
Energy efficient tiling on a Many-Core
Architecture

Elkin Garcia, Daniel Orozco, and Guang R. Gao

Computer Architecture and Parallel Systems Laboratory (CAPSL)
Department of Electrical and Computer Engineering

University of Delaware, Newark 19716, U.S.A.
{egarcia,orozco,ggao}@capsl.udel.edu

Abstract. Energy efficiency and power consumption have become an
imperative requirement in Computer Architecture. The rising multi-core
and many-core era has been motivated by the increasing demand of high
performance computations restricted to a feasible power requirement.
How to model the energy consumption of many-core architectures in
order to propose techniques for the design of energy efficient applications
is a topic of high interest in the community.
In this paper, we develop an energy consumption model for many-core
architectures with software-managed memory hierarchy and we propose
a general methodology for designing tiling techniques for energy effi-
cient applications. The energy consumption model developed and the
methodology proposed have the following characteristics: (1) The en-
ergy consumption model depends of the number and type of instruc-
tions executed and the total execution time of the application. (2) This
model is scalable with the number of hardware thread units and considers
stalls produced by data dependencies or arbitration of shared resources.
(3) The methodology proposed is based on an optimization problem that
produces optimal tiling and sequence of traversing tiles minimizing the
energy consumed and parametrized by the sizes of each level in the mem-
ory hierarchy. (4) We show two different techniques for solving the op-
timization problem for two different applications: Matrix Multiplication
(MM) and Finite Difference Time Domain (FDTD). Our experimental
evaluation on a real IBM Cyclops-64 chip (C64) proves the accuracy
of our energy consumption model and shows that the techniques pro-
posed reduce the total energy consumption and also increase the power
efficiency.

1 Introduction

The rapid progress of technology has made possible the integration of large num-
ber of processing cores on a single chip. As a consequence, parallel computing
design has turned of special interest to the scientific community. Indeed, many-
core and multi-core architectures have risen as the solution to most of the issues
facing the field of high-performance computing. Energy efficiency and power con-
sumption have become an imperative requirement, the design of new generation
of exa-scale supercomputers is restricted to feasible power requirements [2, 14].

2 Elkin Garcia, Daniel Orozco and Guang Gao

Integration of processors on a chip becomes challenging at different levels.
From the point of view of semiconductor manufacturing process, new technolo-
gies and materials are needed for increasing the number of transistors per area.
The integration of hundreds of processors on a single chip under area constraints
and the significant increase on leakage current requires the redesign of traditional
uniprocessor architectures with deep pipelines, complex branch prediction hard-
ware and a cache-based memory hierarchy.

Particularly, traditional parallel programming methodologies have been fo-
cusing on improving performance and they assume cache-based parallel systems
exploiting temporal locality. However, the data location and replacement in the
cache is controlled by hardware making difficult a fine control and wasting en-
ergy [3, 10]. As a result, innovative architectures have arisen; one, unique on its
type, is the IBM Cyclops-64 (C64) many-core-on-a-chip system. C64 contains
160 hardware Thread Units (TU) and it has a software-managed memory hi-
erarchy where the data movement between different levels of the hierarchy is
managed by the programmer. It saves the die area of hardware cache controllers
and over-sized caches. Although this might complicate programming at their cur-
rent stage, these systems provide more flexibility and opportunities to improve
not only performance but also energy efficiency.

Several studies focusing on increasing the performance of a broad range of
applications have been done on this architecture (e.g. Matrix Multiplication,
LU decomposition, Fast Fourier Transform, etc) [7, 4, 9, 15], but none of these
techniques has directly considered the energy efficiency as a goal. Despite of
that, some of them have provided evidence of the power efficiency of C64 [7, 6].

In this paper, we develop an energy consumption model for many-core ar-
chitectures with software-managed memory hierarchy. The energy consumption
model depends of the number and type of instructions executed and the total
execution time of the application. We use the C64 many-core architecture to
illustrate that our model is scalable with the number of hardware thread units
and it considers stalls produced by data dependencies or arbitration of shared
resources.

We also propose a general methodology for designing tiling techniques for
energy efficient applications. The methodology proposed is based on an opti-
mization problem that produces optimal tiling and sequence of traversing tiles
minimizing the energy consumed and parameterized by the sizes of each level
in the memory hierarchy. We show two different techniques for solving the op-
timization problem for two different applications: Matrix Multiplication (MM)
and Finite Difference Time Domain (FDTD). Our experimental evaluation uses
a real IBM Cyclops-64 chip (C64) that proves the accuracy of our energy con-
sumption model and shows that the techniques proposed reduce the total energy
consumption and also increase the power efficiency.

The rest of this paper is organized as follows. In Section 2, we describe the
C64 architecture and explain our energy consumption model. In Section 3, we
analyze and propose solutions to the problem of designing tiling techniques for
energy efficiency. In Section 4, we present the experimental evaluation of our

Energy efficient tiling on a Many-Core Architecture 3

Crossbar Network

SP SP

TU TU

FP

SR
AM

B

an
k

SP SP

TU TU

FP

SP SP

TU TU

FP···
SR

AM

B
an

k

SR
AM

B

an
k

SR
AM

B

an
k

SR
AM

B

an
k

SR
AM

B

an
k

···

Processor 1 Processor 2 Processor 80

Host
Interface

A-Switch

DDR2 SDRAM
Controller

Chip
Node

Off-Chip
Memory

FPGA

Control
Network

Gigabit
Ethernet

HD

3D Mesh

(a) C64 Chip Architecture

Latency
Overall Bandwidth

Load: 2 cycles; Store: 1 cycle

640GB/s

Load: 57 cycles; Store: 28 cycles
16GB/s (Multiple load and Multiple store

instructions); 2GB/s

Load: 31 cycles; Store: 15 cycles

320GB/s

64
Registers

SP
16kB

GM
~2.5MB

Off-Chip
DRAM

1GB

Read: 1 cycle
Write: 1 cycle

1.92 TB/s

(b) Memory Hierarchy of C64

Fig. 1: C64 Architecture details

energy consumption model and the tiling techniques proposed. Section 5 shows
a review of related work. Finally, we conclude and present future work in Section
6.

2 Energy Consumption Model on a Many-Core
Architecture

In this section we will propose a model for energy consumption on general pur-
pose many-core architectures with software-managed memory hierarchy. Given
our special interest on scalability, C64 seems the only one that has more than
one hundred hardware threads and it has already been built. First, we will show
a general review of the characteristics of C64 on section 2.1, we will emphasize
the ones that concern to power consumption. Second, we will explain our energy
consumption model for C64 on section 2.2.

2.1 The IBM Cyclops-64 Architecture

Cyclops-64 (C64) is an innovative architecture developed by IBM, designed to
serve as a dedicated petaflop computing engine for running high performance
applications. A C64 chip is an 80-processor many-core-on-a-chip design, as can
be seen in Fig. 1a. Each processor is equipped with two thread units (TUs), one
64-bit floating point unit (FP) and two on-chip memory banks of 30kB each. It
can issue one double precision floating point “Multiply and Add” instruction per
cycle, for a total performance of 80 GFLOPS per chip when running at 500MHz.

A processing node consist of a C64 chip using a 1.2V regulated power supply,
external off-chip memory (DRAM) connected to a 1.8V regulated power supply
and a small amount of external interface logic. A C64 chip has a 96-port crossbar
network with bandwidth of 384GB/s that connects all TUs and on-chip memory
banks [5].

A C64 chip has an explicit three-level memory hierarchy (scratchpad memory,
on-chip memory (SRAM), off-chip memory (DRAM)), 16 instruction caches of

4 Elkin Garcia, Daniel Orozco and Guang Gao

32kB each (not shown in the figure) and no data cache. The scratchpad memory
(SP) is a configured portion of each on-chip SRAM bank which can be accessed
with very low latency and energy by the TU it belongs to. The remaining sections
of all on-chip SRAM banks consist of the on-chip global memory (GM), which is
uniformly addressable from all TUs. As a summary, Fig. 1b reflects the current
size, latency (when there is no contention) and bandwidth of each level of the
memory hierarchy.

Execution on a C64 chip is non-preemptive and there is no hardware virtual
memory manager. The former means that the C64 micro-kernel will not interrupt
the execution of a user application unless an exception occurs. The latter means
the three-level memory hierarchy of the C64 chip is visible to the programmer.
In addition, the C64 instruction set architecture incorporates efficient support
for thread level execution, hardware barriers and atomic in-memory operations.

Because C64 is a general purpose many-core architecture it has not been
designed for energy efficiency and it does not have special features for saving
power. For example, it is not possible to turn off cores not used or to slow down
the clock rate of a set of cores or for the whole chip.

Despite the fact that the C64 Instruction Set Architecture (ISA) does not
include any additional instructions that help reduce energy consumption we
can group the instructions according to the hardware units they use and the
complexity of the operation (reflected indirectly on the execution time if there
is not contention). Furthermore, we can use these groups to build our energy
consumption model. According with that, the taxonomy proposed for the ISA
is:

– Logical Operations: And, or, etc.
– Integer Arithmetic Operations:
• Simple: Add, sub.
• Medium: Multiply.

– Floating Point Operations:
• Simple: Add, sub.
• Medium: Multiply, multiply and add.

– Memory Operations:
• On Registers: Move, load immediate.
• On SPM: load, store.
• On SRAM: load, store.
• On DRAM: load, store.

Some instructions not mentioned here. For example, branches can be included
in the logical operations category, given the hardware resources and amount of
work they require.

2.2 Energy Consumption model for Cyclops-64

Our energy consumption model has two main components. The first one is called
static energy Es, it comes from the leakage currents and other units that work
continuously such as the clock. This component is a function of time t.

Energy efficient tiling on a Many-Core Architecture 5

The second one is called dynamic energy Ed, it is the energy consumed by
each functional unit in the execution of some instruction without the leakage
component. It is related with the power consumption of transistors on registers
and logic during switching, also called dynamic power.

Based on that, given a program Λ with K instructions Ij , the energy con-
sumed can be expressed by:

ET (Λ) = Es(t) +
K∑
j=1

Ed (Ij) (1)

Clearly, the model can be detailed even more because the power dissipated
by leakage current is constant (given the absence of mechanism for reducing
voltage or turning off functional units in C64) and also other units are always
working at the same frequency (given the absence for changing this parameter).
In other words Es is linear with time.

In a similar way, instructions that use the same resources doing a similar
amount of work, like the hierarchy explained on section 2.1, consume the same
amount of energy. This linearity helps us to express our energy consumption
model by:

ET (Λ) = e0 · t+
M∑
i=1

ei ·N (Ci) (2)

Where e0 is the static power dissipated, and ei for i = 1, . . . ,M is the energy
consumed by one instruction of class Ci. The function N(·) counts the number
of instructions in the program Λ that belong to a given class. This class can have
only one instruction (e.g. when the kind of processing and the functional units
that it uses are unique like integer multiplication) or multiple instructions (e.g.
when they are similar in terms of amount of work and use the same resources
like all the logical operations)

This model also considers the case of shared resources and overlapping, ex-
tremely important on many-core. First, each instruction represents the use of
some resources for some task and it would take similar time. In a scenario of
contention (e.g. the crossbar network for accessing memory), the amount of work
made by the functional units will be the same but the time will increase. This
will be reflected on the increase in the term that correspond to static energy.
In a similar way, in the same processor multiple units can work in parallel (e.g.
Floating Point Unit and Integer Unit) taking less time to complete the tasks
compared with the sequential execution, as a result the term for static energy
will decrease but the dynamic energy will remain similar. Even more important,
for a chip with more than a hundred of processors, the dynamic energy terms re-
flect the energy per instruction regardless of whether it was executed in parallel
with others or serially.

In Addition, it is natural to think than some instructions (or group of them)
consumes more energy than others, some cases are:

6 Elkin Garcia, Daniel Orozco and Guang Gao

– An operation that requires more computations than another of the same
type. (e.g. integer multiplication vs. integer addition).

– An operation that uses a more complex hardware than another one. (e.g.
floating point addition vs integer addition, on-chip memory operations vs
integer operations).

– An operation that uses off-chip resources compared with one that only uses
on-chip resources (e.g. load from DRAM vs load from SRAM).

3 Tiling Techniques for Energy Efficient Applications

In this section we will analyze the problem of designing tiling techniques for
energy efficiency. Although instruction scheduling techniques are able to hide
latency of operations, this kind of techniques are not useful here because dynamic
energy Ed can not be hidden. We propose to find a feasible tiling that minimizes
the total energy cost by minimizing the energy contribution of the most energy
hungry instructions.

The optimization problem proposed is based on two facts: (1) Memory op-
erations on off-chip memory are the most expensive in terms of energy, followed
by on-chip memory operations. (2) There is not a dependency between different
latencies for the same operation (e.g. contention of memory operations) and the
dynamic energy it consumes. These two facts will be proved on section 4.1.

Our objective is to find the tiling T described by its parameters L and the
sequence of traversing tiles S that minimize the consumed Dynamic Energy Ed
on Γ processors by the subset of most energy hungry instructions IE subject to
the data stored DH at each level H of the memory hierarchy cannot exceed the
maximum memory size available MemHmax and the tiling allows parallel compu-
tation without communication between tiles. According to our model described
on eq. (2), this Dynamic Energy Ed for a problem Λ is function of the number
of instructions N(Λ, Ij) with Ij ∈ IE and its energy coefficients ej . This can be
expressed as the optimization problem:

min
T (L,S)

Ed (IE) =
∑
Ij∈IE

(ej ·N (Ij))

s.t. DH (Λ, Γ, T) ≤ MemHmax

T is parallel

(3)

Given the fact that memory operations are the most energy hungry instruc-
tions on most architectures and particularly on the C64 many-core architecture.
The particular optimization problem using the Load LD and Store ST instruc-
tions for off-chip memory (DRAM) and on-chip memory (SRAM) is:

min
T (L,S)

e1N(LDdram) + e2N(STdram) + e3N(LDsram) + e4N(STsram)

s.t. DH (Λ, Γ, T) ≤ MemHmax

T is parallel

(4)

Energy efficient tiling on a Many-Core Architecture 7

Where N(LD) and N(ST) are also function of Λ, Γ , T .
The optimization problem described by 3 and 4 cannot be easily solved. Even

more, there is not guarantee of analytical solution. The following subsections will
show two approaches for solving these kind of optimization problems for two kind
of applications: Matrix Multiplication (MM) and Finite Difference Time Domain
(FDTD).

3.1 Matrix Multiplication

Despite Matrix Multiplication (MM) algorithms have been studied extensively,
the many-core architecture design space has not yet been explored in detail.
MM is extremely important on scientific applications that use linear algebra.
Our target operation is the multiplication of dense square matrices A×B = C,
each of size m ×m using algorithms of running time O(m3). We will focus on
matrices that fit in on-chip memory SRAM and the memory operations will be
load and store from SRAM to registers. For this case, the optimization problem
on 4 becomes:

min
T (L,S)

e3N(LDsram) + e4N(STsram)

s.t. R (Λ, Γ, T) ≤ Rmax

T is parallel

(5)

An optimal partition for a load-balanced distribution between processors P
assumes blocks C ′ ∈ C of size n×n

(
n = m√

Γ

)
. Each block is subdivided in tiles

C ′i,j ∈ C ′ of size L2 × L2. Based on the data dependencies, the required blocks
A′ ∈ A and B′ ∈ B of sizes n×m and m×n are subdivided in tiles A′i,j ∈ A′ and
B′i,j ∈ B′ of sizes L2 × L1 and L1 × L2 respectively. Each tile can be calculate

using C ′i,j =
∑m/L2
k=1 A′i,k ·B′k,j .

The number of loads and stores can be calculated analytically for each one
of the 6 alternatives for traversing tiles that can be summarize on two sequences
S1, S2. The specific optimization problem now becomes:

min
L∈{L1,L2},
S∈{S1,S2}

f (m,Γ,L, S) =

{
2e3
L2
m3 + e4m

2 if S = S1(
e3+e4
L1

+ e3
L2

)
m3 + e3

(√
Γ − 1

)
m2 if S = S2

s.t. 2L1L2 + L2
2 ≤ Rmax, L1, L2 ∈ Z+

(6)

Analyzing the piecewise function f , it can be easily shown that S1 sequence
has an smaller objective function than S2 under the conditions e4

e3
≤
√
Γ −1 and

L2
L1
≥ e3

e3+e4
. The first one is easily satisfied if Γ is big enough, the second one

can be satisfied when L2 ≥ L1 and it can be verified with the solution.

8 Elkin Garcia, Daniel Orozco and Guang Gao

Table 1: Ed consumed by memory operations for MM
Memory Operations Inner Product Square Optimal

Loads 2e3m
3 e3

2
m3 e3

3
m3

Stores e4m
2 e4m

2 e4m
2

We will solve the integer optimization problem using the branch and bound
technique. Since f only depends on L2, we minimize the function f by maximiz-
ing L2. Given the constraint, L2 is maximized by minimizing L1. Thus L1 = 1,
we solve the optimum L2 in the boundary of the constraint and round off it. The
solution of Eq. (6) is:

L1 = 1, L2 =
⌊√

1 +Rmax − 1
⌋

(7)

The solution satisfies the constraints and also proves the hypothesis L2 ≥ L1,
finishing the branch and bound process. This result is not completely accurate,
since we assumed that there are not remainders when we divide the matrices
into blocks and subdivide the blocks in tiles. Despite this fact, they can be used
as a good estimate.

For comparison purposes, C64 has 63 registers and we need to keep one regis-
ter for the stack pointer, pointers to A,B,C matrices, m and stride parameters,
then Rmax = 63−6 = 57 and the solution of Eq. (7) is L1 = 1 and L2 = 6. Table
1 summarizes the results in terms of dynamic energy consumed by LDs and ST s
for the tiling proposed and other 2 options that fully utilizes the registers and
have been used in practical algorithms: inner product of vectors (L1 = 28 and
L2 = 1) and square tiles (L1 = L2 = 4). As a consequence of using sequence
S1, the dynamic energy of ST s is equal in all tiling strategies. As expected, the
tiling proposed consumes minimum energy: approximately 6 times less than the
inner product tiling and 1.5 times less than the square tiling.

3.2 Finite Difference Time Domain

The Finite Difference Time Domain (FDTD) [17] technique is a common al-
gorithm to simulate the propagation of electromagnetic waves through direct
solution of Maxwell’s Equations. FDTD was chosen to illustrate the techniques
presented here since it is easy to understand, it is widely used, and it can be
easily written for multiple dimensions. Specifically, we will study FDTD in one
dimension i of size m and q time steps. The data is read directly from off-chip
memory with tiles on on-chip memory. For this case, the optimization problem
on eq. 4 becomes:

min
T (L,S)

e1N(LDdram) + e2N(STdram)

s.t. Memsram (Λ, Γ, T) ≤ Memmax

T is parallel

(8)

Energy efficient tiling on a Many-Core Architecture 9

(a) DDG for FDTD 1D (b) Diamond Tiling

Fig. 2: FDTD 1D Tiling for minimizing energy consumption

The solution of this problem is based on the analysis of its Data Dependency
Graph (DDG) that can be detailed on Figure 2a. Our solution is inspired by [13]
where they find the tiling that maximize the data reuse. Because the number of
useful computations can not be decreased by the tiling. For a FDTD problem of
size fixed size, maximize the data reused is equivalent to minimize the number of
memory operations N(LDdram) + N(STdram). In addition, given the regularity
of the DDG, a tiling that saves energy will not load extra data for doing extra
computations. It means that the number of loads and stores will be the same.
In that order the ideas, the diamond tiling showed on Figure 2b solves the
optimization problem given by eq. 8

Table 2 summarizes the results in terms of dynamic energy consumed by
LDs and ST s for the tiling proposed and other 3 well-known techniques [11].
The unit for the tile size L is the node E[i], H[i]. Clearly, Diamond tiling for
FDTD has the smallest coefficients.

Table 2: Ed consumed by memory operations for FDTD
Memory Operations Naive Split Overlapped Diamond

Loads e1qm
9e1
2L

qm 9e1
L

qm 2e1
L

qm
Stores e2qm

9e2
2L

qm 3e2
L

qm 2e2
L

qm

10 Elkin Garcia, Daniel Orozco and Guang Gao

2.0E+0

2.0E+1

2.0E+2

2.0E+3

2.0E+4

2.0E+5

2.0E+6

0 20 40 60 80 100 120 140 160

Energy (uJ)

Processors

ldddram stddram lddsram
stdsram faddd fmuld
fmad mull add
and mov li
no-op

(a) Overall comparison of selected ISA

0.0E+0

5.0E+3

1.0E+4

1.5E+4

2.0E+4

2.5E+4

0 20 40 60 80 100 120 140 160

Energy (uJ)

Processors

lddsram stdsram

faddd fmuld

fmad mull

add and

mov li

no-op

(b) Comparison for On-chip Mem. Op.,
FPU Op. and Integer/Logical Op.

Fig. 3: Ed vs. Γ with 150M Operations per Processor

4 Experimental Evaluation

This section describes the experimental evaluation of the proposed energy con-
sumption model given in section 2.2 and the tiling techniques for energy efficiency
analyzed in section 3.

4.1 Evaluation of the Energy Consumption Model

The energy coefficients ei where obtained using measurements of current and
voltage from the power supplies in a real chip. The instantaneous power P [t] at
time t can be calculated using P [t] = v1[t] · i1[t] + v2[t] · i2[t], the average power
P̄ is estimated by the mean of several samples of P [t] and the total energy
consumed is ET = P̄ · t.

A test bed for the ISA of C64 was created for the estimation of the energy
coefficients ei of (2). The test bed include multiple programs, each one with
a known number of instructions for a subset of the ISA. The estimation of
e0 = 63.11W was straight forward calculated only measuring the consumption
of the system on standby. Notice that while e0 is estimated in Watts, ei for i > 0
is estimated in Joules/Instruction.

The dynamic energy Ed for a program Λ running in parallel on Γ processors
with a fixed number of instructions of class Ij per processor can be estimated
by eq. 9

Ed(Λ, Ij , Γ) =
(
P̄ − e0

)
· t (9)

The results for a representative subset of the ISA are shown on Figure 3. As
shown on Figure 3a, load and store on DRAM (ldddram, stddram) are the most
energy hungry, followed by load and store on SRAM (lddsram, stdsram), the dif-
ference of energy consumption between DRAM and SRAM operations is almost
2 orders of magnitude. Figure 3b proves the linearity of energy consumption with

Energy efficient tiling on a Many-Core Architecture 11

Table 3: Energy Coefficients e and R2

Instruction e[pJ/Operation] R2

ldddram 48924.10 0.999
stddram 51488.99 0.998
lddsram 964.65 0.997
stdsram 548.31 0.999
fmad 245.27 0.997
faddd 178.30 0.995
fmuld 210.15 0.996
mull 225.43 0.998
add 127.65 0.998
and 126.69 0.998
mov 105.48 0.996
li 86.01 0.997

no-op 39.66 0.936

Γ . It details that after memory operations, floating point operations (fmaddd,
fmuld and fmad) and difficult integer operations (mull) consumes similar energy.
Integer, logical and register movement operations (add, and, mov, li) are on the
bottom of the list. The instruction that consumes less is no-op as expected.

The remainder energy coefficients e can be extrapolated using a linear regres-
sion from the Ed estimated for each instruction. We used a model with intercept
at origin given the assumption that no dynamic energy is consumed on standby.
The resultant coefficients e for a subset of the ISA is shown on Table 3. The table
also includes the coefficients of determination R2 for measuring the variability
between the data and the model proposed. As expected, a linear approximation
with the number of processors models accurately Ed, its coefficients R2 are re-
ally close to 1, it corroborates that there is not dependency between the latency
of the operation and the dynamic energy consumed. Some additional aspects to
highlight are: (1) Instead DRAM operations consume similar energy, a load from
SRAM consumes almost twice the energy of an store to SRAM. (2) Despite the
floating point fused-multiply-add (fmad) consumes a little bit more energy than
a simple floating point multiply (fmuld) or floating point add (faddd), notice
that one fmad executes a multiply and an addition. At the end, an fmad saves
around 63% of energy compare with separates fmuld and faddd. (3) Integer and
floating point multiplication cost similar, the same is true for logical and simple
integer operations. The last two observations confirms the high correlation be-
tween the energy consumption of an instruction and the related hardware and
functional units the instruction requires.

4.2 Evaluation of the Energy Efficient Tiling

We will use the two applications explained before (MM and FDTD) for showing
the advantages of the tilings that solve the optimization problems of section 3.
First, we will compare the estimated energy consumption using the coefficients
of section 4.1 with the measured energy based on voltage and current on the real
chip. Second, we will compare energy consumption of the tiling proposed with
other well known tiling techniques.

12 Elkin Garcia, Daniel Orozco and Guang Gao

1E+1

1E+2

1E+3

1E+4

1E+5

0 20 40 60 80 100 120 140

Energy (mJ)

Processors

EsP-DPT EdP-DPT EtP-DPT

EsP-OptT EdP-OptT EtP-OptT

EsM-DPT EdM-DPT EtM-DPT

EsM-OptT EdM-OptT EtM-OptT

(a) MM with m = 300

1E+3

1E+4

1E+5

1E+6

1E+7

0 10 20 30 40

Energy (mJ)

Processors

EtP-NT EtM-NT EdM-NT

EtP-OT EtM-OT EdM-OT

EtP-ST EtM-ST EdM-ST

EtP-DmT EtM-DmT EdM-DmT

(b) FDTD with m = 100k and q = 500

Fig. 4: Energy consumption (Static Es, Dynamic Ed and Total Et) vs Predicted
model P and Measured M using different tilings for MM and FDTD

For MM we use a matrix size that fits on SRAM, we compare our approach
(OptT) with the register tiling based on dot product (DPT). Both methods uses
assembly for taking advantage of the complete register file. For FDTD, the tile
size is the maximum possible that fits on SPM, we compare our diamond tiling
(DmT) with 3 well-known techniques: A rectangular tiling (naive) (NT), the
overlapped tiling (OT) that uses redundant computations in order to tile time
and space dimensions and split tiling (ST) that uses multiple shapes for fully
partitioning the iteration space [11].

Figure 4a compares the energy consumption measured with the energy pre-
dicted by our model for the MM application. We can see how the predictions are
highly close to the measured value for the dynamic and static components. The
average error of our model for Ed and ET is 26.6% and 0.82% respectively. We
also noticed how the tiling proposed decreases substantially the dynamic and to-
tal energy consumption in 56.52% and 61.21% on average. An interesting result
that can be extrapolated from the measurements of performance and power is
that the power efficiency [MFLOPS/W] increases between 2.62 and 4.13 times
for this test example. For the FDTD application, figure 4b shows the effective-
ness of diamond tiling for decreasing the total and dynamic energy with respects
to the other tiling techniques. The total average energy reduction was 81.26%,
57.27% and 15.69% compared with split tiling, overlapped tiling and naive tiling
respectively. Also our energy consumption model is accurate to the real behavior
of the application, the average error is 7.3% for ET .

5 Related Work

Energy consumption on traditional architectures has been extensively studied
[16]. Most of the research has focused on systems with caches [8]. Accurate
but highly complex models and techniques for reducing energy consumption
has been proposed for uniprocessor architectures. They uses precise information

Energy efficient tiling on a Many-Core Architecture 13

about the hardware and are based on elaborated instruction scheduling [12, 16].
As a consequence the extrapolation to many-core architectures is highly difficult
and not scalable with the number of hardware threads. Energy efficiency on
multiprocessors has been focused on the hardware design, including hardware
features like power saving off-chip memory or dynamic voltage selection [1].

Methodologies and techniques for increasing performance on many-core ar-
chitectures with software-managed memory hierarchy have been a promising
topic of research [7, 4, 9, 15]. Some of them have shown empirical evidence about
increasing the power efficiency [7, 6].

6 Conclusions and Future Work

In this paper, we develop an energy consumption model for many-core archi-
tectures with software-managed memory hierarchy. We validate the accuracy of
this model with the C64 many-core architecture and we show the model depends
of the number and type of instructions executed and the total execution time
of the application. An advantage is that this model is scalable with the number
of hardware thread units and consider stalls produced by data dependencies or
arbitration of shared resources.

We also propose a general methodology for designing tiling techniques for
energy efficient applications. The methodology proposed is based on an opti-
mization problem that produces optimal tiling and sequence of traversing tiles
minimizing the energy consumed and parametrized by the sizes of each level in
the memory hierarchy. We also show two different techniques for solving the op-
timization problem for two different applications: Matrix Multiplication (MM)
and Finite Difference Time Domain (FDTD). Our experimental evaluation shows
that the techniques proposed reduce the total energy consumption effectively, de-
creasing the static and dynamic component. The average energy saving for MM
is 61.21%, this energy saving is 81.26% for FDTD compared with the naive tiling.

Future work includes to extend the model and methodology proposed to
other algorithms (e.g. Linpack) and study the impact of dynamic scheduling
techniques in the energy consumption. We also are interested on the relation be-
tween optimum tiling for increasing performance and optimum tiling for energy
efficiency.

7 Acknowledgements

This work was possible due to the support of the NSF through research grants
CCF-0833122, CCF-0937907, CNS-0720531, CCF-0925863 and OCI-0904534.
We also thank ET International for support during course of experiments.

References

1. Andrei, A., Eles, P., Peng, Z., Schmitz, M., Hashimi, B.: Energy optimization of
multiprocessor systems on chip by voltage selection. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on 15(3), 262 –275 (mar 2007)

14 Elkin Garcia, Daniel Orozco and Guang Gao

2. Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M.,
Franzon, P., Harrod, W., Hiller, J., Karp, S., Keckler, S., Klein, D., Lucas, R.,
Richards, M., Scarpelli, A., Scott, S., Snavely, A., Sterling, T., Williams, R.S.,
Yelick, K.: Exascale computing study: Technology challenges in achieving exascale
systems (2008), www.cse.nd.edu/Reports/2008TR-2008-13.pdf

3. Callahan, D., Porterfield, A.: Data cache performance of supercomputer applica-
tions. In: Supercomputing ’90: Proceedings of the 1990 ACM/IEEE conference on
Supercomputing. pp. 564–572. IEEE Computer Society Press, Los Alamitos, CA,
USA (1990)

4. Chen, L., Hu, Z., Lin, J., Gao, G.R.: Optimizing the Fast Fourier Transform on
a Multi-core Architecture. In: IEEE 2007 International Parallel and Distributed
Processing Symposium (IPDPS ’07). pp. 1–8 (Mar 2007)

5. Denneau, M., Warren Jr., H.S.: 64-bit Cyclops: Principles of Operation. Tech. rep.,
IBM Watson Research Center, Yorktown Heights, NY (April 2005)

6. Garcia, E., Khan, R., Livingston, K., Venetis, I.E., Gao, G.: Dynamic percolation -
mapping dense matrix multiplication on a many-core architecture. CAPSL Techni-
cal Memo 98 (June 2010), ftp://ftp.capsl.udel.edu/pub/doc/memos/memo098.pdf

7. Garcia, E., Venetis, I.E., Khan, R., Gao, G.: Optimized Dense Matrix Multiplica-
tion on a Many-Core Architecture. In: Proceedings of the Sixteenth International
Conference on Parallel Computing (Euro-Par 2010), Part II. Lecture Notes in Com-
puter Science, vol. 6272, pp. 316–327. Springer, Ischia, Italy (2010)

8. Hanson, H., Hrishikesh, M., Agarwal, V., Keckler, S., Burger, D.: Static energy re-
duction techniques for microprocessor caches. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on 11(3), 303 – 313 (jun 2003)

9. Hu, Z., del Cuvillo, J., Zhu, W., Gao, G.R.: Optimization of Dense Matrix Multi-
plication on IBM Cyclops-64: Challenges and Experiences. In: 12th International
European Conference on Parallel Processing (Euro-Par 2006). pp. 134–144. Dres-
den, Germany (Aug 2006)

10. Kondo, M., Okawara, H., Nakamura, H., Boku, T., Sakai, S.: Scima: a novel proces-
sor architecture for high performance computing. In: High Performance Computing
in the Asia-Pacific Region, 2000. Proceedings. The Fourth International Confer-
ence/Exhibition on. vol. 1, pp. 355–360 vol.1 (2000)

11. Krishnamoorthy, S., Baskaran, M., Bondhugula, U., Ramanujam, J., Rountev, A.,
Sadayappan, P.: Effective automatic parallelization of stencil computations. SIG-
PLAN Not. 42(6), 235–244 (2007)

12. Lee, S., Ermedahl, A., Min, S.L.: An accurate instruction-level energy consumption
model for embedded risc processors. In: LCTES ’01: Proceedings of the ACM
SIGPLAN workshop on Languages, compilers and tools for embedded systems.
pp. 1–10. ACM, New York, NY, USA (2001)

13. Orozco, D., Garcia, E., Gao, G.: Locality optimization of stencil applications using
data dependency graphs (2010)

14. Torrellas, J.: Architectures for extreme-scale computing. Computer 42(11), 28 –35
(nov 2009)

15. Venetis, I.E., Gao, G.R.: Mapping the LU Decomposition on a Many-Core Archi-
tecture: Challenges and Solutions. In: Proceedings of the 6th ACM Conference on
Computing Frontiers (CF ’09). pp. 71–80. Ischia, Italy (May 2009)

16. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced cpu energy. pp.
374 –382 (oct 1995)

17. Yee, K.: Numerical solution of inital boundary value problems involving maxwell’s
equations in isotropic media. Antennas and Propagation, IEEE Transactions on
14(3), 302–307 (May 1966)

