
MODA A Framework for Memory Centric Performance
Characterization

Sunil Shrestha
University of Delaware

Newark, DE
shrestha@capsl.udel.edu

Chun-Yi Su
Virginia Polytechnic Institute

Blacksburg, Virginia
sonicat@vt.edu

Amanda White
Pacific Northwest National

Laboratory
Richland, Washington

amanda.white@pnnl.gov
Joseph B. Manzano

Pacific Northwest National
Laboratory

Richland, Washington
joseph.manzano@pnnl.gov

Andres Marquez
Pacific Northwest National

Laboratory
Richland, Washington

andres.marquez@pnnl.gov

John Feo
Pacific Northwest National

Laboratory
Richland, Washington
john.feo@pnnl.gov

ABSTRACT
In the age of massive parallelism, the focus of performance
analysis has switched from the processor and related struc-
tures to the memory and I/O resources. Adapting to this
new reality, a performance analysis tool has to provide a way
to analyze resource usage to pinpoint existing and potential
problems in a given application. This requires (1) memory
trace collection with minimal perturbation of the applica-
tion’s behavior; (2) data management of multiple gigabyte
and terabyte size trace files; (3) efficient data analysis and
visualization of traces; and (4) the introduction of the target
architecture’s memory model into the analysis module for a
truly memory-centric view. These features enable an ap-
plication developer to anticipate algorithmic and structural
resource bottlenecks on a small scale before a full scale roll
out into production.

This paper provides an overview of the Memory Observant
Data Analysis (MODA) tool, a memory-centric tool first im-
plemented on the Cray XMT supercomputer along with the
solution to above mentioned challenges. Throughout the pa-
per, MODA’s capabilities have been showcased with exper-
iments done on matrix multiply and Graph-500 application
codes.

1. INTRODUCTION
The multi-core revolution aims to achieve performance gains
from one generation to the next by exploiting ever more
thread- and data-parallelism available in current applica-
tions. Contrary to the performance gains achieved by super-
scalar design improvements in the past, multi-core systems
require changes in programming models, system software
and software tools, in order to harness the new found levels

of parallelism. Tools, in particular, are required to automat-
ically identify opportunities for parallelism, from the compi-
lation phase up to the post-execution analysis phase. Cur-
rent performance analysis tools tend to be control centered,
a legacy that has its origin in the previous generation of ar-
chitectures. These tools are good in pinpointing threads and
code regions that are culprits of performance bottlenecks but
provide little detail on the resources involved in the program
execution. For example, current performance analysis tools
can determine if a code section is memory bound by measur-
ing CPU utilization and memory references over a specified
time interval. These tools will attribute the performance
bottlenecks to a set of threads but will not provide further
details on the memory subsystem beyond caches.

This type of analysis was not necessarily a problem for previ-
ous architectures where resources like memory, network and
I/O components were tightly coupled to a single or few cores
in a bijective fashion. Identifying a resource problem, as in
our previous example, automatically meant that the culprit
could be identified as well. Yet with the advent of multi-core
systems, to achieve some level of system balance, resources
needed to be replicated as well. In the case of memory, that
means multiple memory subsystems attached over multiple
channels to a pool of cores and(or) processors. In addi-
tion, muticore systems created an execution paradigm shift
from being compute bound to memory, bandwidth and I/O
bound. Control-centric analysis in a such case can identify a
memory bound problem, but won’t provide clues about the
root causes.

Similary, cache analysis provides information about cache
hit/miss and the volume of traffic going in and out of the
network. However, these metrics are not enough to pin-
point network congestion or memory bank conflicts. More-
over, other memory characteristics, like sharing a memory
line, going back and forth between memory pages, etc, can
cause great performance degradation. These architectural
hotspots can be exacerbated by algorithmic bottlenecks which
do not become apparent until certain resource preset limits,
(e.g. page sizes, network buffer sizes, etc) are reached. With-
out an architectural memory and network model in their
designs, processor-centric performance tools may overlook



these pathological cases for smaller runs that will only be-
come symptomatic once a scale-up/out is performed. Re-
source centric performance analysis tools are therefore a
good addition in the tool arsenal to identify potential over-
and under-subscribed resources early on. In particular, we
will focus in this paper on the discussion of a novel memory
centric performance analysis tool.

As a target for our resource-centric tool development we
chose the Cray XMT [2]. Several reasons contributed to
that choice: applications developed for this architecture tend
to exhibit large amounts of concurrency, irregular memory
access pattern and use large amounts of memory capac-
ity. Memory-subsystems are shared across processors, and
data caches are non-existent due to the lack of spatial and
temporal locality for irregular applications. Each processor
supports 128-way SMT concurrency in hardware and fine-
grained synchronization in memory. Up to 8192 of these
processors can be arranged into a 3D Torus connected with
a high speed Cray XT network. In such an environment, a
memory-centric performance analysis tool can be developed
at large enough scale to gauge early on its analysis useful-
ness and at the same time identify any detrimental impacts
on the application under test.

This paper showcases a memory-centric performance tool
called the Memory Observant and Data Analysis Frame-
work, or MODA [8] for short. It is designed to reveal ex-
isting and potential algorithmic and architectural resource
hot-spots by means of a sophisticated memory model. The
tool helps to identify performance degradation factors at
a small scale where debugging and performance analysis is
more manageable. Salient features of this tool include (1)
a memory trace collection with minimal perturbation of the
application’s behavior; (2) data management of multiple gi-
gabyte and terabyte size trace files; (3) efficient data analysis
and presentation of traces; and (4) the introduction of the
target architecture’s memory model into the analysis mod-
ule for a truly memory centric view.

Due to all these features, MODA is designed to fill a gap
realized by the lack of tools that pinpoint contention on the
memory system, which has been open since many/multi core
designs came to dominance.

The paper is organized as follows: Section 2 presents back-
ground and related work. Section 3 presents the framework
of the MODA tool. Section 4 provides an overview of the
experimental testbeds. Finally, Section 5 shows the conclu-
sions and future work for the given tool.

2. BACKGROUND
The advent of massive multi-core/threading processing in-
teracting with shared resources, paired with novel program-
ing and execution-model paradigms poses new analysis chal-
lenges. Determining or predicting shared resource bottle-
necks from a thread perspective is now more cumbersome.
In light of our efforts to develop resource-centric tools, we
briefly assess the capabilities of some prominent performance
tools.

In its current form, the Cray XMT ships by default with the
Apprentice-2 tool-suite[10] that consists of a compiler anal-

ysis tool, a block-profiler and a trace analyzer. It provides
a trap-centric analysis of outstanding events. However, this
might overlook pathological behaviors that are only seen in
large data sets and its predeterminate thresholds limits scal-
ability and the data sets that can be run on them.

Several post-execution analysis tools are presented next. Scalasca’s
CUBE [6] presents large-scale profile and trace data over a
3-dimensional data space that spans metrics, code segments
and process/physical topology. Analysis is driven by the
metrics, the program phases or the process/topology. TAU’s
PerfExplorer [4] introduces hierarchical analysis through clus-
tering and event filtering. Correlation analysis helps to find
performance bottlenecks. Rice’s HPCToolkit [11] stands out
for its sophisticated logical call path analysis, necessary to
assign performance attribution in great detail to code seg-
ments.

Next, the Totalview [3] framework has some memory and
data centric functionality; however, this is mostly geared to-
wards logical debugging (e.g., memory leaks, dangling point-
ers). Another salient feature includes the tool’s grouping ca-
pabilities to enable an hierarchical analysis approach. How-
ever, these groups are still built in a processor-centric fash-
ion. Other examples include Jumpshot [15] and DEEP/MPI [13]
that show some similarity to the tools above by addressing
visualization scalability aspects.

Worth mentioning are novel environmental data capturing
capabilities for PerfTrack [7]. Here, shared resources are
power and thermal machine envelopes.

Finally, we have mainstream tools such as VTune, METRIC
and ThreadSpotter. Intel VTune [5] provides a mechanism
to do thread profiling, hardware event and stack sampling.
It can also provide information at instruction level which can
be used to find out pipeline stalls and analyze thread perfor-
mance. METRIC [9] traces partial memory accesses which
is used for memory hierachy simulation and cache analysis.
This helps in characterizing the application’s memory usage
but its analyis doesn’t go beyond caches. ThreadSpotter [12]
helps to analyze memory bandwidth, latency, data locality,
thread communications and detect performance issues.

In general terms, the above mentioned tools exhibit pro-
cess/thread centric performance analysis/visualization. Resource-
centric performance analysis is scant or non-existent. We be-
lieve that a new breed of resource-centric tools will provide
new performance analysis insights, especially in multi/many
core architectures where a control centric view might not
prove sufficient.

3. MODA FRAMEWORK
An overview of MODA is shown in Figure 1. MODA is
designed to instrument and monitor applications by creat-
ing traces that are subsequently analyzed and visualized to
reveal their memory usage pattern.

Under the MODA framework, analysis can be done beyond
the virtual address space. For all instrumented memory ad-
dresses, MODA can present memory usage patterns in terms
of time, processors, streams, network nodes and memory
banks. This is invaluable information that can be used to



pinpoint the source of performance degradation. Unlike pro-
cessor centric tools (Section 2) which would only show if the
application is memory bound, MODA presents a clear pic-
ture of execution evolution with a precision down to indi-
vidual memory banks.

Source

Code

Instrumentation 

Phase

Monitoring

Phase

Analysis

Phase

Visualization

Phase

E

n

c

o

d

i

n

g

D

e

c

o

d

i

n

g

Instrumented

Binary

Static

Dict

Dynamic

Dict

App.

Traces

Compressed

App.

TracesUser Queries

Reconstr.

Trace Format

Final 

Dict

Analyzed

Trace info

Application

Ouput

Visualization 

Output

Figure 1: A High Level Overview of the MODA
Framework

3.1 Instrumentation Phase
During MODA’s first phase, there are three main steps that
must be taken to prepare the application binary.

In the first step, using the Cray XMT’s capabilities to set
user-defined memory traps [2], the framework marks (i.e.
instruments) certain data structures to be monitored dur-
ing program execution. Static and global variables selection
is done by extracting variable information using an ELF
reader. Similarly, heap variables are instrumented by replac-
ing calls to malloc and free with MODA’s allocator wrapper
functions to record memory usage during execution. Later
on, this information is mapped to the collected traces so
that a bottleneck’s source can be linked to a source-level
data structure.

In the second step, MODA binary-rewrites the first few lines
of the user-level trap handler segment to redirect the runtime
to the highly optimized monitoring kernel.

During the final step, the framework creates two identical
versions of the executable code. Temporal (a.k.a. statistical)
sampling is achieved by enabling tracing in one version of the
code and by disabling it in the other. Sampling is turned
on or off by jumping between the versions and updating
the respective control structures (see Section 3.2.1 for more
details).

3.2 Monitoring Phase
Upon execution of the instrumented binary, the framework
initializes its runtime components. The framework instru-
ments available data structure information from the previ-
ous phase. In this way, MODA may select a subset of data
structures to monitor. Together with temporal sampling,
this feature gives MODA the ability to fine tune the trade-
offs between accuracy and incurred monitoring overhead in
both spatial and temporal dimensions.

Next, the framework allocates tracing buffers in low latency
memory for each possible parallel entity. In the next stage,
a group of helper threads known as “reconstruction streams”
are created to consume any newly created traces. Then, the
framework starts executing the application code.

During the application’s execution, if MODA’s allocator wrap-
per is called the new data structure is instrumented when its
memory is allocated and de-instrumented when the memory
gets de-allocated.

When an instrumented data structure is accessed by the ap-
plication’s code, it causes a user-level trap. The runtime
trap handler recognizes the trap and passes it to the moni-
toring kernel. Trace events are generated and stored in the
trace buffer which is read by the reconstruction streams in
parallel. In an effort to reduce trace event message sizes, the
tracing message format exploits the reduced dynamic range
of an event’s descriptive attributes in relation to a previous
event, including time, code and data addresses of a memory
reference. Posting difference information on occasion can
yield a compression factor of three per message.

Since the reconstruction streams run in “parallel” with ap-
plication streams, their data movement and manipulation
has minimal perturbation to the system (Feature 1 ). The
ratio between application versus reconstruction streams is
an important tuning parameter for the MODA framework.
Too many application streams will overwhelm reconstruc-
tion streams quickly and too few will slow down the ap-
plication significantly. To overcome this problem, MODA
implements a special type of temporal sampling that helps
prevent buffer overflow.

3.2.1 Statistical Temporal Sampling
As described in Section 3.1, the duplicated executable schema
is used to allow temporal sampling. One approach investi-
gated in the current MODA framework is to use the exe-
cuted instructions count as a parameter to enable or disable
sampling: i.e number of instructions executed in the origi-
nal and the duplicate version of the code determines aver-
age trace sampling rate TSR. For example, TSR = 1 would
mean, only instructions from the original version of the code
with tracing enabled are executed. Similarly, TSR = 1/100
would mean, for every trace enabled execution, we execute
100 trace disabled instructions.

ReadRateRS > FillRateMK (1)

FillRateii = Fmax ∗ IIR ∗MRF ∗ LSD (2)

FillRatec = Fmax ∗ LMA ∗RLS (3)

X = min[FillRateii, F illRatec] (4)

FillRateMK = X∗TOS∗TNS
(TSR∗TNS+(1−TSR)∗TOS)

(5)

In order to investigate TSR, we developed a conservative
parametric model of the fill rates for each “Parallel Trace
Buffer”. Equation (1) states the requirement that the recon-
struction streams read rate ReadRateRS has to exceed the
monitoring kernel fill rate FillRateMK driven by the appli-
cation. Equations (2) and (3) derive the theoretical fill rates
from the vantage of two constraints: Equation (2) computes



TSR FillRateMK Overhead Factor
0 0.5 2

1/100 0.411 ∼2.43
1/25 0.268 ∼3.72
1/10 0.158 ∼6.3

1 0.022 45

Table 1: Overhead given an average tracing rate.
The formulas presented in Equations (1 - 5) were
used to get these numbers with the following values:
TOS = 1/45, TNS = 1/2, IIR = 1/21, MRF = 3, LSD =
1/2, LMA = 1/100, RLS = 1/5 and X = 1MHz

the maximum memory instruction issue rate FillRateii as
a function of the processor’s frequency Fmax, the thread’s
maximum instruction issue rate IIR, the thread’s maxi-
mum capability to have multiple memory references in flight
MRF and finally the thread’s maximum memory reference
instruction i.e., Load Store density LSD. Equation (3) de-
termines the rate constrained by the memory subsystem
FillRatec, parametrized by local memory access latency
LMA and a conservative penalty factor for average remote
latencies RLS. Plugging in the numbers reveals that the
FillRateMK is limited by the memory subsystem in the
form of X as shown in equation (4). Finally, in equation
(5) the FillRateMK is expanded by considering the slow-
down attributed to the MODA framework itself. Here, the
TSR modulates the overhead incurred by either recording
the event with trap overhead per sample (TOS) or discard-
ing the event with trap overhead per non-sample (TNS).

Using these formulas with the current values given by the
Cray XMT architecture gives the results in Table 1. This
tells us that using sampling can reduce the overhead of the
framework substantially and prevent the overflowing of the
tracing buffers. In other words, if we sample every 100th
trace event (TSR = 1/100) theoretically produces an addi-
tional 2.43x overhead as compared to the non traced execu-
tion. The dominant factor in this case is TNS. However,
sampling every memory fetch (TSR = 1) would yield a 45x
overhead, determined by the dominant factor TOS. Hence,
reducing TNS and TOS are primary goals in the design of
the MODA framework (Feature 1 ).

3.3 Data Post-Processing
During post processing, the MODA framework collects the
messages recorded during the monitoring phase. However,
the amount of data collected can easily reach the upper giga-
bytes and terabytes data range. An efficient way to organize
and transfer these traces across computer systems is to take
advantage of data properties to organize and compress them
so that they can later be decoded for analysis and visualiza-
tion.

3.3.1 Encoding and Decoding
In order to take care of the massive data size, we intro-
duce the Parallel Compression Encoder/Decoder (PCED)
system (Feature 2 ). PCED takes advantage of lack of inter-
dependencies between trace chunks to achieve embarrass-
ingly parallel encoding and decoding. It aims to preserve
maximum possible memory reference patterns in a manage-
able size trace file.

PCED’s current version implements byte-stream encoding/decoding
but does not fulfill redundancy optimization component yet.It
exhibits a compression ratio of 3 .65bit/Byte on average. In
practical terms, this means that MODA can compress a 4
GB trace file to 1.8 GB.

3.3.2 PCED Framework

Figure 2: Trace File Manipulation: The encod-
ing/decoding pathways and visualization

A high level overview for the PCED system can be found
in Figure 2. PCED begins with a parsing component that
recreates all the necessary data from the tracing messages
produced by the reconstruction streams. Following the pars-
ing stage, the PCED system sorts the reconstructed trace
data in time order. Sorting helps to bring similar traces in
symbol-level closer which is helpful to find more redundant
information. The sorted data is then passed to a redun-
dancy optimization step which eliminates redundant infor-
mation and is followed by our lossless encoding component
that uses an Adaptive Arithmetic Coding algorithm[14].

Our choice of PCED over other algorithms stems from PCED
being embarassingly parallel and making near-optimal pre-
dictions using small chunks of uncompressed traces. PCED
achieve speed up to 37.26 MByte per second which makes it
more applicable to online interactions with the high speed
monitoring kernel.

3.3.3 Visualization
In order to enable a human analysis of the memory traces
generated by MODA, the visualization phase permits visual
introspection of memory usage patterns. This visualization
phase uses a Java-based GUI which allows users to extract
saved memory trace files produced by MODA and plot mem-
ory access patterns in terms of time, processors, streams,
processor nodes or memory banks. Other features include
zooming in and out of chart regions, visual tips of data set
properties and distribution of accesses according to source
code level data structure(Features 3,4 ).

MODA implements a client / server interface which provides
a set of remote procedure calls (RPCs) to handle the visual-
ization requests. The client receives the user requests from
the GUI and forwards them to the server over a high speed
network. The server runs on the XMT computation nodes.
It serves different requests from the user and asks the anal-
ysis engine to compute the result and send it back to client.
Figure 3 shows an example of the GUI which displays the



Figure 3: An example of the GUI: It shows the data distribution in Y-axis over the XMT memory banks
shown in X-axis for a matrix multiply of 256 by 256. Memory banks are uniformly filled across network
nodes(Features 3,4)

memory bank usage on the Cray XMT architecture for a
regular application (in this case, Matrix Multiply).

3.4 MODA Memory Model
One of the main characteristics of MODA is its awareness
of the architectural memory model (Feature 4 ) as demon-
strated in Figure 3. During the postprocessing phase, the
data structure information (that are collected during the in-
strumentation and monitoring phases) is compressed to the
encoded file. When the next phase starts (visualization),
the MODA visualization server reads this information and
the traces and uses the machine address translation mecha-
nisms to map it to physical addresses. Afterwards, a map-
ping (using the machine’s memory characteristics, like bank
sizes, pages, number of DIMMs, etc) of the physical ad-
dresses to the architecture’s memory structures takes place.
Afterwards, the results are returned to the GUI for visual-
ization.

4. DISCUSSION
In this section we exercise our MODA tool with two exam-
ple applications on our Cray XMT target platform. The
configuration used in this study supports up to 128 proces-
sors, 1 Terabyte of shared memory and runs at 500MHz fre-
quency. On the software side, we selected two applications:
Matrix Multiply and Breadth-First-Search (BFS). Both ap-
plications are compiled with the XMT C compiler version
6.5.0 with all automatic parallelization features enabled.

We show memory access counts for the memory subsystem,
variables and over-time to provide information about re-

source usage. We also detail cost overheads for each MODA
component.

4.1 Monitoring Kernel Collection Overhead and
Sampling

In the XMT architecture, an un-instrumented memory oper-
ation on average is around 700 cycles. In case that a memory
cell is activated for tracing, the sophisticated piece of code
incurs 45x overhead. However, with temporal sampling this
overhead can be significantly reduced (as shown in table 1).
Moreover, there are several optimizations that are applicable
to the monitoring kernel.

4.2 PCED Performance
The main components of the PCED sub system are the par-
allel encoding and decoding. These phases are composed of
units that run in parallel and consume the given data. On
average, an encoder unit (arithmetic encoder unit) will take
7.10 seconds to encode an input file of size 15.1 GB with 128
parallel processors. The decoder path on average will take
8.49 seconds per unit (arithmetic decoder unit) to decode
the produced encoded file.

The highly efficient compression and decompression algo-
rithms together with the high speed network provided by
the system allows the interoperability between the GUI and
the decoding part of the PCED’s framework.

4.3 Selected Applications
We selected two different aplications which exhibit intrinsic
characteristics suitable to exercise MODA. Matrix Multiply



(a) AC (Y-axis) over Memory Subsystem (X-axis) (b) AC (Y-axis) over Variables (X-axis)

Figure 4: Memory Access Count (AC) for Matrix Multiply

(a) 1P (b) 2P (c) 4P

(d) 8P (e) 16P (f) 32P

Figure 5: Memory Access Counts over Time (a-f) for Matrix Multiply

is a ubiquitous example of regular applications and Breadth-
First-Search kernel retrieved from the Graph 500 benchmark
[1] is famous for its irregular nature.

4.3.1 Matrix Multiplication
The first example we chose to exemplify MODA’s capabil-
ities is Matrix Multiply (using matrices of size 128 x 128)
which was executed multiple times using a range from 1
processor to 32 processors – totaling up to 4k threads. This
kernel serves also as a first step to validate MODA’s behav-
ior because its memory-access patterns are easy to predict

with simple back-of-the-envelope calculations.

As shown in the Figure 4(a), there is a uniform distribution
of memory accesses (Y axis) over the XMT’s memory mod-
ules (X axis) for the one processor case. This is expected
since the XMT has a hardware randomizer for memory ad-
dresses. Given the well-defined number of accesses per ma-
trix element in our simple matrix multiply and the layout
of these elements in contiguous address space, we expect to
see this uniform distribution. Figure 4(b) shows the variable
access count, represented by DYN A, DYN B and DYN C.



(a) AC (Y-axis) over Variables (X-axis)

(b) AC (Y-axis) over Memory Subsystem (X-axis) (c) AC (Y-axis) over Time (X-axis)

Figure 6: Memory Access Counts (AC) for Breadth-First-Search (BFS) using 32P

The radical reduction of acceses to the DYN C variable is
due to a simple optimization applied to the kernel code in
which the partial results of the C matrix (DYN C) are kept
in a register for the lifetime of the inner-most loop. Overall,
we observe good agreement between measured and expected
pattern.

Figure 5(a) represents the Matrix Multiply’s memory access
count over time in seconds. Here, the first visible peak re-
gion occurs during matrix initialization. The next region
shows almost uniform counts for the computation part of
the matrix multiply (as it should). Finally, the last peak
region represents verification code for the application which
tests the result matrix for consistent results. Figures 5(b) to
5(f) show similar experiments for processors 2, 4, 8, 16 and
32 on the time domain. Curiously, performing our scaling
experiments and visualizing memory access counts shows a
pyramid pattern shaping up. It starts slowly with few ac-
cesses, ramps up as the parallelism increases and finally ta-
pers off when some of the computations are done while some
are still in flight. This behavior is the result of data star-

vation as the application kernel approaches completion and
can be affected by changes in the scheduling policy.

4.3.2 Breadth-First-Search(BFS)
We examine the behavior of a BFS implementation for the
XMT. To avoid experimental bias, we use a third party code
provided by the Graph 500 benchmark suite [1].

Figure 6(b) shows the memory access count across the mem-
ory subsystem. As expected, the access pattern is highly
irregular. We see very high peaks on memory banks 14, 43,
95 and 101. In conjunction with Figure 6(a), which rep-
resents variable accesses, we see that certain variables are
being accessed more often than others. Two special cases
are prng state store and xadj. Both variables are pointers to
memory blocks used inside the traversal loops. Although the
compiler should be able to analyze and keep these variables
in registers, it fails to do so, creating a hotspot. A perfect ex-
ample is the xadj variable that has around 290,000 accesses
(confirmed through MODA and independent experiments).



By rewriting the code slightly we coaxed the compiler to
promote xadj to the register file, hereby reducing the num-
ber of accesses to a staggering 4000. As an additional note,
we identified that xadj resides on memory bank 43 (highest
peak in figure 6(b)). In summary, by inspecting MODA’s
visualized output, we were able to reduce contention on this
variable by around 72x.

Finally, Figure 6(c) shows the memory access count over
time. Initial peaks appear during the initialization phase
when the graph is generated. The plateau in the middle
phase is due to graph randomization. Next, as the actual
BFS traversal and verification phases are executed, the ac-
cess counts start to exhibit a repetitive jagged hull-curve.
This phenomenon can be explained with the way the 2-
dimensional loop iteration space is traversed during the BFS
search. The compiler was not able to collapse the loop iter-
ation space to a single loop, yielding threads with variable
workloads derived from varying neighbor-list sizes. This in-
formation in turn can be used by the algorithm designer or
compiler writer to devise new approaches for mitigation.

5. FUTURE WORK AND CONCLUSIONS
Multiple efforts are under way to enhance MODA’s capabili-
ties even further. Under development is function instrumen-
tation to better correlate the timeline of our traces with the
evolution of the program execution. Function instrumen-
tation will also allow us to keep track of local stack frame
variables and their role in the performance gain or degrada-
tion over the program lifetime.

Thanks to the similarity of memory patterns in traces, we
are implementing a redundancy optimization component in
the PCED framework. This technique will have a higher
compression ratio by using the concept similar to H.264 P-
frame motion estimation technique.

Despite the benefits already extracted out of MODA just
by analyzing two important kernels, MODA’s visualization
and analysis capabilities are still in their infancy. Automatic
hotspot detection and 3-D visualization are just some of
many new features envisioned. Finally, as mentioned in the
introduction, we are currently investigating porting MODA
to other architectures that might also derive benefit from a
resource-centric analysis tool.

In summary, this paper has showcased the MODA frame-
work: It gave a cursory overview into the design rationale
and implementation of its components, exploiting parallelism
opportunities in great number. The paper introduced the
reader to MODA’s potential by showcasing hot-spot detec-
tion uncovered in important kernel applications. We hope
that this paper has shown the need for resource centric tools
which are needed in the new many/multi core era.

6. ACKNOWLEDGEMENTS
This work was supported by the Center for Adaptive Super-
computing Software at Pacific Northwest National Labora-
tory. Special thanks to the very supportive staff at Cray, in
particular Mike Rinkenburg, in charge of the XMT compiler.

7. ADDITIONAL AUTHORS

Additional authors: Kirk W. Cameron (Virginia Polytechnic
Institute, Blacksburg, Virginia, email: cameron@cs.vt.edu)
and Guang R. Gao (University of Delaware, Newark, Delaware,
email: ggao@capsl.udel.edu)

8. REFERENCES
[1] The graph 500 list. http://www.graph500.org/.

[2] J. Feo, D. Harper, S. Kahan, and P. Konecny.
Eldorado. In CF ’05: Proceedings of the 2nd
conference on Computing frontiers, pages 28–34, New
York, NY, USA, 2005. ACM.

[3] C. Gottbrath. Eliminating parallel application memory
bugs with totalview. In SC ’06: Proceedings of the
2006 ACM/IEEE conference on Supercomputing, page
210, New York, NY, USA, 2006. ACM.

[4] K. A. Huck and A. D. Malony. Perfexplorer: A
performance data mining framework for large-scale
parallel computing. In SC ’05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing, page 41,
Washington, DC, USA, 2005. IEEE Computer Society.

[5] Intel. Vtune Performance Analyzer Essentials. Intel
Press, 2005.

[6] F. Juelich. Cube: Cube uniform behavioral encoding.
http://www.fz-
juelich.de/jsc/kojak/components/cube/.

[7] K. L. Karavanic, J. May, K. Mohror, B. Miller,
K. Huck, R. Knapp, and B. Pugh. Integrating
database technology with comparison-based parallel
performance diagnosis: The perftrack performance
experiment management tool. In SC ’05: Proceedings
of the 2005 ACM/IEEE conference on
Supercomputing, page 39, Washington, DC, USA,
2005. IEEE Computer Society.

[8] J. B. Manzano, A. Marquez, and G. G. Gao. Moda: A
memory centric performance analysis tool. In In
Proceedings of 11th LCI International Conference on
High-Performance Clustered Computing,
Pittsburgh,PA, USA, 2009.

[9] J. Marathe, F. Mueller, T. Mohan, S. A. Mckee,
B. R. D. Supinski, and A. Yoo. Metric: Memory
tracing via dynamic binary rewriting to identify cache
inefficiencies. ACM Transactions on Programming
Languages and Systems, 29, 2007.

[10] M. Resch, R. Keller, V. Himmler, B. Krammer, and
A. Schulz. Cray performance analysis tools. In Tools
for High Performance Computing, Proceedings of the
2nd International Workshop on Parallel Tools for
High Performance Computing. SpringerLink, 2008.

[11] Rice. Hpctoolkit. http://hpctoolkit.org.

[12] Roguewave, Rogue Wave Software, Inc. ThreadSpotter,
2011.

[13] C. B. Software. Deep/mpi.
http://www.crescentbaysoftware.com/
deep mpi top.html.

[14] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic
coding for data compression. Commun. ACM,
30:520–540, June 1987.

[15] O. Zaki, E. Lusk, and D. Swider. Toward scalable
performance visualization with jumpshot. High
Performance Computing Applications, 13:277–288,
1999.


