2014 Fourth Workshop on Data-Flow Execution Models for Extreme Scale Computing

Toward a Self-Aware Codelet Execution Model

Stéphane Zuckerman, Aaron Landwehr, Kelly Livingston, and Guang Gao
Department of Electrical and Computer Engineering
University of Delaware
Newark DE, 19716, USA
Email: {szuckerm@, aron@, kelly@, ggao@capsl. }udel.edu

Abstract—Future extreme-scale supercomputers will feature
arrays of general-purpose and specialized many-core processors,
totaling thousands of cores on a single chip. In general, many-core
chips will most likely resemble a “hierarchical and distributed
system on chip.” It is expected that such systems will be hard to
exploit not only for performance, but will also need to deal with
reliability issues, as well as power and energy issues.

The Codelet Model is a fine-grain dataflow-inspired and event-
driven program execution model which was designed to run
parallel programs on a combination of such many-core chips into
a supercomputer Meanwhile, some on-going work is attempting
to take into account user goals as well as resource usage and
make the system ‘self-aware:” By using introspective means,
this kind of research tries to have the system software modify
the state of the overall system at run-time to satisfy the user
goals. It is very likely that future extreme-scale systems will be
in constant demand of different kinds of resources, may they be
processing elements (general purpose or otherwise), bandwidth,
power budget, etc.

This paper takes the position that a potential solution to solve
the resource management issue at this scale is a hierarchical
and distributed self-aware system leveraging the fine-grain event-
driven codelet threading model.

Index Terms—Dataflow; Codelets; Self-Awareness; Resource
Management

I. INTRODUCTION

Today’s supercomputers reach a peak performance in the
range or the peta-FLOPS. While most parallel applications still
require the programmer to use some combination of MPI (for
inter-node communication, with specialized inter-connection
networks) and on-node shared memory (most of the time,
using some OpenMP-like environment), a new trend is to use
accelerators (such as GP-GPUs, Xeon Phi, efc.) when there
is a lot of parallelism exploitable by such devices. This in
turn forces the application programmer to learn and combine
several programming models as well as program execution
models. Overall, these systems do not feature revolutionary
intra-node mechanisms, whether one considers the hardware
or the software, save for the occasional use of accelerators.

There are plenty of execution models dealing with current
supercomputers, ranging from Charm++ [1] to a combination
of MPI and OpenMP, some of which even explicitly combine
the two in a unified framework [2], [3].

It is not expected that future extreme-scale (exascale and
beyond) systems will significantly change their way of com-
municating across nodes (i.e., Infiniband-like interconnects are
expected to make incremental progress and still be in use).

978-1-4799-8095-6/14 $31.00 © 2014 IEEE
DOI 10.1109/DFM.2014.12

26

However, following the advent of the aforementioned accel-
erators, intra-node technologies will most likely significantly
change, featuring more heterogeneous hardware at the node or
even chip level, giving way to new design paths for both hard-
ware and software. Indeed, future extreme-scale supercom-
puters will very likely feature arrays of general-purpose and
specialized many-core processors, totaling thousands of cores
on a single chip with deeply nested memory hierarchies, and
millions of cores in the whole system. In general, many-core
chips will most likely resemble a “hierarchical and distributed
system on chip,” and themselves will be part of a bigger
hierarchical and distributed supercomputer. It is expected that
such systems will be hard to exploit using conventional means,
not only for performance, but also in terms of dealing with
reliability, as well as power and energy issues [4].

Several past and on-going projects to tackle these challenges
have been issued by major research agencies across the world,
by several United States agencies such as the DOD [5], [6];
the DOE [7]; and the European Community [8]. In the context
of such projects, the Codelet Model [9], a fine-grain, event-
driven execution model, was proposed to take advantage of
the foreseen massive parallelism that future supercomputers
will expose at the node level, and beyond. Several imple-
mentations of the Codelet Model have been proposed [10],
[11] for current supercomputers and many-core systems. They
demonstrate good scalability both at the node level and for
complete systems. However, the Codelet Model specification
as well as its various implementations tends to focus on the
expression of parallelism and task scheduling. This is good to
target performance, but leaves aside other issues we mentioned
above, namely ensuring the correct execution of programs for
extreme-scale systems under a given set of constraints, which
inevitably lead to fine-grain resource management.

The remainder of this paper is organized as follows: Sec-
tion II presents the necessary background; Section III describes
our proposed solution to run self-aware codelets on extreme-
scale systems; and Section IV presents our conclusions and
future work.

II. BACKGROUND

A. The Codelet Model

The Codelet Model [9] is a hybrid von Neumann-dataflow
execution model designed for extreme-scale systems in mind.
Its quantum of computation is the codelet, a sequence of

IEEE
computer
® psouety

machine instructions that execute preemptively upon avail-
ability of specific resources, the primary one being data.
Other resources may include bandwidth requirements, maxi-
mal power envelope, the use of an accelerator, network access,
etc. Codelets are grouped into codelet graphs. Codelets do not
have data of their own (except local data, such as data allocated
in a stack for functions). Instead, codelets are parts of a bigger
construct, the Threaded Procedure (TP). Threaded procedures
are asynchronous functions. They act as containers for codelet
graphs, and can be invoked in a control-flow manner. All
codelets belonging to the same TP can access its frame, and
therefore its data. The codelet graph within a TP is static,
and the dynamic aspect of the model is conveyed thanks to
the use of threaded procedures. TPs are assigned to a specific
portion of the target machine, such as a group of cores (or a
whole socket). Once assigned there, a TP cannot be migrated:
all the codelets it contains will execute in that area of the
machine. This constraint allows for a better control of locality
at execution time.

The Codelet Model was implemented several times [10],
[11], more or less faithfully. It is also the inspiration behind
more recent endeavors to exploit future exascale systems [5],
[7]. However, while the data-driven aspect is always a prime
component, the more general event-driven aspect has generally
been left aside as future work.

B. Self-Awareness for Extreme-Scale

Landwehr et al. [12] argued that systems need to become
more self-aware and introspective with respect to performance,
energy, and resiliency. Toward that end, they presented a
Target Exascale Architecture (TEA) and associated toolchain
as well discussed hardware requirements needed to enable
self-adaptive and introspective system software. Core to
concept of self-awareness is a notion of an observe-decide-act
(ODA) loop to monitor, make decisions, and to control
both hardware and software aspects at various levels of a
system. Furthermore, they discussed research venues in terms
of fine-grained and coarse-grained adaptation. The former
entails the decision making process at the finest level of
control within a self-aware system. For example, whether
to DVFS components. The latter entails adaptation at a
higher level and deals strictly with hierarchal management.
It deals not only with the decision making process, but also
the communication subsystem in place for communication
between control engines. For example, how to minimize
communication overhead.

While there have been proposals for self-aware systems
prior to the proposed work, most of them focus either on
very specific aspects of self-adaptation (e.g., quality of service
for network aspects of distributed applications [13], [14], or
current multi-core systems (e.g., SEEC [15]).

IIT. A SELF-AWARE CODELET EXECUTION MODEL

Our goal is to bridge a dataflow-inspired fine-grain ex-
ecution model (the Codelet Model) and a previously pro-

27

posed self-aware fine-grain resource management system for
extreme-scale systems, as shown in Figure 1. In this section
we discuss the interactions between fine-grain and coarse-grain
task specifications (including resource requirements), their
execution, as well as the underlying system software decisions
relative to the management of the hardware according to
where the tasks are going to execute. We do not discuss task
scheduling specifically, except when a decision that affects the
hardware will affect program execution per se.

A. Extending the Codelet Specification

So far, codelets and the threaded procedure they belong to
have been used solely using the data dependence relations
they expose, proving that dataflow-inspired execution models
are well-suited for the many-core era. However, certain
aspects which used to be explored solely for performance
purposes, such as locality, are becoming of paramount
importance for other reasons, such as energy efficiency. In
addition, fault tolerance is also an important aspect of future
HPC systems, as the mean time between failures is expected
to get shorter as transistors feature sizes diminish [16].

To deal with such issues, it is imperative to provide as much
information to the underlying system (system software and
hardware) as possible. We propose to augment the Codelet
Model with metadata fields, attached to both its threaded
procedures and their contained codelets.

1) Running Programs with Specific User Goals: A given
codelet program may provide high-level user goals. Such goals
could be for example “Target a 200W power consumption per
chip, but be as parallel as possible.” In the context of our Target
Exascale Architecture, this would mean that each 2000-core
chip should try to power up as many cores as possible while
trying to reduce as much as possible power consumption. The
user-input goals will determine how chips are being powered
up from the get go. For instance, assuming only one block
is active when launching the program with these specific
user goals (and all other blocks are clock-gated), it could
power up half of the remaining blocks that were inactive
at near-threshold voltage (NTV) levels, and start running the
program. That way, the initial configuration of the system will
yield quite a lot of parallelism: Roughly 1000 cores will be
up, thus satisfying the “high-parallelism” constraint; and all
cores will be set at very low voltages, ensuring a low power
consumption. As the execution progresses, if, despite NTV
levels used to power the cores, power consumption is still too
high, then the underlying system will need to adapt, possibly
by clock-gating part or totality of some of the blocks that are
currently in use. Such self-aware behavior needs to happen
both at the local (block) level, where an individual control
engine (CE) monitors itself and proceeds to make decisions
and act on them, but also at the hierarchical level, where
“super-CEs” will apply the self-aware concept using the ODA
loop described in Section II to larger portions of the system:
“normal” CEs will regularly inform their hierarchy of their
health (in a manner not unlike Weis et al.’s proposed use of a

heartbeat for fault-tolerance [16]), while (elected) super-CEs
will evaluate the global health of a cluster of blocks, and send
back punctual orders to individual blocks to ensure that user
goals are enforced.

However, using control theory and ODA loops as a basis to
achieve self-awareness means that a “steady state” of a sort,
satisfying all the high-level goals, is also achieved, preferably
from the get-go. Simply running some kind of system software
on top of the hardware may converge too slowly toward a
solution, thus wasting precious cycles, energy, or both. It is
imperative that, in such a parallel environment, each fine-grain
task, and their containers embed additional information which
will help the system converge faster toward the goals specified
by the user.

2) Driving the Execution of Threaded Procedures:
Threaded procedures are containers for a statically defined
codelet graph. As such, they can retain information such as
“contended” codelets—e.g., codelets that are akin to barriers
in more traditional execution models, and which collect a
significant number of signals from previously ran codelets,
only to trigger other “successor” codelets once fired; or they
can store the “width” of their contained codelet graph, i.e.
the maximal parallelism with which a given TP will require;
and other resource-related information, e.g., if some network
connection is required by a TP, it may be beneficial to “push”
it toward a cluster of cores that is located near the actual
network port.

3) Coupling Fine-Grain Resource Management and Fine-
Grain Dataflow Multi-Threading: Codelets themselves can
significantly enhance program execution by providing infor-
mation about the type of resources they will be requiring. Prob-
ably the most common types of resources that will need to be
signaled will be the nature of the compute unit (i.e., a simple
compute core or an accelerator, whether it requires floating-
point units, etc.); the data intensity required (i.e., only local
load/store operations, or cluster-to-cluster data movements, or
“remote” data movements such as DRAM-to-local and vice-
versa); and I/O operations (i.e., fast interconnection network,
disk access, efc.).

4) Mechanics of the Threaded Procedure—Codelet Meta-
Data Interactions: Threaded procedures provide a rather
“coarse-grain” view of the computation it contains. Its meta-
data should be viewed as “general rules” to be taken into
account by the manager which provides the required resources
to the codelets contained in their TP. The metadata attached
to codelets are supposed to add to the “general goals and
rules” described in their TP’s resource information. If for some
reason a codelet’s metadata contradicts its containing TP’s, the
codelet’s resource requirements always win over its container.

B. Combining Codelet Resource Usage Description with Hi-
erarchical and Distributed Adaptation to Satisfy User Goals

Once all threaded procedures and their containing codelets
are tagged (by a hero programmer or a codelet-aware com-
piler) with relevant meta-data, the underlying codelet abstract
machine model (or Codelet AMM, combining system sofware

28

and hardware) can start executing the program they make up.
To ensure a fast convergence toward the user goals however,
additional mechanisms must be added to the Codelet AMM.
Just as with “physical” metrics (e.g., temperature, power
consumption, efc.) that are used to ensure the integrity of the
system w.r.t. user goals, per-codelet or per-threaded procedure
metrics must be stored both locally at the block level, and at
the various levels in the control hierarchy. By storing the local
history of each codelet and TP’s “type!,” the codelet self-aware
system can regularly update the behavior of codelets that it
ran in the past. As a result, the resource manager can quickly
decide what to turn on and off both locally and possibly on a
larger scale, e.g., how many local block memory banks require
to be turned on, how many cores need to clock- or power-
gated, what voltage level should be used, etc.

The system can also embed a series of “codelet patterns”
as a knowledge base, both for local and global self-awareness.
Predefined patterns could be as simple as recognizing “load
data from a single codelet—compute in parallel with mul-
tiple codelets—store result using a single codelet” schemes,
which are frequent in (say) dense linear algebra kernels. By
recognizing such codelet graph patterns, a smart self-aware
resource manager could decide to clock-gate all but the one
core required to run the “load codelet,” then exploiting the
running time of a previously ran instance of the same codelet,
trigger the order to reactivate the other cores just in time for
them to be assigned the “compute codelets”, right before the
“load codelet” is done moving data. It is also expected that
local histories for the same codelet types (or templates) will
yield slightly or even widely differing resource usage: a given
codelet may have only local data movement interactions in a
given block, or it may have intense remote data movement
interactions if it draws from the same block memory from
another block.

IV. CONCLUSION AND FUTURE WORK

We have presented a path toward a self-aware codelet-based
program execution model. Such model relies on attaching the
right meta-data to fine-grain event-driven tasks so as to inform
the underlying system of the required resource usage of a given
task. In addition, user goals must be taken into account, and
will heavily influence the decision process underlying the self-
aware system software.

We are currently working on a prototype which features
a self-aware system targeting the X-Stack/Traleika Glacier
architecture. It relies on an API that will be compatible with
the OCR event-driven fine-grain execution model.

V. ACKNOWLEDGEMENTS

This material is based upon work supported by the De-
partment of Energy [Office of Science] under Award Number
DE-SC0008717. This work was partly supported by European
FP7 project TERAFLUX, id. 249013.

Here, we use the term loosely, and while typing fine-grain dataflow tasks
(from a compilation perspective) is indeed an interesting area of research, it
is not our intent to discuss it here.

Fig. 1.

Node

7
7
o ﬂ //
,

7/
Interconnect 4

s Chlp

4
e

/

N\
\ Cluster
\
\
N .
\
N [interconnect]
o] - 5]
/
/
/
/
/

TP Metadata

Codelet Metadata ya

An overview of our proposed self-aware codelet execution model. The scheduling units at both the TP and Codelet levels observe execution and

record metadata and use it in the decision making process. The process feeds back into itself to constantly keep relevant and updated information about
previously ran codelets.

[1]

[2]

[3]

[4]

[5]

[8]

REFERENCES

L. V. Kale and S. Krishnan, “CHARM++: A Portable Concurrent Object
Oriented System Based on C++,” in Proceedings of the Eighth Annual
Conference on Object-oriented Programming Systems, Languages, and
Applications, ser. OOPSLA ’93. New York, NY, USA: ACM, 1993, pp.
91-108. [Online]. Available: http://doi.acm.org/10.1145/165854.165874
M. Pérache, H. Jourdren, and R. Namyst, “MPC: A Unified Parallel
Runtime for Clusters of NUMA Machines,” in Euro-Par 2008 —
Parallel Processing, ser. Lecture Notes in Computer Science, E. Luque,
T. Margalef, and D. Benitez, Eds. Springer Berlin Heidelberg, 2008,
vol. 5168, pp. 78-88. [Online]. Available: http://dx.doi.org/10.1007/978-
3-540-85451-7_9

P. Carribault, M. Pérache, and H. Jourdren, “Enabling Low-Overhead
Hybrid MPI/OpenMP Parallelism with MPC,” in Beyond Loop Level
Parallelism in OpenMP: Accelerators, Tasking and More, ser. Lecture
Notes in Computer Science, M. Sato, T. Hanawa, M. Miiller,
B. Chapman, and B. Supinski, Eds. Springer Berlin Heidelberg, 2010,
vol. 6132, pp. 1-14. [Online]. Available: http://dx.doi.org/10.1007/978-
3-642-13217-9_1

S. Borkar, “Thousand core chips: A technology perspective,” in
Proceedings of the 44th Annual Design Automation Conference, ser.
DAC ’07. New York, NY, USA: ACM, 2007, pp. 746-749. [Online].
Available: http://doi.acm.org/10.1145/1278480.1278667
DARPA-BAA-10-37, UHPC: Ubiquitous High Performance Computing.
Arlington VA, USA: DARPA, 2010-2012.

N. P. Carter, A. Agrawal, S. Borkar, R. Cledat, H. David, D. Dunning,
J. Fryman, I. Ganev, R. A. Golliver, R. Knauerhase, R. Lethin, B. Meis-
ter, A. K. Mishra, W. R. Pinfold, J. Teller, J. Torrellas, N. Vasilache,
G. Venkatesh, and J. Xu, “Runnemede: An architecture for ubiquitous
high-performance computing,” 2013 IEEE 19th International Sympo-
sium on High Performance Computer Architecture (HPCA), vol. 0, pp.
198-209, 2013.

Department of Energy, “X-Stack — Extreme Scale Software Stack,”
2012-2014. [Online]. Available: http://www.xstack.org

R. Giorgi, R. M. Badia, F. Bodin, A. Cohen, P. Evripidou, P. Faraboschi,
B. Fechner, G. R. Gao, A. Garbade, R. Gayatri, S. Girbal, D. Goodman,
B. Khan, S. Koliai, J. Landwehr, N. M. L&, F. Li, M. Lujan,
A. Mendelson, L. Morin, N. Navarro, T. Patejko, A. Pop, P. Trancoso,
T. Ungerer, I. Watson, S. Weis, S. Zuckerman, and M. Valero, “Teraflux:
Harnessing dataflow in next generation teradevices,” Microprocessors
and Microsystems, no. 0, pp. —, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0141933114000490

S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao, “Using
a codelet program execution model for exascale machines: position

29

[10]

[11]

[12]

[13]

[14]

[15]

[16]

paper,” in Proceedings of the Ist International Workshop on Adaptive
Self-Tuning Computing Systems for the Exaflop Era. ACM, 2011, pp.
64-69.

C. Lauderdale and R. Khan, “Towards a codelet-based runtime
for exascale computing: Position paper,” in Proceedings of the
2Nd International Workshop on Adaptive Self-Tuning Computing
Systems for the Exaflop FEra, ser. EXADAPT ’12. New
York, NY, USA: ACM, 2012, pp. 21-26. [Online]. Available:
http://doi.acm.org/10.1145/2185475.2185478

J. Suetterlein, S. Zuckerman, and G. Gao, “An implementation of the
codelet model,” in Euro-Par 2013 Parallel Processing, ser. Lecture Notes
in Computer Science, F. Wolf, B. Mohr, and D. an Mey, Eds. Springer
Berlin Heidelberg, 2013, vol. 8097, pp. 633-644.

A. Landwehr, S. Zuckerman, and G. R. Gao, “Toward a self-aware
system for exascale architectures,” in Euro-Par 2013: Parallel Process-
ing Workshops, ser. Lecture Notes in Computer Science, D. an Mey,
M. Alexander, P. Bientinesi, M. Cannataro, C. Clauss, A. Costan,
G. Kecskemeti, C. Morin, L. Ricci, J. Sahuquillo, M. Schulz, V. Scarano,
S. L. Scott, and J. Weidendorfer, Eds., vol. 8374. Springer, 2014, pp.
812-822.

V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. Lo Presti, and
R. Mirandola, “Moses: A framework for qos driven runtime adaptation
of service-oriented systems,” Software Engineering, IEEE Transactions
on, vol. 38, no. 5, pp. 1138-1159, 2012.

M. Giampapa, T. Gooding, T. Inglett, and R. Wisniewski, “Experiences
with a lightweight supercomputer kernel: Lessons learned from blue
gene’s cnk,” in High Performance Computing, Networking, Storage and
Analysis (SC), 2010 International Conference for, 2010, pp. 1-10.

H. Hoffmann, “Seec: A framework for self-aware management of goals
and constraints in computing systems,” Ph.D. dissertation, Massachusetts
Institute of Technology, February 2013.

S. Weis, A. Garbade, B. Fechner, A. Mendelson, R. Giorgi, and
T. Ungerer, “Architectural support for fault tolerance in a teradevice
dataflow system,” International Journal of Parallel Programming, pp.
1-25, 2014. [Online]. Available: http://dx.doi.org/10.1007/s10766-014-
0312-y

