHUNKING WARP−TASK TB−TASK

(b) Sphere distribution

CPU time

GPU time

 0

 1

 2

 3

 4

 5

 6

 7

G0 G1 G2 G3 G0 G1 G2 G3 G0 G1 G2 G3 G0 G1 G2 G3

T
im

e
(s

)

STATIC CHUNKING WARP−TASK TB−TASK

(c) Equal-size cluster distribution

CPU time

GPU time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

G0 G1 G2 G3 G0 G1 G2G3 G0G1 G2G3 G0G1 G2 G3

T
im

e
(s

)

STATIC CHUNKING WARP−TASK TB−TASK

(d) Random-size cluster distribution

Figure 5: Dynamic load among GPUs for 256K-atom systems

Especially, for Solution WARP-TASK, the difference of

GPU time among GPUs is within 3%, while such differ-

ence is up to 9% for Solution CHUNKING. Regarding

the absolute performance, our fine-grained task-based so-

lutions achieve up to 1.9x speedup over Solution STATIC.

Both Solution WARP-TASK and Solution TB-TASK out-

perform Solution CHUNKING. Particularly, for Solution

WARP-TASK, we see improvements of 11%-22% over

Solution CHUNKING for different non-uniform distribu-

tions. Such improvements are due to the following facts.

First, by scheduling the computation in fine granularity,

our solution achieves better load balancing among GPUs

than Solution CHUNKING. Second, on each individual

GPU, Solution CHUNKING makes a kernel call for pro-

cessing a data chunk. In a kernel execution, because

of the unbalanced workload, some TBs may complete

their computation earlier than other TBs, and have to wait

till the termination of the kernel, which indicates ineffi-

ciency. This issue could be alleviated by using larger data

chunks. However, our experimental results (not shown)

confirm that larger chunks cause serious load imbalance

among GPUs, and eventually affect the absolute perfor-

mance negatively. Actually, the specific chunk size we

used in Solution CHUNKING achieves the best perfor-

mance among all examined chunking sizes. In our Solu-

tion WARP-TASK, whenever a warp becomes free, new

tasks can be inserted from the host, which can be fetched

and executed by this warp, without affecting the execution

of other warps on the same device. Therefore, this fine-

grained execution scheme achieves better GPU utilization

than Solution CHUNKING does. Not shown in the figure,

Solution RANDOM also balances the workload among

GPUs perfectly. However, because mixed atom data cause

serious thread divergence on each device, this solution is

the slowest among all solutions, e.g., 6.9x slower than So-

lution STATIC for the Equal-size cluster distribution.

On the other hand, since Solution WARP-TASK em-

ploys the execution scheme that optimally matches the

GPU’s architectural feature, we expected that it could out-

perform Solution TB-TASK remarkably, in terms of abso-

lute performance and load balancing, We do see that So-

lution WARP-TASK achieves better load balancing than

7

Solution TB-TASK. However, regarding the absolute per-

formance, it only exhibits limited improvements over So-

lution TB-TASK, i.e., around 5%. A further examination

of the force computation function reveals that, due to the

specific algorithm used in our MD simulation, Solution

WARP-TASK implies much more memory operations (of

the same order of magnitude of N , the number of atoms in

the system) to the array A, than Solution TB-TASK does.

These extra memory operations offset the majority of the

benefits of using a warp-level solution.

Figure 6 shows the relative speedup of the average run-

time per time step of all solutions (using 4 GPUs) over

Solution STATIC, with respect to system sizes. Again,

Solution RANDOM is not shown here due to its low per-

formance. For the Uniform distribution, Solution STATIC

still achieves the best absolute performance. However,

other dynamic solutions reach comparable performance

for large system sizes. This is because that the additional

runtime scheduling overhead becomes relatively trivial,

compared to the GPU time, when the system size in-

creases. For other non-uniform distributions, our fine-

grained task-based solutions achieve much better perfor-

mance than Solution STATIC and Solution CHUNKING

when large systems (i.e., 128K-atom and up) are used4.

For all non-uniform distributions, Solution WARP-TASK

constantly outperforms Solution TB-TASK, for system

sizes up to 512K-atom. However, the performance im-

provement becomes less significant when the system size

increases. This in fact confirms our previous reasoning

on why Solution WARP-TASK only exhibits limited ben-

efits over Solution TB-TASK; when the system becomes

large, the execution of those extra memory operations in

Solution WARP-TASK will constitute a considerable por-

tion of the overall runtime. In fact, when the system

size reaches 1024K-atom, Solution TB-TASK achieves a

similar or even better performance than Solution WARP-

TASK. Note that the issue of extra memory operations

is not directly related to our fine-grained task-based ap-

proach, but due to the particular algorithm used in our ex-

periments.

6 Conclusion

This paper proposed a fine-grained task-based execution

framework for multi-GPU systems. Based on this frame-

work, we presented a design for dynamically balancing

workload on multi-GPU systems. A molecular dynam-

ics application is used to evaluate the effectiveness of our

design. Experimental results demonstrate that, for non-

uniform atom distributions, our fine-grained task-based

4Except for the Equal-size cluster distribution at the size of 128K-

atom, where all dynamic solutions are worse than Solution STATIC.

solutions achieve good load balancing and absolute per-

formance improvement over other approaches based on

the standard CUDA programming methodologies.

There are a number of possible extensions to our cur-

rent work. In our current design of the GPU task-based

execution framework, to ensure the dependencies among

tasks, we have to manually schedule the execution of tasks

on the CPU side, according to their dependencies. An ef-

ficient mechanism to automatically enforce dependencies

among tasks will greatly facilitate the design and develop-

ment of fine-grained data-driven or event-driven applica-

tions. Another future work is to extend the current design

for GPU clusters, which have been introduced to several

scientific sites. In this case, MPI[10], Global Arrays[16],

or other alternatives should be integrated into our frame-

work to take care of the distributed memory configura-

tion.

References
[1] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier.

StarPU: A Unified Platform for Task Scheduling on Heterogeneous

Multicore Architectures. In Euro-Par 2009, pages 863–874, Delft,

Netherlands, 2009.

[2] B. Brooks and H. M. Parallelization of Charmm for MIMD Ma-

chines. CDAN, 7(16):16–22, 1992.

[3] L. Chen, O. Villa, S. Krishnamoorthy, and G. Gao. Dynamic load

balancing on single- and Multi-GPU systems. In IPDPS’10, At-

lanta, GA, USA, 2010.

[4] T. Clark, M. J.A., and S. L.R. Parallel Molecular Dynamics. In

SIAM PP’91, pages 338–344, March 1991.

[5] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover. Gpu cluster

for high performance computing. In SC’04, page 47, Washington,

DC, USA, 2004. IEEE Computer Society.

[6] Z. Fan, F. Qiu, and A. E. Kaufman. Zippy: A framework for com-

putation and visualization on a gpu cluster. Comput. Graph. Fo-

rum, 27(2):341–350, 2008.

[7] D. Frenkel and B. Smit, editors. Understanding Molecular Sim-

ulation: From Algorithms to Applications. Academic Press, Inc.,

Orlando, FL, USA, 1996.

[8] D. Gödeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, S. H. Bui-

jssen, M. Grajewski, and S. Turek. Exploring weak scalability for

fem calculations on a gpu-enhanced cluster. Parallel Computing,

33(10-11):685 – 699, 2007.

[9] N. K. Govindaraju, A. Sud, S.-E. Yoon, and D. Manocha. Inter-

active visibility culling in complex environments using occlusion-

switches. In I3D’03, pages 103–112, New York, NY, USA, 2003.

ACM.

[10] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Paral-

lel Programming with the Message-Passing Interface. MIT Press,

Cambrdge, MA, Oct. 1994.

[11] D. R. Horn, M. Houston, and P. Hanrahan. Clawhmmer: A stream-

ing hmmer-search implementatio. In SC’05, page 11, Washington,

DC, USA, 2005. IEEE Computer Society.

[12] L. Kalé, M. Bhandarkar, M. Bh, and R. Brunner. Load balancing

in parallel molecular dynamics. In ISSISPP’98, pages 251–261,

1998.

8

(a) Uniform distribution (b) Sphere distribution

(c) Equal-size cluster distribution (d) Random-size cluster distribution

Figure 6: Relative speedup over Solution STATIC versus system sizes

[13] Khronos. OpenCL. http://www.khronos.org.

[14] M. D. Linderman, J. D. Collins, H. Wang, and T. H. M. Merge: a

programming model for heterogeneous multi-core systems. SIG-

PLAN Not., 43(3):287–296, 2008.

[15] A. Moerschell and J. D. Owens. Distributed texture memory in a

multi-gpu environment. In GH’06, pages 31–38, New York, NY,

USA, 2006. ACM.

[16] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global arrays:

A non-uniform-memory-access programming model for high per-

formance computers. The Journal of Supercomputing, 10:10–197,

1996.

[17] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease,

and E. Aprà. Advances, applications and performance of the

global arrays shared memory programming toolkit. Int. J. HPCA,

20(2):203–231, 2006.

[18] Nvidia. CUDA. http://www.nvidia.com.

[19] Nvidia. NVIDIA CUDA Programming Guide 3.0, 2010.

[20] J. C. Phillips, J. E. Stone, and K. Schulten. Adapting a message-

driven parallel application to gpu-accelerated clusters. In SC’08,

pages 1–9, Piscataway, NJ, USA, 2008. IEEE Press.

[21] D. Schaa and D. Kaeli. Exploring the multiple-gpu design space.

In IPDPS’09, pages 1–12, Washington, DC, USA, 2009.

[22] W. Smith. Molecular dynamics on hypercube parallel computers.

CPC, 62:229–248, 1991.

[23] M. Strengert, M. Magallón, D. Weiskopf, S. Guthe, and

T. Ertl. Large volume visualization of compressed time-dependent

datasets on gpu clusters. Parallel Comput., 31(2):205–219, 2005.

9

