
Experience of Optimizing FFT on Intel Architectures

Daniel Orozco, Liping Xue, Murat Bolat, Xiaoming Li, Guang R. Gao
The Electrical and Computer Engineering Department

University of Delaware

Abstract

Automatic library generators, such as ATLAS [11], Spi-
ral [8] and FFTW [2], are promising technologies to gener-
ate efficient code for different computer architectures. The
library generators usually tune programs using two layers
of optimizations: the search at the algorithm level, and the
optimization for micro kernels. The micro optimizations are
important for the performance of library, because the opti-
mized micro kernels are the bases of algorithm level search,
and have a great impact on the overall performance of the
generated libraries. A successfully optimized micro kernel
requires thorough understanding of the interaction between
architectural features and highly optimized code. However,
literature on library generators focus more on the algorithm
level optimization, and usually give only simple discussion
of how kernel codes are generated and tuned. As a result,
the optimization of micro kernels is still an art that depends
on individual expertise, and is insufficiently documented.In
this paper, we study the problem of how to generate efficient
FFT kernels. We apply a series of micro optimizations, for
example, memory hierarchy locality enhancements, to sev-
eral FFT routines, and use hardware counters to observe
the interactions between those optimizations with Intel Pen-
tium 4 and the latest Intel Core 2 architecture. We achieve
good speedups, and more importantly, we present methods
that can be used to generate high-performance FFT kernels
on different architectures.

1 Introduction
Automatic library generators are software tools that au-

tomatically generate and tune high-performance code for
different computer architectures. Well-known library gen-
erators, such as ATLAS, FFTW and Spiral, can generate
versions of kernel routines that achieve the same perfor-
mance or even outperform the code in the manually opti-
mized commercial libraries. For example, ATLAS gener-
ates BLAS-3 numerical computation routines, and the ker-
nel of which is an implementation of matrix-matrix mul-

1-4244-0910-1/07/$20.00c©2007 IEEE.

tiplication that is selected from many automatically gener-
ated or manually written versions. FFTW and Spiral gen-
erate highly-tuned FFT routines, by searching in the space
of mathematically equivalent implementations of a FFT for-
mula.

The outstanding performance of the code generated by
the automatic library generators derives from the capabili-
ties of the generators that they can describe a space of differ-
ent implementations for a kernel routine, and search the best
performing version in that space. Usually library genera-
tors carry out two levels of optimizations. At the algorithm
level, library generators produce different algorithms for the
same function. At the lower kernel level, library generators
use a set of kernels that are aggressively tuned for differ-
ent architectures to implement the different algorithms. The
performance of the generated code is decided by both the
results of the algorithmic search and the quality of the ker-
nel code. In particular, recent work [12, 7, 9] suggests that
some of the lower-level optimizations, including the usage
of machine-specific intrinsic or assembly code, prefetching,
or SIMDization, play an important role in the good over-
all performance of library routines. However, publications
and documentations of library generators usually put more
focus on the algorithm level search, and lack the detailed
description of how the high-performance kernels are gener-
ated or tuned. This is a missing link because the optimiza-
tion for kernel code requires the detailed understanding of
the interaction between programs, in particular aggressively
optimized programs, and architectures. As a results of the
lack of documentation, the state of art of low level optimiza-
tion still highly depends on programmer’s personal capabil-
ities. We need a better understanding on how to systemati-
cally generate high-performance kernel code.

In this paper, we study how to write and optimize a
high-performance FFT kernel, in particular a kernel like the
codeletsused in FFTW. The codelets are the most basic
building blocks of FFTW. What FFTW searches are dif-
ferent combinations of codelets. FFTW applies a series
of optimizations on codelets. However, the documentation
of FFTW does not provide a detailed description of how
codelets are generate and optimized. In particular, not much
are described about the intuitions why certain optimizations

1

are important, in other words, we do not know how to write
codelets for new architectures, or codelets that are gener-
ally effective for many architectures. This paper describes
in details how we apply a series of manual compiler like op-
timizations to several FFT implementations. Moreover, we
use hardware counters to verify how effective the optimiza-
tions are in achieving their desired effects, such as reducing
number of instructions or improving memory hierarchy per-
formance.

The rest of this paper is organized as follows. Section 2
discusses briefly the organization of FFTW and how FFTW
generates codelets. Section 3 describes our baseline imple-
mentation of FFT. Section 4 explains optimizations that we
apply to FFT, and why we select those optimizations. Sec-
tion 5 presents the performance results on two Intel plat-
forms, and finally Section 6 presents our conclusion.

2 FFTW

2.1 How does FFT work?

In FFTW [2][3], the Fast Fourier transformations are
computed by an executor, which is composed of several
highly optimized C blocks, calledcodelets[2] in FFTW .
During the runtime, a planner is used to search the best way
to compose codelets. Basically, the planner executes dif-
ferent plans and measures their speed to find the best com-
position using a dynamic programming algorithm. Given
the best plan, the executor can interpret this plan with small
overhead. FFTW also provides a high level codelet gen-
erator to automatically generate codelets. In the following
paragraphs, we will explain in detail how the executor, plan-
ner and codelets generator work.

The Executor is composed of many optimized code se-
quences called codelets. The executor calls appropriate
codelets according to aplan. The executor uses a recursive
divide-and-conquer algorithm to maximize the memory lo-
cality.

The Planner produces many plans for the given input
size, and measures their execution time respectively. After
that, it uses a dynamic programming algorithm to find the
best plans for the given input size. The planner also collects
information about the machine and stores the information
in memory for later usage.

The Codelet Generator automatically generates opti-
mized code sequences for smaller input sizes which are
called codelets. The codelet generator, which is called
genfftin FFTW, operates in four phases.

• In the firstcreationphase, genfft produces a directed
acyclic graph (DAG) to represent the algorithm of FFT.
Each node of the DAG is an operator, and the node’s
children represent the operands.

• In the secondsimplifierphase, genfft uses a rule-based
simplifier to simplify the DAG. In this simplifier phase,

it performs algebraic transformations and common-
subexpression elimination, which are similar to the
corresponding optimizations used in compilers. Be-
sides that, it also applies several DFT specific opti-
mizations. One simple but effective optimization is to
make all the numeric constants positive and propagate
the minus sign along the edges of the DAG.

• In the thirdschedulerphase, genfft produces a topo-
logical sort for the DAG in order to maximize register
usage.

• In the last phase, genfft unparses the DAG, and outputs
the C code implementation of codelets.

3 A First Implementation of FFT
A possible implementation for the FFT algorithm can

use the Cooley Tukey approach of divide and conquer [5].
Of all the possibilities for divide and conquer, we focus

on the divide by 2 algorithm. This approach greatly reduces
the number of computations performed in order to calculate
the Fourier Transform of our data.

3.1 Algorithm

Our algorithm takes the even elements of the input vector
and copies them into an allocated array of memory, then a
recursive call to the function is made to calculate the Fourier
Transform of that half of the input set. The same is done
with the odd positions of the input vector. Finally, both vec-
tors are merged by multiplying the second vector result by
the corresponding weights, as described in [5].

The code was written without any explicit optimizations.

3.2 First results

We compared our baseline implementation with the
FFTW library. As can be seen on Figure 1, this simplis-
tic approach performs far below from the results of FFTW.
The code can be further optimized to provide a better per-
formance.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 100 1000 10000 100000 1e+06

M
F

L
O

P
S

FFT Size

Performance of a baseline implementation of FFT

FFTW Baseline FFT

Figure 1: Comparison between a simple implementation of FFT
and the commercial FFTW

4 List of Optimizations

4.1 Algorithm Design

The first optimization that a programmer can do is to
carefully design the algorithm that will solve the problem
at hand.

In the case of FFT, extensive research on algorithms has
been done [10], [3], [8], [5] . The number of computations
has also been calculated for each algorithm [4]. Since the
purpose of this paper is to show how to manually optimize
code at source code level, that is, without relying on assem-
bly instructions, we selected the decimation-in-time Radix
2 algorithm as described in [4]. This algorithm does the
same computations as the original implementation with the
reentrant call, however, no memory copying is done, which
by itself makes the computations run around twice as fast.
The amount of memory required is of the order ofN , the
size of the problem, instead ofN log2(N) as in the previ-
ous version.

 10

 15

 20

 25

 30

 35

 40

 45

 10 100 1000 10000 100000 1e+06

M
F

L
O

P
S

FFT Size

Performance improvement by removing reentrant calls

Baseline (Recursive) FFT Loop based FFT

Figure 2: Comparison between a reentrant and a loop implemen-
tation of FFT

4.2 Removal of redundant computations

One of the major optimizations that can be done to a
program is the elimination of redundant computations. Al-
though today’s compilers try apply this kind of optimization
for many problems, identifying the redundance is a difficult
task, in particular for redundancies at the algorithm level.
The Radix 2 algorithm has redundant calculations that can
be eliminated.

To name an example, in the FFT algorithm, at any of the
log2(N) computational steps,

X(k) = F1(k) + W k
mF2(k) (1)

where

W k
m = exp(−j2π

k

m
) (2)

m = 2s (3)

s = FFT step (4)

Fi(k) = Frequency-domain sample (5)

It is easy to note that fork/m constant, the same cal-
culation is done repeatedly for equation 2. Hence, for
a size ofN = 8, k/m = 0 for the pairs(k, m) =
(0, 2), (0, 4), (0, 8). This redundance greatly slows the pro-
gram. In fact, the calculation ofsin andcos takes most of
the time in the original program.

A solution for this is to calculate at the beginning of the
program the values of the weights, and store these values
into an array. Sincem changes at every step in the calcu-
lations, we do the computations form = N , and whenever

we needW k
m we can useW

kN

m

N . Then, we can index this ar-
ray to the appropriate position for the number that we want.
It is true that the calculation of this index will take at least
one integer multiplication, but nevertheless, it is still faster
than the calculation of the trigonometric functions. Figure
3 shows the speedup of this simple optimization.

It is important to note that at each stageN/2 butterflies
are computed. Each one of those will use some weights to
calculate the result. Since the butterflies are independent
for this step, the number of times that everyW k

m is required
is exactlyN/2m. This is yet another reason to support the
precalculation of these values into an array.

The calculation of the position ofW k
m in the array of

W
kN

m

N can be done by taking thes least significant bits ofk
and then, multiplying them byN/m.

If the index isi, a very naive form of calculating it would
be:

i = mod(k, m)
N

m
(6)

This approach will require 2 integer divisions and one
multiplication. There is a better way to do this,

i = AND(k, kc) · km (7)

Wherekc is an integer with the lowers bits set to1. The
value ofkc can be calculated at the beginning of each stage
and should not pose a significant overhead. The value of
N/m can be also calculated just once per stage and stored
into km.

There is still more room for improvement since the
relationship between two consecutive values ofkm is just a
factor of1/2, which can be achieved by a logical shift on
the previous value of the variable, thus saving a division per
stage. A similar approach can be used withkc to calculate
the next value. In other words, by doing

kc = (kc << 1) + 1
km = (km >> 1)

>> and << being bitwise shift left and right opera-
tors, we can update the values of these variables. This
improvements have shown an average improvement of 29%
in performance.

Yet another redundant calculation that can be done is the
reuse of indexes inside a loop. Usually, this is a job for the
compiler, but on our case, the compiler failed to notice that
in the following piece of code2* (kˆm) is a constant.

out[2 * k] =
sign * work[2 * k] + work[2 * (kˆm)];

out[2 * k + 1] =
sign * work[2 * k + 1] + work[2 * (kˆm) + 1];

Here, the compiler is not clever enough as to note that
2* (kˆm) is a constant in those instructions and does the
calculation twice. By calculating that value, and storing it
into a temporary variable, the program runs faster. It does
however note that2* k is constant, and avoids calculating it
several times.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 100 1000 10000 100000 1e+06

M
F

L
O

P
S

FFT Size

Performance improvement by removing redundant computations

Loop Based
Loop Based, redundant computations eliminated

Figure 3: Improvement after removal of redundant computations

4.3 Mathematic improvement of the calculations

After applying optimizations in the section 4.2, we pro-
file our implementation of FFT. From the profiling data,
we can still see that the calculation of the weights takes a
long time. The reason is that thesin andcos computations,
which are essential steps in computing the weights, are very
expensive. To reduce the time that is spent on the computa-
tion of weights, we note that

W k+1

N = W k
N · W 1

N (8)

Also,

W
k+ N

4

N = −jW k
N (9)

Note that each computation ofW k
N requires a call tosin

andcos and at least a multiplication or an addition to get
the angle argument for those functions. In our case, fork <
N/4 (See equation 8) we need a complex multiplication,
which is composed of 4 floating point multiplications and
2 floating point additions. Fork > N/4, we can just use
equation (9), that takes only sign changes . Since there is
some error propagation due to the recursion, this can only
be done for around 32 times in order to guarantee the10−13

relative accuracy.

4.4 Bit reversal

One of the steps that must be done to calculate the
Fourier Transform is to reorganize the sequence in bit re-
verse order. Since there are no single assembly instructions
to achieve this on most processors, the programmer would
have to do the bit reversal through explicit loops.

A slow approach to do a bit reversal would be to loop
through all the numbers in the sequence and then, for each
one of them, write a loop that will check for every bit in
their address, and reverse it.

There are much better ways to do this. For example, an
approach that proved very useful, was to allocate an array
of sizeN , and then loop through the arrayS = log2(N)
times, usings as an iteration counter. At each loop step, the
values of a single bit can be set for thes-th bit. Since these
values are known in advance, instead of doing a conditional
comparison to set or clear every bit, a loop can be written to
set the bits in the positions needed.

This approach has shown to improve the performance of
FFT. As long as we write tight loops, with few instructions
in them, using non expensive instructions like integer ad-
ditions and bitwise operators, and avoidingif statements
inside the loops, the compiler will be able to schedule it so
that few cycles are wasted in this step.

Further optimizations can be done for fixed sizes ofN .
A Look Up Table (LUT) can be used to get the precalcu-
lated answer for each address. This approach is faster, but
without any improvements, the amount of memory required
to hold the table would be too big to be a feasible solution
for big sizes ofN . Instead, by taking advantage of char-
acter indexing, 8 bits can be reversed at a time with a 256
position LUT. When the addresses have a length that is not
a multiple of 8 bits, then, they have to be aligned by doing
a shift operation before the LUT is used.

In Figure 4 two lines can be seen. The one labeled ”Sim-
ple Loop” shows the number of cycles required to do the bit
reversal of the addresses, per complex number, for a sim-
ple loop, that compares each bit and reverses it. The curve
labeled ”Using Array” shows the performance of the bit re-
versal when loops are used to set the bits in an array of
addresses as explained before. A speedup of around two
times in the bit reversal can be obtained by using the later
algorithm

 0

 50

 100

 150

 200

 250

 300

 10 100 1000 10000 100000 1e+06

C
y
cl

es
 u

se
d
 p

er
 s

am
p
le

Complex Array Size

Bit reverse cost: Cycles per Complex Number

Simple Loop Using Array

Figure 4: Comparison of the computational cost of bit reverse.
Two implementations shown

4.5 Improving memory locality

If a program is carelessly written, the processor may
spend a lot of time waiting for memory reads. In general, a
good practice is to try to keep the data used by the program
into cache memory.

The way numbers are stored in memory is reflected in
the performance of the program. For example, if the real
and the imaginary parts of the weights are stored in different
arrays, the cache would have to fetch 2 lines of memory for
every reference to a complex number. If we use the widely
known convention of placing the real and imaginary part of
a complex number close together, a speedup of around 10%
can be seen.

It is also important to note that if extra instructions are
needed to achieve memory locality, a performance improve-
ment is not guaranteed. In particular, if more conditional in-
structions have to be inserted into the code, and the branch
prediction mechanism is unable to predict them, the pro-
gram can get slower. For example, a butterfly calculates 2
numbers out of 2 numbers:

yi = xi + xj yj = xi − xj (10)

In this case, if a loop is written to go sequentially over
all the values ofyk, k = 0, ..., n, it would be faster than
calculating the values ofyi andyj at the same time while
checking that they have not been calculated before. This
is due to the fact that additional branch instructions are in-
troduced into the code, and if the branch prediction system
fails to predict them, the code will run much slower.

In general, the branch prediction system works very well
for loops. So, for scientific computation over large sets of
data, it can be said that a loop instruction will run faster than
an if - else statement.

4.6 Avoiding Branches

In modern processors, the execution pipeline holds sev-
eral tens of instructions. A mispredicted branch will waste

several clock cycles.
One way to improve the performance of a program is to

reduce the number of branches and conditional instructions.
This not only lowers the number of instructions, but also
avoids some of the branch misprediction scenarios.

Branch removal can be done with excellent results on
tight loops. On these cases loop unrolling can be used.

By doing loop unrolling,p times, the number of branches
can be reduced by a factor ofp. In our case, by unrolling 4
times, we got a speed improvement of 25%.

Another good technique is to change a combination of a
for loop with anif statement inside it for twofor loops.
This can not be done always, but it helps.

To name a case, on the 6th stage of the computations,
(For an FFT of size 1024), the working vector has to be
multiplied by the corresponding weights. Not all weights
are multiplied, however. Only those who have their 6th bit
set must be multiplied. One way to do this is by using an
and operator with the hex constant0x40 which equals64
in the following way:

for (n = 0; n < 1024; n++)
if ((n & 64)) { ... }

The loop can be changed to

for (n = 64; n < 1024; n+=64)
{
limit = n + 64;
for (i = n; i < limit; i++)
... }

The second version runs faster, and executes less instruc-
tions. It only targets the specific elements that need to be
computed, and the if statement is not used.

4.7 Kernels

In many situations, some calculations must be done over
a relatively small amount of data. A good way to improve
the performance is to write special code that solves the
small computations. In the case of FFT, the computation
of the first butterflies can be done using specially optimized
code.

If this approach is used instead of writing standard loops
for it, the performance of the overall program improves.

This step can be done at the same time that the memory is
being bit - reversed. This way, loop iterations are saved, and
the programmer can write instructions specifically intended
to fully utilize the superscalar capabilities of the processor
at hand.

To illustrate this, consider that at some point, the pro-
gram calculates all the reversed addresses of the vector and
stores them into an array calledbitr , as described in the

bit reversal section. Also, lets definein as the input vector,
inr as an array of 4 complex numbers (doubles, 8 posi-
tions),y as an array of 2 complex numbers,i (a multiple of
4) used as an index toin , andout as our final array where
the kernel is computed.

The first two stages of the computations can done by do-
ing:

inr[j] = in[bitr[i + j]]
Placing one instruction for eachj = 0, ..., 7 then,

y[0] = inr[0] + inr[2];
y[1] = inr[1] + inr[3];
y[2] = inr[4] + inr[6];
y[3] = inr[5] + inr[7];

out[0] = y[0] + y[2];
out[1] = y[1] + y[3];
out[4] = y[0] - y[2];
out[5] = y[1] - y[3];

y[0] = inr[0] - inr[2];
y[1] = inr[1] - inr[3];
y[2] = inr[4] - inr[6];
y[3] = inr[5] - inr[7];

out[2] = y[0] + y[3];
out[3] = y[1] - y[2];
out[6] = y[0] - y[3];
out[7] = y[1] + y[2];

This piece of code exhibits excellent performance,
since it is simple enough for the compiler as to schedule it
appropriately, also, the compiler will probably be able to
do a good register allocation so that time optimal software
pipelining can be achieved [6]. Also, there are no close
dependencies on the loop, allowing the compiler to fully
pipeline the instructions in the floating point unit. Further-
more, the addresses have been calculated beforehand, so
offsets can be used when this code is turned into assembly
instructions, which optimizes the time spent calculating
addresses.

Figure 5 shows the performance of our implementa-
tion of FFT for a kernel size of 4 and several sizes ofN .
This later implementation includes all the optimizations de-
scribed before. Our implementation of FFT calculates the
weights and the bit reverse addresses. This accounts for part
of the slowdown when compared with FFTW.

5 Test Results

The algorithms are evaluated in two different architec-
tures and for three different sizes of N. The evaluation sizes
for N are 512, 1024 and 65536. Their results are compared
to the results ofFFTW3 [3]. The tested architectures are
Intel Core 2 Duo and Intel Pentium 4.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10 100 1000 10000 100000 1e+06

M
F

L
O

P
S

FFT size

Comparison of FFT with and without kernels

FFTW
Loop Based, redundant computations eliminated

FFT, Kernel

Figure 5: Performance improvement by using a kernel of size 4
against no kernels. FFTW uses bigger kernels an is shown for
comparison

The Intel Core 2 Duo machine has following character-
istics:

• Processors: 2 Intel Core 2 Duo Processor

• Frequency: 1596 MHz

• L2 Cache Size: 4 MB

• RAM: 4 GB

The Intel Pentium 4 machine has following characteris-
tics:

• Processor: Intel Pentium 4

• Frequency: 3.05 GHz

• L2 Cache Size: 512 kB

• RAM: 512 MB

We used thePAPI [1] library to evaluate the code. We
instrumented our algorithms and theFFTW implementa-
tion with different performance counters available in each
machine. The performance counters which we use in In-
tel Core 2 Duo architecture are shown in Figure 6 and the
counters which we use in the Intel Pentium 4 architecture
are shown in Figure 7.

The results for the Intel Core 2 Duo Architecture are
shown in Figures 8, 9, 10, The scale of the figures 8,
9 and 10 are logarithmic. The performance counters are
shown without the prefix”PAPI and performance coun-
ters which have zero for all versions are not shown in the
figures.

The results for the Intel Pentium 4 Architecture are
shown in Figures 11, 12, 13. The scale of the figures 11,
12 and 13 are logarithmic. The performance counters are

PAPI_BR_CN Conditional branch instructions
PAPI_BR_MSP Conditional branch instructions mispredicted
PAPI_BTAC_M Branch target address cache misses
PAPI_FDV_INS Floating point divide instructions
PAPI_FML_INS Floating point multiply instructions
PAPI_FP_OPS Floating point operations
PAPI_TOT_CYC Total cycles
PAPI_TOT_INS Instructions completed
PAPI_L1_DCA Level 1 data cache accesses
PAPI_L1_DCM Level 1 data cache misses
PAPI_L1_ICA Level 1 instruction cache accesses
PAPI_L1_ICM Level 1 instruction cache misses
PAPI_L2_DCA Level 2 data cache accesses
PAPI_L2_DCM Level 2 data cache misses
PAPI_RES_STL Cycles stalled on any resource
PAPI_TLB_DM Data translation lookaside buffer misses
PAPI_TLB_IM Instruction translation lookaside buffer misses
PAPI_BR_INS Branch instructions

Figure 6: Performance counters used in instrumenting Intel Core
2 Duo Architecture

PAPI_BR_MSP Conditional branch instructions mispredicted
PAPI_FP_OPS Floating point operations
PAPI_TOT_CYC Total cycles
PAPI_TOT_INS Instructions completed
PAPI_L1_ICA Level 1 instruction cache accesses
PAPI_L1_ICM Level 1 instruction cache misses
PAPI_RES_STL Cycles stalled on any resource
PAPI_TLB_DM Data translation lookaside buffer misses
PAPI_TLB_IM Instruction translation lookaside buffer misses
PAPI_BR_INS Branch instructions
PAPI_L2_TCM Level 2 cache misses
PAPI_L2_TCH Level 2 total cache hits
PAPI_L2_TCA Level 2 total cache accesses

Figure 7: Performance counters used in instrumenting Intel Pen-
tium 4 Architecture

shown without the prefix”PAPI and performance coun-
ters which have zero for all versions are not shown in the
figures.

The labels in the figures are:

• Version 1: This is our baseline implementation. It uses
recursion to take advantage of the Cooley Tukey algo-
rithm.

• Version 2: Here the recursion was changed for a loop
based algorithm. No other optimizations were done.

• Version 3: Redundant computations were eliminated
from the code of Version 2.

• Version 4: The algorithm was optimized to get better
memory locality. All previous optimizations are also
present here.

• FFTW: For comparison, the results of the FFT trans-
formations done with FFTW3 are shown. FFTW3 uses
less resources, in part due to the fact that this library
has precomputed some of the steps required to do a
FFT.

Figure 8: Measurement results on Intel Core 2 Duo for sizeN =

512

Figure 9: Measurement results on Intel Core 2 Duo for sizeN =

1024

Figure 10: Measurement results on Intel Core 2 Duo for sizeN =

65536

6 Conclusions

In this paper, we study the problem of how to generate
and tune high-performance FFT kernels. We try to answer
the question through the manual optimizations of several
FFT routines, and the close observations, using hardware

Figure 11: Measurement results on Intel Pentium 4 for sizeN =

512

Figure 12: Measurement results on Intel Pentium 4 for sizeN =

1024

Figure 13: Measurement results on Intel Pentium 4 for sizeN =

65536

counters, of how those optimizations interact with two In-
tel architectures. We achieved good speedups comparing
the tuned FFT kernels with our baseline implementations.
More importantly, we revealed what optimizations are most
effective, and how exactly they accelerate FFT routines,
with extensive experiments using hardware counters.

This paper presents the first step towards our goal to un-
derstand how different levels of optimizations interact inau-
tomatic library generators. The next step of our study along
the direction will be the research on how differently opti-
mized kernels affect the algorithm level search, and how it
changes the final outputs of library generators.

7 Acknowledgements
We thank the anonymous reviewers for their many de-

tailed and constructive suggestions for improving this pa-
per.

References
[1] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A scal-

able cross-platform infrastructure for application performance tuning

using hardware counters.sc, 00:42, 2000.

[2] M. Frigo. A Fast Fourier Transform Compiler. InProc. of Program-

ing Language Design and Implementation, 1999.

[3] M. Frigo and S. G. Johnson. The design and implementationof

FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005. special

issue on ”Program Generation, Optimization, and Platform Adapta-

tion”.

[4] D. M. J Proakis.Digital Signal Processing. Principles, Algorithms,

and Applications. Prentice Hall, 3 edition, 2004.

[5] J. T. JW Cooley. An algorithm for the machine calculationof com-

plex fourier series.Mathematics of Computation, 1965.

[6] Q. Ning and G. R. Gao. A novel framework of register allocation

for software pipelining. InPOPL ’93: Proceedings of the 20th ACM

SIGPLAN-SIGACT symposium on Principles of programming lan-

guages, pages 29–42, New York, NY, USA, 1993. ACM Press.

[7] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W.

Singer, J. Xiong, F. Franchetti, A. Gačić, Y. Voronenko, K. Chen,

R. W. Johnson, and N. Rizzolo. SPIRAL: Code generation for DSP

transforms. Proceedings of the IEEE, special issue on ”Program

Generation, Optimization, and Adaptation”, 93(2):232–275, 2005.

[8] M. e. a. Puschel. Spiral: A generator for platform-adapted libraries

of signal processing algorithms.The International Journal of High

Performance Computing Applications, pages 21–45, Spring 2004.

[9] J. Shin, M. Hall, and J. Chame. Evaluating compiler technology for

control-flow optimizations for multimedia extension architectures.

6th Workshop on Media and Streaming Processors (MSP6), June

2004.

[10] B. SORENSEN, HEIDEMAN. On computing the split-radix fft.

IEEE Transactions on Acoustics, Speech, and Signal Processing,

ASSP-34:152–156, February 1986.

[11] R. Whaley, A. Petitet, and J. Dongarra. Automated Empirical Opti-

mizations of Sofware and the ATLAS Project.Parallel Computing,

27(1-2):3–35, 2001.

[12] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, and

P. Stodghill. Is search really necessary to generate high-performance

blas.Proceedings of the IEEE, 93(2), 2005. special issue on Program

Generation, Optimization, and Adaptation., 2005.

