
User-Friendly Methodology for
Automatic Exploration of Compiler Options:

A Case Study on the Intel XScale Microarchitecture

Haiping Wu Eunjung Park Long Chen Juan del Cuvillo Guang R. Gao

University of Delaware
Department of Electrical and Computer Engineering

Newark, Delaware 19716, U.S.A
{hwu, epark, lochen, jcuvillo, ggao}@capsl.udel.edu

Abstract

Finding an optimized combination of compiler options
that benefits the most a given embedded application is a
challenge for most application developers. It is only with a
deep understanding of the application at hand and a fairly
good knowledge of the compiler features that a program-
mer can achieve the desired results in terms of performance,
power consumption and code size out of an application.

We have developed a practical methodology for auto-
matic exploring compiler options (UMECO) to solve the
problem mentioned above. This paper reports a case study
of this methodology on the Intel XScale microarchitecture.
Based on practical experimentation, we enhance KCC, our
research compiler infrastructure, with an extended user in-
terface that the users can provide advice to. All are con-
trolled by a reduced set of compiler flags. We also demon-
strate a compiler trade-off strategy based on experimental
results for a set of well known embedded benchmarks.

Keywords: Compiler option, Performance, Power, Code-
size, Microarchitecture

1. Introduction

The specific features and requirements of embedded ap-
plications bring about a new challenge to the traditional
compiler design methodology. These challenges have re-
sulted in numerous studies that focus on improving com-
piler technology to meet the specific requirements of em-
bedded systems [3, 4, 7, 9].

Nowadays, modern compilers for embedded systems
support irregular microarchitectures (i.e., digital signal pro-
cessors, network processors, micro-controller units), com-

plex instruction sets (i.e., application specific instruction
sets) and capture architecture specific optimization features
(i.e., parallelism in multi-core or multi-function units).

To handle such a broad spectrum of possibilities, compil-
ers supply a large number of optimization options. Unfortu-
nately, it is the application developers’ responsibility to find
a suitable combination of options for each specific appli-
cation. Meanwhile, finding a combination of compiler op-
tions such that the compiled program meets the specifica-
tions is not a trivial task. The problem becomes even more
complicated when a trade-off between performance (exe-
cution time), power consumption and code size (bytes of
the text section) is added to the list of requirements. From
the application developers’ perspective, it would be desir-
able to have a simple compiler-user interface that based on
an application profile could come up with an optimal com-
bination of compiler options, allowing developers to con-
centrate on other aspects of the development.

Therefore, there is a strong requirement moving the
study toward the methodologies that find an optimal com-
bination of compiler options for different applications run-
ning on a specific architecture.

We have developed a practical methodology for auto-
matic exploring the compiler options (UMECO) [6] which
can be applied directly to embedded applications. The strat-
egy behind the methodology is to first find an optimized
combination of compiler options by experimental measure-
ment for a set of typical applications. Armed with this
knowledge, the compiler has then the ability to automati-
cally make a good trade-off between performance, power
consumption and code size for applications in the same do-
main.

This paper is a progress report on part of the UMECO
work on the Intel XScale microarchitecture, for which we
setup a hardware testbed using the Intel XScale 80200 Eval-

uation Board (80200EVB). Our experimental platform al-
lows us to measure the power consumption and the execu-
tion time for a DSP kernel test suite. We use our KCC com-
piler infrastructure [1] and a special developed run-time li-
brary to adjust and monitor execution factors such as the
core frequency and voltage.

Our study comprises of four steps. First, we measure
the execution time, power consumption and code size for a
DSP kernel suite compiled with KCC using the −O3 op-
tion. This information is regarded as the baseline of our
analysis. Second, we conduct additional measurements us-
ing single compiler options this time. A subsequent analy-
sis of the results drives the selection of a subset of options,
which is then followed by additional measurements with
combinations of the options just selected. Finally, we ana-
lyze the measurement results and create a Candidate Set in
which each element is an optimized combination of selected
options. We propose an application-driven compiler strat-
egy that based on the Candidate Set automatically performs
a reasonable trade-off between the execution time, power
consumption and code size. The corresponding compiler-
user interface is also developed. Using this interface, ap-
plication developers can make a full use of the compiler
optimization features without any knowledge of the spe-
cific compiler optimization options. Thanks to the interface
and the set of optimized combinations that are found by
means of experimental measurements, the underlying com-
piler shall use an optimized combination of options to com-
pile the code thereafter.

The contributions of this paper are summarized as fol-
lows:

• We confirm the effectiveness of the UMECO method-
ology on a practical architecture.

• We develop a full system measurement platform for
the Intel XScale microarchitecture.

• We develop an application-driven complier trade-off
strategy.

The remainder of this paper is organized as follows. In
Section 2, we outline the full system measurement plat-
form. In Section 3 we present our methods of measurement
and analysis of the power consumption, execution time and
code size. The method to find an optimized combination
of compiler options is also discussed in this section. The
application-driven compiler trade-off strategy is described
in Section 4. We present related work in Section 5. Some
conclusions are given in section 6.

2. Experimental Platform

In this section, we describe the experimental platform
used in our study. It is used to measure the execution time,
power consumption and code size. The platform consists of

hardware and software parts. The hardware side is shown in
Figure 1. It includes the Intel XScale 80200EVB with an In-
tel XScale processor and measurement equipment. Figure 2
shows the software side, including the Wasabi Software De-
velopment Toolkit (SDT) [2], the KCC compiler, a run-time
software library and a DSP kernel test suite.

Interface
board

Voltage
controller

Vcc

HP 54645D

Differential
probe

R= 390 m

Vr

Set_VCC (volt);

GPIB

LabVIEW

80200 EVB

Figure 1. Hardware Testbed

Simulator

DSP Test Suite

KCC

GAS

GLD

GDB

Libraries

Run−Time
Library

Hardware Bed

Figure 2. Toolchain Hierarchy

2.1. Intel XScale 80200EVB

The Intel XScale microarchitecture features a unique de-
sign optimized for low power consumption and high perfor-
mance processing for a wide range of applications includ-

ing DSP applications, Internet applications, handheld de-
vices, networking and wireless equipments, and remote ac-
cess servers.

The Intel XScale 80200 is the first processor based on
the Intel XScale microarchitecture. It integrates an exter-
nal bus and interrupt controllers around an ARM-compliant
processor core. The 80200EVB used in the platform com-
prises of an Intel 80200 XScale processor, 32MB on-board
SDRAM, 4MB flash memory and a variety of peripherals,
see Figure 3.

Intel Xscale Processor
(80200)

FCC
(FPGA Companion Chip)

SRAM
(PC133 256MB)

Flash
Memory
(40MB)

UART RS-232
XCVR

7-SEG LEDLATPCI
(64Bit

33MHz)POWER

RESET

JTAG
Header

PROM

50 MHz

60 MHz

JTAG
Header

3.3V

2.5V(Adj.)
1.3V(Adj.)

Figure 3. 80200EVB Architecture

On the PCB board, removable power supply tracks are
provided to separate the 80200’s core power supply from
the rest of the 80200EVB and insert an instrument resis-
tor. For our measurements, we insert a 0.390Ω resistor and
measure the voltage drop with a differential probe and an
HP 54645D oscilloscope. A remote PC running LabView-
based virtual instrument software is responsible for setting
up the oscilloscope, acquiring the data and its final post-
processing.

The XScale processor frequency can be adjusted from
333MHz to 733MHz. In addition, the 80200EVB is at-
tached to a voltage controller that can regulate the core volt-
age from 1.5V to 0.7V. Both parameters are set by writing
into a CPU special-purpose control registers.

2.2. KCC Compiler and Toolchain

The KCC compiler is used in experiments. This C com-
piler is based on the Open64 compiler suite, and has been
re-targeted to the Intel XScale architecture. It is a cross
compiler that runs on a Linux platform and generates code
for the XScale platform. The KCC compiler features all
the high level optimizations available in the Open64 com-
piler. The back-end code generator has been re-targeted to

the XScale instruction set architecture. The object code pro-
duced by the KCC compiler is linked with other objects by
GNU LD linker (provided by the Wasabi SDT). The exe-
cutable code is executed on the actual evaluation hardware.
At compile time, the user must provide a board-specific
configuration file. For Intel 80200 board, the specification
file is lrh.specs.

2.3. Run-Time Library

To measure the execution time and power consumption
on the Intel XScale 80200EVB, we developed a run-time li-
brary written in ARM assembly language. Currently the li-
brary includes 5 modules:

• vcc0.s: Program the voltage supply controller by writ-
ing a value into the memory-mapped I/O port located
at address 0x600000.

• cclkcfg.s: Program the frequency multiplier by set-
ting a value into the core clock configuration register
(CCLKCFG).

• pmnc.s: Reset the Performance Monitor Control regis-
ter (PMNC) and enable some performance counters.

• led0.s: Program the LED Controller by writing a value
into the memory-mapped I/O port located at address
0x500000. It is used to synchronize program execu-
tion with data acquisition.

• ccnt.s: Read the Clock Counter register (CCNT).
CCNT is set to count every 64th processor clock cy-
cle.

3. Measurement and Analysis

This section describes the method we follow to find op-
timized combinations of compiler options, using the exper-
imental platform presented in Section 2.

3.1. Benchmark and Measurement Strategy

Currently, a DSP test suite with 8 kernels is used for this
study. These programs are widely used in real DSP applica-
tions and other application domains and, therefore, are re-
garded as good representatives. Moreover, we use 4 kernels
for the initial measurements and leave the other 4 for the
purpose of result confirmation, see Table 1.

The execution time is measured in cycles using a func-
tion provided by our run-time library. The number of cy-
cles C, is derived from the expression:

C = 64×((CCNTend−CCNTstart)/Frequency)/102

It is a little more complex to measure the power con-
sumption. As shown in Figure 1, the voltage supply and

DSP Kernel Description Usage
mm matrix multiply Measurement
vec mpy1 vector multiply Measurement
mac dot product Measurement
latsynth Lattice Synthesis Measurement
fir FIR filter Confirmation
iir1 IIR filter Confirmation
codebook Vocoder codebook search Confirmation
jpegdct JPEG discrete cosine transform Confirmation

Table 1. DSP Test Suite

the voltage drop at the resistor are both captured by the
oscilloscope. The acquired data are then processed on a
remote computer. From the formula I = V/R, the cur-
rent drawn through the resistor can be easily derived. Since
the processor is in series with the instrumental resistance,
the current drawn at the processor core is the same as that
drawn through the resistor. Hence, we can use the expres-
sion P = V × I to calculate the power consumption of the
core. Unlike power consumption and performance, it is triv-
ial to obtain the code size directly from the binary file.

Once our platform is ready, we run the DSP kernels with
different frequency and voltage setting as well as compiler
optimization levels to observe the effects on the measured
the execution time, power consumption, and code size. Then
we look at the relationship between execution time and/or
power consumption for a set of frequency and voltage val-
ues and specific compiler option. We notice that the rela-
tionships between execution time and/or power measured
for each program holds regardless of the optimization level.

Based on this observation, we decided not to perform
measurements using any other combinations of frequency
and voltage, except for the default frequency (733MHz) and
voltage supply (1.5V), which is used in the subsequent sec-
tions.

3.2. Baseline Measurement

For each measurement case, every combination of opti-
mization options produces a triplet with the execution time
in clock cycles, the power consumption in wattage, and code
size in bytes. By adding the results for the 4 kernel pro-
grams, we obtain what we call the measurement suite per-
formance, power and size factors as the sum of clock cy-
cles, wattages and bytes, respectively. The triplet obtained
for the measurement suite when the compiler option is -O3
is regarded as our baseline, see Table 2.

O3 is the highest optimization level available in the KCC
compiler. It turns on almost all of the KCC optimizations
and usually improves the performance at the expense of
compilation time. Most application developers are used to

Kernel Cycles Average Code
Power[W] Size[B]

mm 45594642 0.461 1152
vec mpy1 123812658 0.544 1572

mac 96093906 0.549 1564
latsynth 328695472 0.535 1476

Baseline = <594196678, 2.089, 5764 >

Table 2. Baseline Measurement Results

Option Description
o1 INLINE:none
o2 SWP:=ON -OPT:unroll times max=0
o3 LNO:pure
o4 SWP:=OFF
o5 CG:hb formation=OFF

Table 3. The Selected Individual Options

use -O3 optimization option when compiling programs for
both late-cycle testing and production use.

The motivation behind the definition of -O3 triplet as the
baseline is that we can find combinations of optimization
options for which at least one factor in their correspond-
ing triplets is smaller than the corresponding baseline fac-
tor.

3.3. Individual Option Selection

Because our motivation is to confirm the effectiveness of
the UMECO methodology [6] in this case study, we do not
adopt the time consuming formal method of option selec-
tion presented in the UMECO. Instead, we use the follow-
ing criterion to randomly select individual options in our
study:

When an option is selected, a factor in its resulting triplet
must be smaller than the corresponding factor in all the re-
maining triplets.

We choose 5 options that satisfied the above condition
among 30 optimization options in KCC, see Table 3. In par-
ticular, these options override -O3 because they are turned
off when -O3 is used. The measurement results using these
5 individual options are shown in Table 4.

3.4. The Candidate Set

The next step in our analysis is to find candidate combi-
nations for our trade-off strategy. A candidate combination
is one for which a triplet factor is smaller than the corre-
sponding baseline factor.

Option Performance Power Size
factor factor factor

o1 594196419 2.078 5764
o2 706590649 2.077 3720
o3 594196394 2.094 5764
o4 594196354 2.081 5764
o5 594196461 2.083 5764

Table 4. Measurement Results with Single Options

In the process of finding candidate combinations, we cre-
ate a Candidate Set using the algorithm outlined in Fig-
ure 4. Each element in the Candidate Set consists of a can-
didate combination and the corresponding triplet. The can-
didate combination of options is represented by a vector,
B = 〈o1, o2, ..., on〉, where oi(i = 1, ..., n) corresponds to
the ith option in Table 3. The value of oi is either 1 or 0,
with 1 meaning the ith option has been selected as a part of
a candidate combination and 0 otherwise. To simplify the
notation, we represent the triplet corresponding to a com-
bination B as B.triplet. Note that the initial element in the
Candidate Set is the baseline, that is, O3 and O3.triplet. Ta-
ble 5 shows the Candidate Set obtained from the DSP ker-
nel suite.

for i = 1; i <= n
 do
 for each combination B of i options
 do

 if (the size factor in B.triplet > the size factor in the O3.triplet &&
 the performance factor in B.triplet > the performance factor in the O3.triplet &&
 the power factor in B.triplet > the power factor in the O3.triplet)
 break;
 send B and B.triplet to Candidate Set
 enddo
 enddo

 measurement and form the B.triplet;

Figure 4. Algorithm of Generating the Candidate Set

4. A Compiler Trade-Off Strategy

Modern compilers have potential abilities to generate op-
timal performance codes for several different application
domains. They use different combinations of optimizations
to organize user codes for different applications. On the
other hand, it is impossible for the compiler to know which
domain an application belongs to, and thus what the optimal
optimization options would be. This is the reason why com-
pilers supply dozens of options for users and it is users’ re-
sponsibility to choose the appropriate optimization options
for their applications.

In this section, we propose a compiler trade-off strat-
egy which is based on the Candidate Set generated in Sec-
tion 3.4. We first present a new compiler-user interface

Combination of options Triplet
B1=< 0, 0, 1, 0, 1 > <594196312, 2.082, 5764>

B2=< 0, 0, 0, 1, 0 > <594196354, 2.081, 5764>

B3=< 0, 0, 1, 0, 0 > <594196394, 2.094, 5764>

B4=< 1, 0, 0, 0, 1 > <594196395, 2.084, 5764>

B5=< 1, 0, 0, 0, 0 > <594196419, 2.078, 5764>

B6=< 0, 0, 0, 0, 1 > <594196461, 2.083, 5764>

B7=< 1, 0, 1, 1, 1 > <594196501, 2.080, 5764>

B8=< 0, 0, 0, 1, 1 > <594196518, 2.085, 5764>

B9=< 1, 0, 1, 1, 0 > <594196521, 2.087, 5764>

B10=< 0, 0, 1, 1, 0 > <594196541, 2.085, 5764>

B11=< 1, 0, 1, 0, 0 > <594196574, 2.096, 5764>

B12=< 0, 0, 1, 1, 1 > <594196585, 2.082, 5156>

B13=< 1, 0, 1, 0, 1 > <594196615, 2.080, 5764>

B14=< 1, 0, 0, 1, 0 > <594196626, 2.080, 5764>

B15=< 1, 0, 0, 1, 1 > <594196659, 2.082, 5764>

B16=baseline <594196678, 2.089, 5764>

B17=< 0, 1, 0, 0, 0 > <706590649, 2.077, 3720>

B18=< 1, 1, 1, 0, 0 > <706590673, 2.059, 3720>

B19=< 0, 1, 1, 0, 0 > <706590829, 2.098, 3720>

B20=< 0, 1, 1, 0, 1 > <706590890, 2.090, 3720>

B21=< 1, 1, 1, 0, 1 > <706590923, 2.085, 3720>

B22=< 0, 1, 0, 0, 1 > <706590926, 2.089, 3720>

B23=< 1, 1, 0, 0, 1 > <706591005, 2.101, 3720>

B24=< 1, 1, 0, 0, 0 > <706591078, 2.077, 3720 >

Table 5. Candidate Set Generated by DSP Suite

based on our trade-off strategy and the describe the prin-
ciples of the trade-off strategy.

4.1. A New Compiler-User Interface

Different from the traditional compiler interface, our in-
terface has only a few simple options with the format as fol-
lows:

Compiler name [option class 1] [option class 2]

There are two groups of option list in the new compiler-
user interface: option class 1 is an option list that the appli-
cation developer users to describe application-specific re-
quirements to the compiler. option class 2 is the original
option list that the compiler supplies. During the compila-
tion, the first option group has priority over the second.

The formats and meanings of the options in op-
tion class 1 are described as follows:

• –p=<p1,p2,p3> A priority list of performance(P),
power(W) and code size(S), with pi(i=1,2,3) being
one of the three characters P, W and S. The list rep-
resents the priority order for the compiler to trade-off
between performance, power and code size. For exam-
ple, –p=<W, S, P> means the user cares most about
minimizing the power consumption, followed by code

size minimization, and least about improving the per-
formance.

• –w=<c1,c2,c3> Weighted coefficients corresponding
to the performance, power and code size. ci(i=1,2,3)
is a fraction in [0,1] and their sum must ≤ 1. It rep-
resents the parameters to a balance algorithm in the
compiler when it makes the trade-off among the per-
formance, power and code size. The –w option over-
rides the –p option.

• –a=class An option to describe what category the ap-
plication belongs to, such as network application (class
is N), DSP application (class is D), wireless commu-
nication (class is W), etc.

The option class 2 is provided for compatibility pur-
poses, since some of the standard compiler interface options
are still needed, such as the options to describe the applica-
tion name, binary name, and so on.

4.2. Trade-Off Strategy Based on Candidate Set

The principle of our trade-off strategy is described as fol-
lows. The compiler integrates a set of databases classified
by application domains. Each application class has its cor-
responding Candidate Set obtained from experimental re-
sults. Table 5 shows the Candidate Set for DSP applications.

Three databases are derived from the Candidate Set: the
performance database (having the minimum number of cy-
cles), the power database (having the minimum number of
wattages) and the code size database (having the minimum
number of bytes). The elements in each database are sorted
by the key value.

If the user’s concern is only one metric, either perfor-
mance, power consumption, or code size, the compiler sim-
ply finds the database, according to which application do-
main the user program belongs to, and selects the first ele-
ment from the database.

On the other hand, if the user has to make a trade-off
between all the three metrics and supplies weighted coeffi-
cients, the compiler will normalize the values of all triplets
first, and then trade-off based on the normalized results.

The reason of the normalization is that the values of the
three elements in a triple differ greatly. For example, the
wattage values are much smaller than the values represent-
ing clock cycles (see the Table 2, Table 4 and Table 5). With-
out the normalization, the effect of the power consump-
tion may be overwhelmed by other metrics, even if a big
weighted coefficient is given to the power factor.

Currently, we adopt a simple normalization mechanism
in our strategy. We use the coefficients 10−5, 2*103 and 1 as
the normalization factors to multiply the values of the num-
ber of cycles, the wattages and the bytes, respectively.

The compiler obtains the options from the compiler-user
interface or uses default options if no application-specific
option is provided. It first uses the –a=class option to
find the set of corresponding databases. Then, in the se-
lected database, the trade-off is made based on the
–p=<p1,p2,p3> and the –w=<c1,c2,c3> options with the
formula:

ri = pi

ti

× c1 + wi

ti

× c2 + si

ti

× c3 (1 ≤ i ≤ n)

Here n is the number of elements in the corresponding
database; pi, wi and si are the factors of ith triplet of the
database and ti = pi + wi + si.

The combination Bi which has the minimum ri is the se-
lected combination of optimization options. In this way, the
goal to have a trade-off on the optimized combination of op-
timization options is achieved.

The implementation of our trade-off strategy does not in-
volve significant changes to the original compiler, nor does
affect compilation time.

4.3. Testing Example

After implementing the trade-off strategy and integrat-
ing the set of databases generated from the DSP measure-
ment suite in KCC, we use the remaining 4 DSP kernels to
test our strategy.

First, we use the P, W and S options individualy to test
each factor separately. The combinations automizatically
selected by KCC are B1 for P, B17 for S and B18 for W,
respectively.

Figure 5 shows the optimized results of the two factors of
performance and code size. The reason why there is no ob-
vious difference for the power factor is that the small scale
of the DSP measurement suite.

After then, we test with weighted coefficients 0.2, 0.3
and 0.5 for P, W and S factors, respectively. The selected
combinations of KCC is B12 after the trade-off. The test-
ing results are also shown in Figure 5.

For all the test cases we observe significant improve-
ments in performance and code size, except fir, for which
execution time increases compared to the baseline.

5. Related work

The research of exploring the optimal combination of
compiler optimization options to improve the performance,
lower the power consumption, and reduce the code size for
embedded systems is still in its infancy. There are few stud-
ies in the literature focused on this problem.

In [8] reported a current study of optimal using the com-
piler options to improve the performance of applications.

Figure 5. Test result

Another heuristic compiler option recommendation is de-
veloped to deterministically select PA-RISC compiler op-
tions, based on the information provided by the user, the
compiler and the profiler [5]. In another work, various com-
piler optimizations are applied concurrently and the result-
ing energy consumption is evaluated via simulation [9].

The above studies only consider one specific factor, es-
pecially the performance, or discuss the general issues of
why and how a combination of compiler optimization op-
tions affect the performance improvement or power dissipa-
tion. We are not aware of compiler support. From the view
of the application developers, they would be responsible to
search for the optimal combination of compiler options if
no compiler support is provided.

In contrast, we present the UMECO methodology to in-
tegrate the three primary factors of performance, power and
code size as a whole and the compiler creates an optimized
combination of compiler options automatically to achieve
the specific goals of the application developers. In this way,
the users only need to describe their requirements to the
compiler without knowing any of compiler options.

6. Conclusion

We present a practical methodology of automatic explor-
ing compiler options(UMECO) with which applications can
achieve optimized results in terms of performance, power
consumption or code size, even when application develop-
ers have limited knowledge of the optimization techniques
deployed by the underlying compiler.

We describe the UMECO methodology, implement it on
a real architecture, the Intel XScale microarchitecture, and
test it with a suit of benchmarks.

The work reported in this paper is still in progress. Be-
cause of the limitation of the 80200 board, we can not run
bigger benchmarks, such as Mediabench, Mibench, etc. We
intend to apply the UMECO methodology on another plat-
form, like the Intel XScale PXA250.

Acknowledgments

We wish to acknowledge support from DOD, DOE
(Award No. DE-FC02-01ER25503) and NSF (awards
No. CCF-0541002 and CNS-0509332). We acknowl-
edge Ziang Hu, Shuxing Yang, Hongbo Rong and Sun
Chen for their support in the development of the KCC com-
piler infrastructure, which was used in our experiments. We
wish to acknowledge Joseph B. Manzano for a thorough re-
view of the final manuscript.

References

[1] Kylin C Compiler. http://www.capsl.udel.edu/kylin.
[2] Wasabi@ software Development Tools User’s Guide for In-

tel Xscale Microarchitecture, WASABI Systems, Inc, March
2004.

[3] M. Alt. Performance Modeling Using Compilers. Intel Cor-
poration, May 2005.

[4] E. Ozer, A. P. Nisbet and D. Gregg. Classification of Com-
piler Optimizations for High Performance, Small Area and
Low Power in FPGAs. Technical Report. Department of Com-
puter Science, Trinity College, Dublin, Ireland, June 2003.

[5] E. Granston and A. Holler. Automatic recommendation of
compiler options. In Proceedings 4th Feedback Directed Op-
timization Workshop, Dec. 2001.

[6] H. P. Wu, L. Chen, J. Manzano and G. R. Gao. A user-friendly
methodology for automatic exploration of compiler options.
In The 2006 International Conference on Programming Lan-
guages and Compilers(PLC’06), Las Vegas, USA, June 2006.

[7] L. Kane. Creating high performance embedded applications
through compiler optimizations. In Technology @Intel Maga-
zine, Intel Corporation, March 2005.

[8] M. Haneda, P.M.W. Knijnenburg and H.A.G. Wijshoff. Op-
timizing general purpose compiler optimization. In CF’05,
Ishia, Italy, May 2005.

[9] M. T. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W. Ye. In-
fluence of compiler optimizations on system power. In Design
Automation Conference, Los Angeles, California, 2000.

