
A User-Friendly Methodology for Automatic Exploration of Compiler Options

Haiping Wu Long Chen Joseph Manzano Guang R. Gao

University of Delaware
Department of Electrical and Computer Engineering

Newark, Delaware 19716, U.S.A
{hwu, lochen, jmanzano, ggao}@capsl.udel.edu

Abstract

This paper introduces a practical methodology for auto-
matic exploring compiler optimization options. The strategy
behind this methodology is to provide an intelligent mecha-
nism, in which the compiler will automatically identify op-
timized combination of compiler options for a given appli-
cation. The decision made by the compiler is based on user
requirements on what aspects of the generated code are the
most critical for the compiled application - through a spe-
cialized user interface. A set of pre-built databases of can-
didate optimized combinations of compiler options will help
the compiler to make the right decision. This methodology
will dramatically help users to get rid of the burden of fully
understanding the compiler’s inner structure and organi-
zation to make the most profitable combination of options.
All this work is taken by the compiler and the infrastruc-
ture proposed in this paper.

This paper presents this methodology and describes its
principles and technical mechanisms of the components.

Keywords: Compiler options, Evaluation Platform, Perfor-
mance, Power, Code size

1. Introduction

Since the invention of the compiler, developers usually
define the compiler-user interface using a methodology of
compiler-driven option selection. It is the users’ responsibil-
ity to find a good combination of compiler options to bene-
fit their applications.

Modern compilers often have myriad options to control
various aspects and degrees of optimization. For example,
there are 60+ optimization options in the GNU Compiler
Collection (GCC) C compiler [9]. This translates to more
than 260 possible combinations for any particular applica-
tion!

As a result, finding an optimized combination of com-
piler options to benefit a particular user application presents
a significant challenge to the compiler’s users. To fully un-
derstand even a small subset of useful options often requires
an in-depth knowledge of compiler’s inner structure and or-
ganization - that a majority of users do not posses.

This situation is exacerbated on embedded systems. Un-
like the general scientific computation domain where per-
formance is the primary demand and a single combination
of compiler optimization options is usually sufficient, more
aspects need to be considered for applications in the embed-
ded domain. For example, faster execution time, less power
consumption and smaller code size are three primary as-
pects that are frequently interlaced together for applications
in the embedded domain.

It is obvious that the traditional methodology of
compiler-driven option selection is a major obstacle for
users to fully take advantage of the rich optimization fea-
tures that modern compilers have. There is a strong driv-
ing force to move toward finding new methodologies that
can fill the gap between the myriad optimization fea-
tures provided by compilers and the subset of features
adopted by users.

In this paper, we introduce a methodology of explor-
ing compiler optimization options, called User-friendly
Methodology for automatic Exploration of Compiler Op-
tions or UMECO for short.

The strategy behind the methodology is to ask users for
advice on what aspects of the generated code are the most
important and what metrics should be considered critical for
a given application - through a specialized user interface.
Then, the compiler, based on the user’s advices, as well as
a set of pre-built databases of candidate optimized combi-
nations of compiler options, will automatically identify the
most profitable or optimized1 combination of compiler op-

1 Term optimized is used to indicate a relative improvement of execu-
tion time, lower power consumption or a reduction in code size.

tions for the applications.
UMECO is a research project that is being developed at

the University of Delaware. We are now working on several
well-known embedded and multicore architectures, such as
Intel XScale, IBM Cyclops-64 and CELL.

Our main contributions in this paper are:

• The idea of an automatic exploratory compiler option
methodology and framework;

• The mechanisms and considerations of configuring
evaluation platforms

• A strategy to choose adequate benchmarks

• Design issues and challenges when integrating a new
methodology / framework with an existing compiler
framework

The remainder of this paper is organized as follows. In
Section 2, we outline the infrastructure of UMECO. Sec-
tion 3 deals with the issues of configuring evaluation plat-
forms. In Section 4, we discuss the methods of narrow-
ing down the choice space from the whole combinational
space of compiler options. The strategy to choose bench-
mark packages for measurement and testing is presented in
Section 5. In Section 6, we discuss the issues of integrat-
ing UMECO inside a compiler framework. We present re-
lated work in Section 7. Finally, some conclusions are given
in Section 8.

2. Infrastructure of the UMECO

2.1. The Components of UMECO

B�
1

B�
2

B�
n

Benchmark
Packages

B
1

B
2

B
n

_space1

Compiler Option
Search Spaces

Evaluation/Test
Platforms

D B11

D B12

D B1u

…

D B21

D B22

D B2v

…

D Bm1

D Bm2

D Bmw

…

Options
D atabase

Revise
Compiler C1

Revise
Compiler C2

Revise
Compiler Cm

Component P1

Component P3

Component P2

Component P4

_space2

_spacee

C
1

B11

B12

B1k

…

M
1

M
easurem

ent B
ed

1

C
2

B11

B22

B2k

…

M
2

M
easurem

ent B
ed

2

C
m

Bm1

Bm2

Bmk

…

M
m

M
easurem

ent B
ed

m

1

2

m

Figure 1. Components of UMECO

The UMECO consists of four components, as shown in
Figure 1. Component P1 consists of a group of benchmark
packages. The packages on the right side (Bi, i =1,...,n) are
used for measurement and the left side (Bi’, i =1,...,n) are
used for testing. Component P2 consists of a set of nar-
rowed space of combinations of compiler options. Each nar-
rowed space(we name it as Ω space) corresponds to a spe-
cific compiler and architecture pair. It is a trimmed down
version of the combinatorial space2. Component P3 is a
group of evaluation platforms. Each evaluation platform
consists of one architecture(hardware or simulator) and a
compiler. Component P4 consists of several set of databases
which contains optimized combinations of compiler op-
tions. These databases will be built into the underlying com-
pilers. A particular set of databases are created from a series
of evaluations on a specific evaluation platform. The gen-
eral methods of compiler implementation and other specific
strategies, such as trade off between performance, power
and code size, are also included in P4.

2.2. The Working Principle of UMECO

The kernel component in UMECO is the evaluation plat-
forms for measurement and testing. Each platform consists
of a compiler, its corresponding toolchain, architecture that
the compiler supports and a set of measurement tools.

A compiler-architecture pair determines the application
domains that it supports and therefore determines what
benchmark packages need to be chosen and used for mea-
suring purposes. In other words, these chosen benchmark
packages are used to create the databases, which will be
used by the compiler to automatically identify optimized
compiler options for the specific application domain. There
is a set of standard benchmark suites for each application
domain in UMECO. Measuring benchmark packages on a
platform is a complex and time-consuming process. De-
pending on the number of elements in the Ω space, a bench-
mark package may be measured several hundred times.
Therefore, the selection of benchmark packages for measur-
ing is another crucial consideration of UMECO. The bench-
mark packages for testing are used to verify the effects that
UMECO has on the application. They come from real world
applications.

Since the size of the combinatorial space is huge, a smart
method must be used to narrow down this space to a smaller
sub-space, or Ω space. The measuring benchmark packages
are ran using all of the combinations in this Ω space. The
combinations that produce an optimized results are chosen
and stored into a database. For embedded systems, three
factors (performance, power and code size) are considered
as a whole; thus, a set of three databases are generated from

2 Represents the space of all possible combinations of compiler options

the measurement process. Each database corresponds to a
factor specific measurement. For example, power measure-
ment will generate a power specific database. Moreover, if
the compiler supports several application domains, there is
an individual set of databases for each application domain.

After the measurement phase finishes, the underlying
compiler has to be revised to support the specific user ad-
vice options, by integrating the databases as one of its inter-
nal data structures.

After the compiler has been revised, the user can advice
the compiler on what aspects mentioned above of the gener-
ated code should be given the top most importance, and also
what domain this application belongs to. Then, the compiler
automatically searches the optimized combination of com-
piler options from the built databases according to the user’s
advice.

3. Configuration of Evaluation Platforms

In this section, we present the concept of evaluation plat-
forms formally, and describe the measurement methodolo-
gies that are crucial for the problem addressed in this pa-
per.

3.1. Features of the Evaluation Platform

In UMECO, each evaluation platform includes a com-
piler and one architecture, which is supported by this com-
piler. For a specific architecture, there may be more than one
compiler that could be used. In order to investigate the pro-
posed problem, we have to construct the full mapping be-
tween compilers and the corresponding architectures, i.e, to
enumerate all compiler-architecture pairs. Having all pos-
sible compiler-architecture pairs, the next step is to obtain
the effects of different combinations of compiler options on
each of those pairs, i.e. the execution time, power consump-
tion, and code size. Moreover, after the compiler has been
revised to provide the functionality of processing the user
advice options, this functionality must be verified.

3.2. Measurement Techniques

In UMECO, measurement means the collection of infor-
mation about performance, power and code size from a spe-
cific program on a real or simulation environment.

To collect such information, UMECO uses several meth-
ods. Code size is calculated by the size of text sections of
the binary file. Most modern CPUs have performance coun-
ters that can be used to track the cycle number. Thus, this
allows a minimal interference calculation of performance
(measured in clock cycles) of applications running on them.
For example, the Intel XScale processor has a special regis-
ter CCNT that counts core clock cycles.

The most difficulty task might be the measurement of
power consumption. Currently, there are two approaches to
complete this task: physical measurement and simulation.

Generally speaking, objective and precise results could
be obtained by measuring the real hardware. However, there
are some limitations with physical measurement. First, the
hardware must be ready before conducting such measure-
ment. Second, for most systems, it is nearly impossible
to measure different system components separately. Third,
without statistics of the execution of the program, such as
the number of instructions executed, the number of mem-
ory access operations, etc, physical measurement results are
often not able to explain the observed power behavior.

On the other hand, simulations are often used to test ar-
chitectural ideas and assess system performance and power
consumption. Simulators provide the flexibility to modify
and analyze the impact of various architectural parame-
ters and components as well as enable more detailed statis-
tics collection than physical measurements on hardware.
In power/energy simulations, the system is often modeled
as an ensemble of its sub-components. The power con-
sumption of the executing program is estimated as the sum
of the energy consumption of all of its (simulated) sub-
components. According to the level of granularity of the
simulation model, most of these simulators can be classi-
fied as instruction-level, and microarchitecture-level simu-
lators.

However, simulations also have their own problems.
First, in order to design and implement the simulator, devel-
opers need to have detailed knowledge of the internal mi-
croarchitecture of the processor. Sometimes, such knowl-
edge is not available to researchers outside the hardware
manufacturer. Second, to obtain high precision data, sim-
ulators have to model a very detailed version of the archi-
tecture and thus the simulations could be very slow. More-
over, due to various sources of error[8], there may be con-
siderable mismatches between the hardware platform and
the simulation.

The following two instances shows briefly the main con-
siderations of configuring the evaluation platform in prac-
tice.

3.3. Instances of Evaluation Platforms

• Platform on XScale
This platform uses the technique of physical measure-
ment. It consists of the KCC toolchain and the Intel
XScale architecture. The corresponding physical mea-
suremental platform for Intel XScale 80200 Evalua-
tion Board (80200EVB) was developed. With hard-
ware support and run-time libraries, both the perfor-
mance and the power consumption were accurately
measured. The main components of this kind of plat-

form are the hardware testbed, a specific developed
system library on this testbed and a series of utilities
for measuring operations.

• Platform on CELL
This platform consists of the IBM full-system simula-
tor, MAMBO, for the Cell architecture and the GNU
toolchain for such architecture. This toolchain has two
different compilers designed to produce code for Cell’s
synergistic processor element (SPE) and Cell’s Pow-
erPC processing Element (PPE). A brief flowchart of
the platform is shown in Figure 2.

This platform is a typical instance of measure-
ment using simulation. The underlying simulator
should support both cycle-accurate and power simu-
lation. Usually, an extension of the current simulator,
or a new simulator, are needed to satisfy these pur-
poses.

 Cell hardware/simulator

 PPE SPEs

GNU for PowerPC GNU for Cell

Figure 2. Cell Platform

4. Narrowing Down the Combinational Space

4.1. A Description of the Combinational Space

Most of modern compilers have a large number of op-
tions to control various aspect and degrees of optimization.
The number of possible combinations of these options is
astronomical. Because a majority of compiler users have
no in-depth knowledge about what a given option exactly
does and how such option interact with others, they usually
use the standard compiler switch -Ox(x =1,2,3). However,
the underlying compiler is pre-designed for a specific archi-
tecture. Therefore there is no custom combination of com-
piler options that can be used by all applications. Intuitively,
there should be an optimal combination of options for each
application. Finding such optimal combination of options
for a specific application is almost impossible in practice.
An alternative way is to find an optimized combination of
options. A combination of options is optimized if:

using this combination of options, the compiler is able
to generate ”better” code than using the standard compiler
-Ox switch.

Here ”better” refers to, when compare with the standard
compiler switches, either to faster execution time, lower

power consumption, smaller code size, or a combination of
them, depending on what is the most important factor for
the user.

It is obvious that there is more than one optimized com-
bination of options. The main objective here is to
narrow down the combinational space into a smaller
space(Ω space) which contains only the optimized combi-
nations for a specific application domain. From now on, we
will use C space to refer the space of all possible combina-
tions of compiler options.

4.2. Methods of Finding Ω space

Several methods of finding the Ω space from C space
have been proposed in the literature. Two of these methods
are of special interests to us: the method employing a ge-
netic algorithm[1, 2, 3, 4] and the method using a statistical
technique[5, 7, 10].

4.2.1. Method via Genetic Algorithm
A genetic algorithm (GA) is an iterative process based

loosely on biological evolution through natural selection. A
particular efficacy of GA is its ability to search large solu-
tion spaces.

The method using GA to find the Ω space is presented
in the following steps:

• The initial population is built from a random combina-
tions of compiler options (organisms);

• In each generation, measure the benchmark packages
for each combination of options. The measurement re-
sults(execution time, power or code size) from each
combination are set as its ”fitness”. Smaller fitnesses
are ”more fit” , and more likely to reproduce; mutation
and migration between populations introduces varia-
tions to prevent populations from stagnating.

• Using GA to cycle through the generations and refine
the best combination of options through natural selec-
tion, options that produce optimized result will occur
more often, while adverse options will tend to be win-
nowed away.

• Count the number of times that an option is enabled by
the best chromosome in each generation of each popu-
lation. The higher the count, the more often the option
was enabled, and the more important it is for produc-
ing optimized results on the given benchmarks. Con-
versely, an option that is detrimental will appear very
few times (or not at all), while neutral options (those
that have no effect on the result) should occur an aver-
age number of times.

• The optimistic and pessimistic options are then deter-
mined using some strategies. For example, [1] takes
the final totals and calculate a z score for each option.

The z score measures the distance of a value from a
population’s average, in units of standard deviation. If
an option’s z score is greater than 1, it may be benefi-
cial, while a z score of -1 or less indicates a detrimen-
tal option.

4.2.2. Method via Statistical Technique
This method is used to find the Ω space by really mea-

suring the benchmarks using the chosen combinations of
options. It is based on a technique called fractional facto-
rial design (FFD). It can be used to reduce the number of
evaluation runs significantly. As described in [5], in the ter-
minology of evaluation design, each compiler option is a
factor. Each subset of the factors is a combination of com-
piler options. The number of the factorial designs consist of
the C space. To create a Ω space, FFD systematically se-
lects a subset of the evaluation runs from the factorial de-
sign(C space). Some ambiguities may arise when the num-
ber of runs is reduced. However, the ambiguity can be re-
solved in some later evaluation. If the uncertain interactions
have significant performance impact, evaluations have to be
further refined to resolve the ambiguities. In this way, the to-
tal number of runs(Ω space) will be significantly less than
a full factorial design(C space).

4.3. Create the Ω space in UMECO

The method that creates the Ω space in UMECO em-
ploys both the genetic algorithm and the statistical tech-
nique described above(A detailed description of how to
use the genetic algorithm and the statistical technique in
UMECO to create the Ω space is not given in this paper).

In contrast to the previous studies which only consid-
ered one specific factor, our approach integrates three pri-
mary factors: performance, power and code size.

We introduce a 3-tuple of the form <execution time,
power, code size> to store the results of the three factors
corresponding to one combination of compiler options. The
process of creating the Ω space is described as following:

• Setup Baselines
Baselines represent the best results of performance,
power or code size for a given measurement package
when the standard compiler switch -Ox is used. There
is no unique compiler standard switch that is univer-
sal suitable for all kind of application packages and ar-
chitectures. The choice of baseline relies on the under-
lying compiler and architecture pair.

• Initialize the Ω space
Each factor (performance, power and code size) cor-
responds to a specific Ω space, we name them as
Ω space(T), Ω space(P) and Ω space(S) (where T is
performance, P is power and S is code size). The ini-
tial elements in these spaces are the standard switch

that is used to set the baseline and all individual op-
tions.

• Extend the Ω space
Extend the Ω space to its final status is an iterative pro-
cess:

– Measure each option (except the baseline switch)
in the Ω space. Repeatedly remove the option
that has the worst result from the Ω space until
n options are left. Here n is assigned in the real
measurement environment, such as 10 or 15.

– Use GA algorithm and statistical technique to re-
duce the number of measurement among the 2n

possibilities of combinations of options.

– Repeat above step for all combinations that have
at least two options and at most all options in
Ω space. Each iteration generate a new genera-
tion of Ω space. Each generation always contains
n elements which has the best measurement re-
sults.

Each element in the Ω space(f) (f =T,P,S) and the corre-
sponding measurement results compose an entry in the spe-
cific database(f). The elements in the database are stored in
increasing-order according to the value of the specific fac-
tor (performance, power and code size). For example, the
first element in a database(P) has the lowest of power con-
sumption among all other elements in that database.

5. Benchmark Packages

There are two kind of benchmark packages in UMECO:
benchmark packages for testing and benchmark packages
for measuring. When there is more than one application do-
main supported by a specific compiler-architecture pair, a
set of measuring benchmark packages and a set of testing
benchmark packages should be chosen for this compiler-
architecture pair.

5.1. Benchmark for Measurement

This kind of benchmark packages is used to create the
databases of optimized combinations of compiler options
for the application domains that the compiler-architecture
pair support. There are commonly recognized benchmark
packages for each specific application domain. For exam-
ple, consider the benchmark choice for the GCC compiler
and XScale architecture pair. One of the embedded appli-
cations that the pair supports is the multimedia domain. We
choose Mediabench as the underlying measuring package
and Mibench as the corresponding test benchmark in the
initial phase of creating the databases.

5.2. Benchmark for Testing

This kind of benchmark packages is used to test the ef-
fectiveness of the revised compiler. Although some com-
mon benchmarks can be used either as for measuring or for
testing in UMECO, only a real application can be used to
confirm the practical value of our methodology.

5.3. A Glance of Measurement and Testing

Using benchmarks to measure and test can be an itera-
tive refined process. In the first step, choose benchmark B1

for measuring. It produces three databases for performance,
power and code size, respectively. These databases are in-
tegrated in the compiler. Then, choose benchmark B’1 for
testing to confirm that optimized results can be obtained
when the revised compiler is used. In the next iteration,
the benchmark B’1, that was used in the previous iteration
for testing can be used for measurement. The new gener-
ated databases can be merged with the previous databases.
A new benchmark B2 can be selected for testing. This itera-
tive refined process can be repeated many times as needed.

6. Compiler Revision

An obvious drawback of most modern compilers is the
lack of user interferences. It is impossible for the underly-
ing compiler to know which domain an application belongs
to, and, thus, what would be the optimal combination of op-
timization options for this specific application.

The UMECO uses a specific compiler-user interface for
the users to interface with the compiler. Then, the compiler
has a revision phase to accept the advice information from
the users and to choose a combination of options based on
the advice information and a pre-built databases.

In this section, we present the syntax of the user-advised
options, and the internal flowchart of the compiler to pro-
cess the user advice options.

6.1. Syntax of User-Advised Options

We add two new options to the underlying compiler com-
mand line: the priority-weight option and the application-
domain option. The syntax and the meaning of the options
are described as follows:

• Priority-weight option

–PW=< p1(w1), p2(w2), p3(w3) >

This option is used to assign priorities to performance,
power and code size. The pi(i=1,2,3) parameter can be
either the character P (for performance), W (for power)
and S (for code size). The users use this option to

advise the underlying compiler what is the most im-
portant factor about the application that is being com-
piled. For example, –PW=<W> means that the user
only cares about minimizing the power consumption.

The wi(i=1,2,3) parameter is a weighted coefficient
and its value is a fraction between [0,1]. The sum of
w1, w2 and w3 must ≤ 1. Users can use this option
to advise the compiler the importance, and possible
trade off, for each factor (performance, power and code
size). The compiler uses these weighted coefficients in
its trade-off algorithms(not described in this paper).

• Application-domain option

–D=class

This option tells the compiler what domain of the ap-
plication to be compiled belongs to. The class param-
eter is a character of can be an N (network application
domain), a D(DSP application domain), a W(wireless
communication domain), a M(media application do-
main), etc.

6.2. Compiler Modification

Basically, the revision to the underlying compilers in-
cludes modifications to extend the compiler command line
with new options, integrate the databases that are created
in the measurement phase, modify the internal driver of
the compiler to accept the user-advised options and imple-
ment new algorithms that provides a trade off among per-
formance, power and code size, as shown in Figure 3.

1 Read Command Parameters

2. if has "-PW" option then

3. {

4. if has "-D" option then

5. if has weighted parameter then

6. optimization_list = trade_off_function (weighted_coefficient_list, class);

7. else { /* no weighted parameter */

8. search the database corresponding to the -PW option in class D;

9. optimization_list = the first item of the searched database;

10. }

11. else { /* no -D parameter */ {

12. search the database corresponding to the -PW option in the common class;

13. optimization_list = the first item of the searched database;

14. }

15. else /* no -PW option */

16. enter to the original process;

17. }

Figure 3. Compiler Revision

Suppose that a domain option –D is given, together with
a no weighted –PW option, which means the user is only

concerned about one factor (either the performance, power
or code size) for this specific application domain, the un-
derlying compiler simply chooses the combination of op-
tions of the first position from the database that corresponds
to the specific application domain, as the elements in the
database are stored in increase-order according to the value
of the specific factor.

If the user requires a trade-off among performance,
power and code size using the weighted coefficients, the
compiler needs to search all the databases that corre-
spond to the specific application domain and finds the
suitable combination of options using the appropriate algo-
rithms.

7. Related work

There are few research areas that explores the compiler
optimization options to improve performance, lower power
consumption, or reduce code size.

A current study of optimal usage of compiler options to
improve the performance in applications is reported in [7].
It uses a statistical technique to generate a search space of
compiler options and trim down the search space by an or-
thogonal array. Although the experimental results show the
efficiency of this approach, we are not aware that automatic
compiler support exists for this approach. From the view
of the application developers, they would be responsible
to search for the optimal combination of compiler options
since no compiler support is provided.

Other studies of finding an optimal program specific
compilation sequence is studied in literature [6, 11]. Basi-
cally, the idea in these studies is to hack compilers to adap-
tively adjust their behavior to produce the best code that
they can in any particular circumstance. However, this ap-
proach requires an extensive understanding of compilation
optimization techniques. Also, these studies are in the be-
ginning stage.

Most of the above studies only consider one specific fac-
tor, especially performance, or discuss the general issues of
why and how a combination of compiler optimization op-
tions affect performance improvement or power dissipation.
However, our approach integrates the three primary factors
of performance, power and code size as a whole and gives
an integrated methodology of automatic exploring compiler
options for different application domains.

8. Conclusion

The traditional selection methodology of optimization
options is one of the main obstacles for users to fully uti-
lize the compiler optimizations. In this paper, we proposed
a user-advised methodology for automatic exploration of
compiler optimization options.

The methodology proposed in this paper clearly can be
applied to a vast number of computational and embedded
systems. We are now implementing this methodology on
three well known embedded and multicore architectures: In-
tel XScale, IBM Cyclops-64 and Cell. To confirm the effec-
tiveness of this methodology, tests with real applications are
necessary. We are still looking forward to external cooper-
ation with real users. This will extend our methodology to
more compiler-architecture pairs. For revision purposes, the
compilers should be open source. Fortunately, most com-
mercial compilers are based on GNU compiler which opens
its source to the public.

Acknowledgments

We wish to acknowledge our sponsors from DOD, DOE
(Award No. DE-FC02-01ER25503) , and NSF (Award No.
CCF-0541002 and CNS-0509332).

References

[1] S. R. Ladd, Describing the Evolutionary Algorithm.
http://www.coyotegulch.com/products/acovea/acoveaga.html.

[2] K. D. Cooper, P. J. Schielke, and D. Subramanian. Opti-
mizing for reduced code space using genetic algorithms. In
Workshop on Languages, Compilers, and Tools for Embed-
ded Systems, May 1999.

[3] T. Kisuki, E Knijnenburg, and M. O’Boyle. Combined se-
lection of tile sizes and unroll factors using iterative compi-
lation. 2000.

[4] A. Nisbet. Genetic algorithm optimized parallelization.
1998.

[5] K. Chow and Y. Wu. Feedback-directed selection and char-
acterization of compiler optimizations. In 2nd ACM Work-
shop on Feedback-Directed Optimization (FDO), Haifa, Is-
rael, November 1999.

[6] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W.
Reeves, D. Subramanian, L. Torczon, and T. Waterman.
Finding effective compilation sequences. In LCTES, pages
231–239, 2004.

[7] M. Haneda, P.M.W. Knijnenburg and H.A.G. Wijshoff. Op-
timizing general purpose compiler optimization. In CF’05,
Ishia, Italy, May 2005.

[8] D. B. R. Desikan and S. W. Keckler. Measuring experimen-
tal error in microprocessor simulation. In Proceedings of the
28th Annual International Symposium on Computer Archi-
tecture, pages 266 – 277, June 2001.

[9] Richard Stallman. Using and Porting the GNU Compiler col-
lection (GCC). Free Software Foundation, Inc., 2000.

[10] R.P.J. Pinkers, P.M.W. Knijnenburg, M. Haneda and H.A.G.
Wijshoff. Analysis of compiler options using orthogonal ar-
ray. In Proceeding of CPC, 2004.

[11] N. V. S. Triantafyllis, M. Vachharajani and D. August. Com-
piler optimization-space exploration. In Proceedings of the
’03 International Symposium on Code Generation and Opti-
mization, pages 204–215, 2003.

