
TiNy Threads on BlueGene/P: Exploring Many-Core Parallelisms Beyond The

Traditional OS

Handong Ye, Robert Pavel, Aaron Landwehr, and Guang R. Gao

University of Delaware

Department of Electrical and Computer Engineering

Newark, Delaware

{handong, pavel, alandweh, ggao}@capsl.udel.edu

Abstract

Operating Systems have been considered as a cor-

nerstone of the modern computer system, and the con-

ventional operating system model targets computers

designed around the sequential execution model. How-

ever, with the rapid progress of the multi-core/many-

core technologies, we argue that OSes must be adapted

to the underlying hardware platform to fully exploit

parallelism. To illustrate this, our paper reports a study

on how to perform such an adaptation for the IBM

BlueGene/P multi-core system.

This paper’s major contributions are threefold. First,

we have proposed a strategy to isolate the traditional

OS functions to a single core of the BG/P multi-core

chip, leaving the management of the remaining cores

to a runtime software that is optimized to realize the

parallel semantics of the user application according

to a parallel program execution model. Second, we

have ported the TNT (TiNy Thread) execution model

to allow for further utilization of the BG/P compute

cores. Finally, we have expanded the design framework

described above to a multi-chip system designed for

scalability to a large number of chips.

An implementation of our method has been com-

pleted on the Surveyor BG/P machine operated by Ar-

gonne National Laboratory. Our experimental results

provide insight into the strengths of this approach:

(1) The performance of the TNT thread system shows

comparable speedup to that of Pthreads running on

the same hardware; (2) The distributed shared memory

operates at 95% of the experimental peak performance

of the machine, with distance between nodes not being

a sensitive factor; (3) The cost of thread creation shows

a linear relationship as threads increase; (4) The cost

of waiting at a barrier is constant and independent of

the number of threads involved.

1. Introduction

Operating Systems are a cornerstone of modern

computing systems, powering virtually all general-

purpose computers today. The basic functions of con-

temporary operations systems are based on fundamen-

tal research from the 1960s and 1970s where the target

machines were sequential computers based upon a

sequential execution model (the von Neumann model)

developed in the 1940s. We have witnessed the rapid

progress of the multi-core/many-core chip technology

that allows a parallel computer system to be designed

and implemented on a chip. To this end, we argue

that the conventional OS model must adapt to the

changes of underlying hardware platforms so as to

exploit the many levels of parallelism in both hardware

and software.

Modern supercomputers, like Blue Gene/P (BG/P),

utilize high throughput networks of lower frequency

processors to reduce power consumption. The execu-

tion model of this many-core architecture is drastically

different from the sequential execution model used

to develop the traditional OS. As such, this type of

architecture provides many challenges for the tradi-

tional OS model. One such challenge is balancing

the interference of OS scheduling and interrupts with

computation. Many methods have been proposed to

adapt the traditional OS model to account for these

issues. One method is to modify the Linux kernel by

using a variety of approaches. For example, reducing

TLB misses, so that the OS noise can be reduced while

keeping the abundant flexibilities of Linux. ZeptoOS

[1] is an example of this. Another method is to replace

Linux with a very lightweight runtime kernel such

as IBM’s Compute Node Kernel (CNK) on BG/P

[2]. CNK removes the virtual paging related issues

by statically mapping the virtual address into TLB.

This is in addition to other proprietary methods that



IBM utilizes. Generally, these approaches try to reduce

the OS noise from the kernel side without requiring

awareness of the programming model. However, we

believe the root cause of OS noise is that current

runtime systems do not cooperate with the program

execution model.

Another issue is that such systems lack a universal

address space between nodes, meaning that internode

communication typically occurs via message passing.

Message passing provides another detail that the pro-

grammer must be aware of and cater the algorithm

to in order to maximize performance. For example,

programmers must decide the size of each MPI task

and distribute the tasks among different nodes while

considering the load balance. Moreover, programmers

need to consider data locality issues and also need to

change the program to overlap the communication and

computation in order to further improve performance.

As the originator of this paper, we believe that

neither the programming model nor the kernel alone

can fully exploit the opportunities for parallelism and

performance in high performance computing. To do

this, we isolate the traditional OS functions, specifi-

cally those not directly relevant to parallelism (such as

I/O), to a single core of the BG/P node. All other cores

are dedicated to parallel computation and are entirely

managed by the runtime software that is optimized

to realize the parallel semantics of user applications

according to our parallel program execution model. We

have ported the TNT (TiNy Thread) execution model

from IBM’s Cyclops 64 [3] and it’s runtime libraries

to allow for further utilization of the BG/P compute

cores. Finally, we have expanded the design framework

described above to a multi-chip system designed for

scalability to a large number of nodes.

An implementation of our method has been com-

pleted on the Surveyor BG/P machine operated by

Argonne National Laboratory [4]. Our experimental

results indicate the feasibility and strengths of our

approach: (1) The performance of the TNT thread

system shows comparable speedup to that of Pthreads

running on the same hardware; (2) The distributed

shared memory operates at 95% of the experimental

peak performance of the machine, with distance be-

tween nodes not being a sensitive factor; (3) The cost

of thread creation shows a linear relationship as the

number of threads increase; (4) The cost of waiting at

a barrier is constant and independent of the number of

threads involved.

The organization of this paper is as follows. Section

2 introduces the basic concepts of the original TNT

model. Section 3 explains the detailed design of our

system. It covers the three levels of thread manage-

ment, the design of the runtime kernel, and the shared

memory layer based upon message passing. Section

4 presents the results of our experiments. Section 5

thanks those who assisted us. And section 6 presents

our conclusions.

2. Background of TNT

TNT presents a thread virtual machine which was

originally introduced by Juan D. Cuvillo [3], [5] with

the goal of replacing the conventional OS with a

non-intrusive runtime system. The TNT thread virtual

machine consists of a thread model, memory model

and synchronization model. The programming model

is designed with this execution model in mind. The

TNT programming model provides an API that is very

similar to Pthreads but utilizes non-preemptive threads.

Because of these similarities, many Pthreads applica-

tions can be ported by simply changing the prefixes of

function calls and removing unneeded parameters.

3. System Description

Our design allows the programmer to utilize a dis-

tributed computer as though it were an SMP machine

by transparently mapping the traditional parallel pro-

gramming model to the underlying distributed systems.

The initial overall design was built on BG/P. A soft-

ware stack was created which maps the TNT model

to BG/P. The kernel handles TNT operations on each

Compute Node.

Our system is built on the BG/P compute nodes

which are used for user computation work. Each com-

pute node has four PowerPC 450 processors sharing

a 2GB memory. Between different compute nodes

the communication passes through the Torus network.

IBM provides the Deep Computing Messaging Frame-

work (DCMF) library for communication on the net-

work.

The software stack was designed to allow the TNT

programming model to be applied to BG/P. At the

top of the software stack is the user application

which uses the programming interfaces provided by

the TNT library. Below the application layer resides

the TNT library which provides threading, synchro-

nization, shared memory, and utility system calls. The

library manages threads across all Compute Nodes,

handles synchronization, and provides a global address

space. The software layer that provides the global

address space is named the TNT Distributed Shared

Memory (TDSM) and is built on top of DCMF. This in

turn is built on top of the BG/P System Programming

Interface (SPI), which closely interacts with the kernel.



The kernel handles lower level operations on a

Compute Node.There are four processors in a Com-

pute Node. Processor zero runs a version of ZeptoOS

[6] modified to support TNT threads. In BG/P, each

Compute Node needs a set of control and I/O processes

to communicate with I/O nodes. By design, processor

zero runs the control and I/O service processes to com-

municate with I/O nodes. It also performs management

tasks, such as thread-scheduling and synchronization.

TNT threads will be scheduled run on the three remain-

ing processors. Because threads are non-preemptive,

they will execute to completion on the processor they

are being executed on.

The thread model will be explained in section 3.1,

the kernel design that makes this possible in section

3.2, the memory model in section 3.3, and the syn-

chronization model in 3.4. Lastly, we will describe the

interface in section 3.5.

3.1. System Overview

Our system is divided into four key components.

The first is the thread management system. The sec-

ond is the underlying kernel that allows TNT to run

on BG/P. Third is TDSM, which provides a shared

memory that is required for the TNT execution model.

Fourth is the synchronization constructs, which provide

determinism.

3.1.1. Thread Management Overview. From the user

perspective, thread management follows the tradional

Pthreads interface. Our system internally manages the

distribution of threads across the system without user

intervention.

In order to schedule threads across nodes, we desig-

nate a core on each node to handle internode commu-

nication. The details of communication depend on the

thread scheduling model being used and are covered

in the following subsection.

Within a node, the kernel executes the non-

preemptive threads. Details on local thread manage-

ment are covered in the corresponding subsection.

3.1.2. Global Thread Management. We have imple-

mented multiple thread scheduling models so as to

support the greatest variety of programs. Because of

the wide variety of parallelization techniques, as well

as the added costs of communicating across the torus

network, we felt that the optimal approach was to

provide the user with a choice of scheduling meth-

ods. We provide two types of scheduling, Workload-

Aware scheduling and Workload-Unaware scheduling.

In Workload-Aware scheduling, threads are assigned to

nodes based upon the current distribution of threads in

the system. In Workload-Unaware scheduling, the cur-

rent state of the system is irrelevant to the assignment

of threads. We feel that these methods are sufficient

for benchmarking the system, but additional methods

can be added at a later date. The scheduling method

used is selected at compile time, thus allowing users

to determine the scheduling method most beneficial to

their program.

The first scheduling model is the Workload-Unaware

model. When tnt_create() is called, the requesting

thread will select a node to spawn and execute the

thread. When tnt_join() is called, the joining thread

will contact the spawning node to alert it to a request

to join, and join if the thread has finished executing.

When tnt_exit() is called, the spawning thread will

check to see if a join request has already been made,

and if so, proceed to signal the joining thread that the

join is complete. Otherwise, it will finish executing.

The benefit of this model is that the communication

overhead is minimal. The only communications are

between the requesting thread and the spawning thread,

and the joining thread and the spawning thread.

We provide two methods of scheduling with this

model; Round-Robin and Random assignments. The

former should only be used in programs in which the

core running the main function spawns all threads, and

all threads run for the majority of the program. The lat-

ter allows programs in which threads spawn additional

threads to benefit from the minimized communication

overhead while still having a more even distribution of

work.

The second scheduling model is the Workload-

Aware model. When tnt_create() is called, the request-

ing node contacts the global management node which

then consults a table to determine which node has

the fewest threads assigned to it at any given time.

That node then spawns and executes the thread for the

requester. When tnt_join() is called, the joining thread

will contact the global management node and request

to join. When tnt_exit() is called, the spawning thread

will contact the global management node and indicate

that the execution has completed. Once both of these

have occurred, the global management node will signal

the joining thread.

As mentioned before, there is no perfect model for

all parallel programs. For coarse-grained parallelism,

the Workload-Aware model will provide better per-

formance due to the impact of thread creation and

synchronization being small compared to computation.

However, with a large number of nodes, the Workload-

Aware model will present a bottleneck. On the other

hand, the Workload-Unaware model can suffer from



starvation.

3.1.3. Local Thread Management. On the individual

node level, the local thread management system pro-

vides efficient local thread scheduling for the global

thread management system. Any thread creation re-

quests received on a node are handled by the kernel via

a thread creation system call, which causes the kernel

running on the node to schedule the thread. When a

thread exits, the kernel handles cleanup. In order to

minimize OS noise, we move the task of local creation

and thread management to the kernel and employ a

non-preemptive thread scheduling algorithm.

Other optimizations are used in order to reduce the

synchronization cost of scheduling on a node. For

instance, the TNT queue is designed as a per processor

data structure with a lock for each queue. When a

Local Thread Manager creates a thread, it reads the

status of each TNT queue without lock protection

and writes the thread information into the appropriate

queue with lock protection. This avoids the need for

synchronization when reading the status of the queues,

but introduces the possibility that the queue status may

be altered between the time the status of the queue was

read and the time the queue was updated. This is an

acceptable tradeoff because it removes the need for

synchronization when reading the status of the queue.

3.2. Kernel Design

Processors 1 through 3 run a light weight runtime

kernel, which takes thread information from the thread

queues and sets up the process context for the new

TNT thread and then context switches to the thread.

After the thread ends, it calls tnt_exit() and switches

back to the kernel.

Currently, TNT threads are created using Linux’s

expensive clone mechanism. To minimize the cost,

we reuse the process context by leveraging the non-

preemptive feature of the TNT thread model. Non-

preemption guarantees that there is, at most, one TNT

thread running on a processor at any given time.

Because all of the TNT threads share the same program

image, we preserve the process context after the thread

ends. In each processor we only clone the application

program image when the first tnt_create() is invoked,

and the context is destroyed only when the program

ends.

3.3. TNT Distributed Memory

We have built a shared memory layer that encapsu-

lates distributed memory and the underlying message

passing mechanisms in order to provide the program-

mer with a shared memory view. This allows the

programmer to leverage the usability of traditional

shared memory parallel programming models.

TDSM was designed with accessibility as the pri-

mary objective, but we also wanted to minimize com-

munication costs. Our overall design presents how

we achieved this. First, the library provides users

with a single logical address space that is translated

into physical distributed memory addresses for easy

pointer use and to minimize read and write costs.

Second, a load balancing of communication is used

when allocating memory to minimize communication

costs. Additionally, load balancing of communication

was used for synchronization constructs to further

minimize the cost of communications. Lastly, to ease

the burden of the programmer, a C compatible memory

allocation interface was designed to reserve memory.

To do this, we built TDSM on top of IBM’s DCMF.

We avoid consistency issues by leveraging DCMF’s

internal memory consistency models.

Figure 1. TDSM System

3.3.1. Single Logical Address Space Design. Figure

1 shows the basic components of a single group. There

is one group leader with any other number of member

nodes within that group. A Memory Management

(MM) component is attached to the group leader which

handles the allocation requests inside of a group. The

reserved physical memory blocks on these nodes make

up the logical address space. As such, there are two

types of addresses involved: virtual addresses in the

process context and logical addresses that reside in the

single logical address space provided by TDSM. For

convenience, we refer to them as virtual addresses and

logical addresses respectively.

A distribution table for addressing is created during

system initialization. The table contains the informa-

tion needed to translate the logical address space into

virtual addresses across each node. Specifically the

table contains an entry for each node, with every entry

containing a handle to the reserved memory block and



the size of said block. The entries are in ascending

address order and ascending node order. In addition,

each node has a copy of the table. These properties

allows the programmer to use pointer arithmetic to

address memory across all nodes. Additionally, the

information in the table allows the programmer to write

to any memory location on any node. This ensures that

communication happen directly between two nodes,

minimizing overhead. The read and write requests can

be sent to locations directly using one sided communi-

cation and DMA. Accordingly, synchronization costs

are removed when reading and writing to memory.

3.3.2. Memory Operations Design. We divide mem-

ory operations into two categories: memory allocation

and read/write memory operations.

When a thread running on a node requests an

allocation, it is sent to the group leader’s Memory

Manager. The MM performs the memory allocation

and returns the logical address. The allocation algo-

rithm used by the Memory Manager can be specified

by the user. The Memory Manager also maintains the

availability information in the Allocation Table. When

a free request is sent to the MM, it simply updates the

Allocation Table. If the allocation requests cannot be

satisfied inside the group the Memory Manager will

transfer the request to the MM in the next group.

When a read/write memory operation is performed

on a logical address, the requesting node maps the log-

ical address to the node(s) where the memory block(s)

resides and the virtual address(es) inside of the node(s).

The requesting node then sends the appropriate request

message directly to these nodes. If the operation is

a write all receiving nodes will asynchronously write

the data to their memory using DMA. If the operation

is a read, all receiving nodes will asynchronously

read the memory using DMA and send the data back

to the requesting node. Then, the requesting node

writes all the data it receives into its memory using

DMA. Regardless of whether the operation is a read

or write, operations involving DMA do not require

any interrupting of the computation being done on the

receiving nodes.

3.4. Synchronization

The design of synchronization for use with the

shared memory focuses on minimizing communication

while maintaining similar functionality as conventional

synchronization mechanisms. For this reason, we pro-

vide two forms of synchronization: mutexes and bar-

riers.

Mutexes function in a similar manner to memory

allocation. Each mutex is associated with a Mutex

Management (MuM) component. The Mutex Manager

handles lock and unlock requests to that mutex from all

nodes. Each group has a Mutex manager that manages

all mutexes created by threads run on the nodes in

that group. When a lock or unlock request is made,

a request is sent to the MuM associated with the

mutex being accessed. The MuM then responds with

the state of the mutex, changing the status from locked

to unlocked, or vice versa, as needed.

Barriers operate in a similar manner. Each barrier is

associated with a Barrier Management (BM) compo-

nent. When a barrier is initialized, the BM creates a

table of all threads associated with the barrier. When

a barrier is reached, each thread sends a signal to the

BM stating that the barrier has been reached. Once

the Barrier Manager determines that all threads have

reached the barrier, the BM broadcasts a signal to allow

all threads to continue execution.

3.4.1. Interfaces and Usage. Our interface was de-

signed with the goal of providing users with an inter-

face similar to the one found in traditional C programs

while introducing a minimal amount of constraints. We

provide users with functions similar to malloc, calloc,

and free which have the same parameters as their

C counterparts. However, programmers must initialize

the total size of shared memory they will use at the start

of their program. This constraint allows for the creation

of a Distribution Table on each node. Additionally,

when reading and writing to shared memory, users are

required to use the provided read and write functions.

4. Experimental Results

In this section, we evaluate the efficiency of TNT on

BlueGene/P by using a diverse set of benchmarks. We

individually tested each major component of the TNT

execution model through the use of microbenchmarks.

Section 5.1 presents a summary of the results, and the

remaining sections expand upon the summary. Section

5.2 focuses on the thread system local to a single

node. Section 5.3 discusses the memory system’s per-

formance. Section 5.4 focuses on the multi-node thread

system. And section 5.5 examines the performance of

the synchronization constructs.

The experiments are conducted on the Surveyor

BG/P machine at Argonne National Laboratories [4]

with up to 1024 nodes.



4.1. Summary of Results

To demonstrate the performance of each of the avail-

able thread scheduling algorithms, we benchmarked

the cost of the underlying communications of our

thread scheduling algorithms. We also benchmarked

the performance of the thread system. To measure the

performance of the underlying thread model, the only

viable direct comparison on BG/P is Pthreads. We

intend to compare the performance of the global thread

model to that of UPC and MPI, but our implementation

as of the writing of this paper still needs additional

work.

Observation 1 (See Section 5.2): The performance

of the TNT thread system shows comparable speedup

to that of Pthreads running on the same hardware.

Observation 2 (See Section 5.3): The distributed

shared memory operates at 95% of the experimental

peak performance of the machine, with distance be-

tween nodes not being a sensitive factor.

Observation 3 (See Section 5.4): The cost of thread

creation shows a linear relationship as the number of

threads increase.

Observation 4 (See Section 5.5): The cost of

waiting at a barrier is constant and independent of the

number of threads involved.

4.2. Single-Node Thread System Performance

In this section, we measure the performance of the

underlying thread model. To provide good speed-up

across multiple nodes, it is first important to pro-

vide good speed-up on a single node. As such, we

benchmarked the performance of a single node of our

system.

The algorithm we used is the Radix-2 Cooley-Tukey

algorithm with the Kiss FFT [7] library providing the

underlying DFT. As such, this limited the number of

usable threads to a power of two. Our benchmark

consists of multiple iterations of the FFT for varying

sizes of input data. In order to demonstrate the speed-

up, we ran each data size with one and two threads. We

performed these benchmarks for TNT and the PThread

library. The results can be found in Figure 2.

Our results demonstrate that the speed-up provided

by our underlying thread model performs comparably

to the POSIX standard when the number of threads

does not exceed the number of available processor

cores. Essentially, these results indicate that our un-

derlying system is comparable to Pthreads.

Figure 2. Speed-Up of FFT Benchmark on BG/P

4.3. Memory System Performance

To demonstrate the efficiency and scalability of our

memory interface, we utilized microbenchmarks to

measure the performance of the core operations of the

TDSM.

4.3.1. Peak Performance of Read and Write Oper-

ations. In this section, we measure the efficiency of

the underlying communications involved in read and

write operations of varying sizes. The communication

between two nodes must be efficient so as to minimize

latency when communication between more than two

nodes is required. To measure the latency of this

overhead, read and write operations of varying sizes

were performed between two SMP nodes.

The program used for this benchmark consists of a

number of operations on shared memory. The execu-

tion is timed and divided by the number of memory

operations to calculate the estimated latency of the

operation. The test is performed for reads and writes of

both local and remote access to data in order to provide

the best and worst case scenarios for each data size.

The results are plotted in Figure 3.

Figure 3. Latency of Read and Write Operations of

Varying Sizes



The results demonstrate that the underlying com-

munication used in TDSM is highly efficient. The

relationship between the size of the data being read

or written and the latency is a linear one, even out

to one megabyte. For remote operations, data can be

transferred at approximately 357 MB/s. This is com-

pared to the experimental peak performance calculated

by Kumar et al. [8] of 374 MB/s for the link between

two nearest neighbors in the torus. This means that

TDSM operates at approximately 95% of the maxi-

mum efficiency. For local operations, the rate is 2.14

GB/s. Furthermore, the latency of a read and write,

of similar locality, is effectively equal, thus showing

that TDSM performs equally well for both reads and

writes.

4.3.2. Scalability of Read and Write Operations.

In a system like TDSM, it is important to have low

latency when accessing a memory block in a remote

node. So in this experiment, we designate one node

to read a fixed size of data from each of a number of

nodes.

The program reserves a fixed size (1024 bytes) of

memory on each node to create a shared logical address

space, and then conducts the test using one loop. Each

iteration of the loop will perform a read or write with

the size of the whole logical address space, and this

ensures each node is accessed. The execution time of

the loop is recorded and divided by the number of

iterations in order to get an average access time.

This benchmark was run for a wide range of nodes

and is plotted in Figure 4.

Figure 4. Latency of Read and Write Operations

Across Multiple Nodes

The results show that the latency is a linear function

of the number of nodes, or in other words, the latency

linearly increases as the amount of data increases;

therefore node distance is not a sensitive factor.

4.4. Multinode Thread Creation Costs

To demonstrate the performance of each of the avail-

able thread scheduling algorithms, we benchmarked

the cost of the underlying communications of our

thread scheduling algorithms. We intend to compare

the performance of the global thread model to that

of UPC and MPI, but our implementation as of the

writing of this paper still needs additional work.

The microbenchmark consists of a single loop.

Threads are created in this loop. The execution time

of this loop is measured and divided by the number

of iterations. This provides the average cost of thread

creation. This microbenchmark was repeated for a

varying number of threads. The results can be seen

in Figure 5.

Figure 5. Cost of Thread Creation

It is interesting to note that the thread creation

cost, approximately 0.2 seconds per thread, remained

effectively constant between scheduling algorithms and

when scaled. The latter indicates that the scalability of

the system is such that it can be run with a very large

number of threads and nodes, which is important for

BG/P.

4.5. Synchronization Performance

For the purpose of benchmarking the synchroniza-

tion model, we measured the performance of the con-

struct most likely to scale poorly, the barrier. For a pro-

gram to demonstrate high scalability, the performance

of synchronization constructs must scale well.

The program used in this benchmark synchronizes

a number of threads using a barrier. Each thread then

runs a single loop. This loop consists of a single barrier

operation. The execution time of this loop is recorded,

and the result is divided by the number of iterations of

the loop. By executing this loop a number of times, the

average cost of a barrier can be measured. The results

of this can be found in Figure 6.



Figure 6. Latency of Barrier Operation

The results show that the performance of the barrier

after the first one hundred threads is independent of

the number of threads with an effectively constant 0.2

seconds regardless of the number of threads involved.

This is important in that it allows our system to

full utilize a BG/P machine without adding additional

latencies to the synchronization constructs. While it is

likely that more complex benchmarks with additional

network traffic will have poorer performance, this still

demonstrates that the underlying software barrier has

minimal latencies.

5. Acknowledgements

This work was supported by NSF (CNS-0509332,

CS-0720531, CCF-0833166, CCF-0702244), the De-

partment of Defense, and other government sponsors.

We would like to thank the ZeptoOS team [6] for

providing the ZeptoOS kernel for our modifications. In

particular, we would like to thank Kazutomo Yoshii for

answering our questions. We would also like to thank

Argonne National Laboratories [4] for access to their

Surveyor machine.

We would also like to thank ET International for

providing the TNT kernel.

We thank all the members of CAPSL group at

University of Delaware. We thank Joshua Suetterlein

for valuable feedback, and we thank Joshua Landwehr

for assistance in the implementation of this system.

6. Conclusion

This paper presents an execution model-driven ap-

proach to adapting the traditional OS model to many-

core architectures. This approach isolates the tradi-

tional functions of the OS to a single core leaving

the remaining three cores of a BG/P chip for parallel

computation. These cores are managed by a runtime

system that is optimized to realize the parallel seman-

tics of the user application according to a parallel pro-

gram execution model. This parallel program execution

model is the TNT execution model ported to BG/P.

Furthermore, we expanded upon this design to support

highly scalable cluster systems.

In order to test the feasibility of our design we

benchmarked a number of aspects of the system. First,

we demonstrate a highly efficient single node operation

comparable to the performance of Pthreads on the

same hardware. Second, we demonstrate a distributed

shared memory capable of operating at 95% of the

experimental peak performance over the BG/P DMA

communication layer with the distance between nodes

not being a sensitive factor. Third, the cost of thread

creation is linear as the number of threads increase.

Finally, the cost of synchronization via barriers is

constant and independent of the number of threads

involved in the system. We believe that our results

indicate that our approach is feasible and efficient for

operating on a cluster of SMP systems.

References

[1] K. Yoshii, K. Iskra, P. Broekemaand et al., “Characteriz-
ing the performance of big memory on blue gene linux,”
in Proceedings of the 2nd International Workshop on
Parallel Programming Models and Systems Software for
High-End Computing (P2S2), 2008.

[2] IBM, IBM System Blue Gene Solution: Blue Gene/P
Application Development. Vervante, 2008.

[3] J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao, “Tiny
threads: A thread virtual machine for the cyclops64 cel-
lular architecture,” Parallel and Distributed Processing
Symposium, International, vol. 15, p. 265b, 2005.

[4] “Argonne leadership computing facility.” December
2009, www.alcf.anl.gov.

[5] J. del Cuvillo, “Breaking away from the os shadow: A
program execution model aware thread virtual machine
for multicore architecture,” Ph.D. dissertation, University
of Delaware, 2008.

[6] “Zeptoos project.” September 2009,
http://www.zeptoos.org/.

[7] M. Borgerding, “Kiss fft.” December 2009,
http://sourceforge.net/projects/kissfft/.

[8] S. Kumar, G. Dozsa, G. Almasi et al., “The deep
computing messaging framework: generalized scalable
message passing on the blue gene/p supercomputer,” in
ICS ’08: Proceedings of the 22nd annual international
conference on Supercomputing. New York, NY, USA:
ACM, 2008, pp. 94–103.


