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ABSTRACT
This paper presents our experience mapping OpenMP par-
allel programming model to the IBM Cyclops-64 (C64) ar-
chitecture. The C64 employs a many-core-on-a-chip design
that integrates processing logic (160 thread units), embed-
ded memory (5MB) and communication hardware on the
same die. Such a unique architecture presents new opportu-
nities for optimization. Specifically, we consider the follow-
ing three areas: (1) a memory aware runtime library that
places frequently used data structures in scratchpad mem-
ory; (2) a unique spin lock algorithm for shared memory syn-
chronization based on in-memory atomic instructions and
native support for thread level execution; (3) a fast barrier
that directly uses C64 hardware support for collective syn-
chronization. All three optimizations together, result in an
80% overhead reduction for language constructs in OpenMP.
We believe that such a drastic reduction in the cost of man-
aging parallelism makes OpenMP more amenable for writing
parallel programs on the C64 platform.

Categories and Subject Descriptors: D.3.4 [Program-
ming Languages]: Processors — Run-time environments,
Optimization

General Terms: Languages, Measurement, Performance

Keywords: Chip Multiprocessor, System-on-a-Chip, Run-
time System, OpenMP, Performance Evaluation

1. INTRODUCTION
It is increasingly clear that the huge number of transis-

tors that can be put on a chip (now reaching 1 billion and
continuing to grow) can no longer be effectively utilized by
traditional microprocessor technology that only integrates a
single processor on a chip. A new generation of technology
is emerging by integrating a large number of tightly-coupled
simple processor cores on a chip empowered by parallel sys-
tem software technology that will coordinate these proces-
sors toward a scalable solution.
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Cyclops-64 is a petaflop supercomputer project under de-
velopment at IBM Research Laboratory. The C64 is in-
tended to serve as a dedicated compute engine originally
designed for running high performance applications such as
molecular dynamics to study protein folding [2], or image
processing to support real-time medical procedures. To the
best of our knowledge, the C64 project is one of the most am-
bitious projects currently under development. Unlike other
academia projects, a Cyclops-64 system is planned to be
delivered in 2007.

Given a machine such as the C64 cellular architecture,
the challenge is to use this massive intra-chip parallelism
to obtain highly sustainable performance. For fast applica-
tion prototypes on a C64 chip, we are looking into different
high-level programming models, and OpenMP seems to be
a reasonable first candidate.

OpenMP has emerged as the industry de facto standard
for writing parallel programs on shared memory systems.
OpenMP specification [24, 25] provides a collection of com-
piler directives, library functions and environment variables,
suitable for incremental and portable development of paral-
lel applications. However, the scalability of this program-
ming interface on systems with a large number of process-
ing elements is sometimes limited. In some instances over-
heads for language constructs in OpenMP account for up to
12% of the total execution time [8] and developers are often
suggested to reduce the number of parallel regions to limit
the impact of these overheads [17]. As a consequence, the
number of applications amenable to effective parallelization
decreases dramatically.

The contribution of this paper is as follows. We have de-
veloped a mapping strategy that explores the opportunities
to optimize OpenMP programs on a state-of-the-art many-
core chip architecture such as the Cyclops-64. This is real-
ized by an implementation of our mapping strategy under an
OpenMP runtime library, which results in a significant per-
formance improvement (e.g. overhead reduction as high as
up to 2 orders of magnitude, and at least 80% for OpenMP
language constructs). More specifically, we highlight three
areas of optimizations: (1) a memory aware runtime library
that takes advantage of Cyclops-64 explicit memory hier-
archy by placing frequently used runtime data structures in
scratchpad memories that are closer to the processor/thread
units where they are used; (2) a unique spin lock algorithm
designed to make best use of the C64 architecture supported
in-memory atomic instructions and thread sleep/wake-up
mechanisms; (3) a fast barrier synchronization based on the
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Figure 1: Cyclops-64 node

16-bit signal bus, to which all the threads on a chip are con-
nected. All three together, result in the drastic reduction
of overheads in the OpenMP runtime library and pave the
way for a productive use of OpenMP as a high-level parallel
programming model for the Cyclops-64 platform.

In this paper, we investigate the details that hinder paral-
lel performance, which are hidden from the end user: over-
heads due to language constructs in OpenMP. With this
goal, first we investigate how OpenMP constructs are im-
plemented in the Omni OpenMP runtime library. Second,
we port this compiler environment to the Cyclops-64 using
the C64 toolchain and TNT microkernel 1.5 release. Third,
we redesign key aspects of the library to make it suitable
for the C64 computing environment. Finally, using EPCC
microbenchmarks we compare the original and enhanced li-
braries and observe an 80% overhead reduction for OpenMP
language constructs.

2. CYCLOPS-64 CHIP ARCHITECTURE
The Cyclops-64 (C64) is the latest version of the Cy-

clops cellular architecture designed to serve as a dedicated
petaflop compute engine for running high performance ap-
plications. A C64 supercomputer is attached to a host sys-
tem through a number of Gigabit Ethernet links. The host
system provides a familiar computing environment to appli-
cation software developers and end users.

A C64 is built out of tens of thousands of C64 process-
ing nodes arranged in a 3D-mesh network. Each processing
node consists of a C64 chip, external DRAM, and a small
amount of external interface logic. A C64 chip employs a
many-core-on-a-chip design with a large number of hardware
thread units, half as many floating point units, embedded
memory, an interface to the off-chip DDR2 SDRAM mem-
ory and bidirectional inter-chip routing ports, see Figure 1.
A C64 chip has 80 processors, each with two thread units, a
floating-point unit and two SRAM memory banks of 32KB
each. A 32KB instruction cache, not shown in the figure,
is shared among five processors. The C64 chip has no data
cache. Instead a portion of each SRAM bank can be con-
figured as scratchpad memory (SP). The remaining sections
of SRAM together form the global memory (GM) that is
uniformly addressable from all thread units. On-chip re-
sources are connected to a 96-port crossbar network, which
provides a 4GB/s bandwidth per port, in total 384GB/s
on each direction. This huge bandwidth sustains all the
intra-chip traffic communication and the six routing ports
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Figure 2: Cyclops-64 software toolchain

that connect each C64 chip to its nearest neighbors in the
3D-mesh network. The intra-chip network also facilitates
access to special devices mapped under a generic host inter-
face. These devices are a Gigabit Ethernet port, the control
network and a serial ATA disk drive.

The C64 architecture represents a major departure from
mainstream microprocessor design in several aspects. The
C64 chip integrates processing logic, embedded memory and
communication hardware in the same piece of silicon. How-
ever, it provides no resource virtualization mechanisms. For
instance, execution is non-preemptive and there is no hard-
ware virtual memory manager. The former means one single
application can run at a given time on a set of C64 nodes and
the C64 microkernel will not interrupt the user application
unless an exception occurs. The latter means the three-level
memory hierarchy of the C64 chip is visible to the program-
mer. From the processing core standpoint, a thread unit is
a simple 64-bit, single issue, in-order RISC processor with
a small instruction set architecture (60 instruction groups)
operating at a moderate clock rate (500MHz). Nonetheless,
it incorporates efficient support for thread level execution.
For instance, a thread can stop executing instructions for a
number of cycles or indefinitely; and when asleep it can be
woken up by another thread through a hardware interrupt.
As we have already seen, C64 is truly unique. In this paper
we demonstrate how to take advantage of these architec-
ture features to efficiently map OpenMP into this platform.
In particular, we exploit relevant architecture features such
as: (1) the capability to configure a section of every SRAM
bank as scratchpad memory, which provides a fast tempo-
rary storage to exploit locality under software control; (2)
a rich set of hardware supported in-memory atomic instruc-
tions. Unlike similar instructions on common off-the-shelf
microprocessors, atomic instructions in the C64 only block
the memory bank where they operate upon while the re-
maining banks continue servicing other requests. This func-
tionality provides a higher memory bandwidth; (3) a 16-bit
signal bus to which all threads within a chip are connected,
that provides a means to efficiently implement barriers.

3. EXPERIMENTAL PLATFORM
Figure 2 illustrates the software toolchain available for ap-

plication development on the C64 platform. This software



development environment has been in use by the architec-
ture design team at IBM, system software developers and ap-
plication scientists for the last years. More recently, we ex-
tended the toolchain with an OpenMP front-end, a porting
from the Omni-1.6 OpenMP compiler [17]. The front-end
serves as a translator that takes C and Fortran77 OpenMP
programs as input and generates C programs with function
calls to the Omni OpenMP runtime library. The resulting C
programs are compiled with the Cyclops-64 cross-compiler
and linked to the Omni runtime library. The toolchain
also provides an assembler, linker and other binary utili-
ties all based on binutils-2.11.2. The C standard and math
libraries are derived from those in newlib-1.10.0. The exper-
imental platform is completed by means of a functionally
accurate simulator (FAST). FAST is an execution-driven,
binary-compatible simulator of a multi-chip C64 system. It
accurately reproduces the functional behavior and count of
hardware components of a C64 system. In addition, it gen-
erates timing information that accounts for the main sources
of pipeline delays and stalls such as contention in memory,
the crossbar, and/or other functional units. Although not
cycle accurate, this information has proven to be useful for
performance estimation and application tuning as well [6].

4. BASE RUNTIME LIBRARY
For parallel execution, Omni relies on the POSIX thread

library, which makes porting to other platforms easy. On
C64 there is not a POSIX thread library. However, for
the purpose of this work we extended the C64 native mi-
crokernel and multi-threaded runtime (TNT) with macros
that provide the POSIX thread API. Hence, the OpenMP
runtime library is built on top of TNT. A point worth not-
ing is that instead of a Pthread-like high level abstraction
model, TNT is a low level implementation of a thread vir-
tual machine customized for the unique features of the C64
architecture [7]. Therefore, the OpenMP runtime library
obtained from this straightforward porting is already effi-
cient in the sense that it brings the runtime library closer to
the underlying hardware, making use of the efficient thread
management techniques provided by TNT, for instance.

The Omni OpenMP run time library described above,
which is a direct porting of the original library to the C64
toolchain, is regarded as our base runtime library. In the
following sections, first we describe how it can be further op-
timized. Then, we quantify the improvements due to these
enhancements, by comparing the base and optimized run-
time libraries by means of the EPCC microbenchmarks.

5. OPTIMIZED RUNTIME LIBRARY
In this section we present our mapping strategy that ex-

plores the opportunities to optimize the OpenMP runtime
library for running programs on a C64 chip. During this pro-
cess special care is taken to implement mechanisms that take
into account the unique features of the C64 architecture, and
hence introduce minimum overhead. Our approach is com-
prised of three steps:

1. A memory aware runtime library that takes advantage
of the C64 explicit memory hierarchy by placing fre-
quently used data structures in scratchpad memories
that are closer to the processor/thread units.

2. A unique spin lock algorithm designed to make best

use of the C64 architecture supported in-memory atomic
instructions and thread sleep/wake-up mechanisms.

3. Use of the signal bus that provides a means for very
fast communication of a small amount of information
among thread units within a chip to implement a bar-
rier synchronization.

5.1 Memory aware runtime library
The C64 chip has no data cache. Instead a portion of the

embedded memory can be configured as scratchpad mem-
ory and accessed through a dedicated path. Such a memory
provides a fast temporary storage to exploit locality under
software control. Based on our previous work, we leverage
the use of scratchpad memory to improve the OpenMP run-
time library.

C64 toolchain provides segmented memory support. If the
programmer precedes the declaration of a variable or func-
tion with a pragma sram, pragma dram or pragma spm the
linker allocates the object or code section in global, off-chip
or scratchpad (only data) memory, respectively. In addition,
pragma spm makes a variable thread private, as the linker
makes a local copy on each thread’s scratchpad memory.

Using this mechanism we privatize the descriptors defined
within the library to handle both the processors (hardware
thread units) and threads (OpenMP threads). The benefit
of this relocation is simple: faster access to the descriptor.
Load from local, global and off-chip memory takes 2, 20 and
36 cycles, respectively. Therefore the improvement is clear
and requires little explanation. Nonetheless, to help quan-
tify the improvement we wrote a simple microbenchmark.

Figure 3 summarizes the (normalized) overhead due to
several factors such as having the thread descriptor in global
or local memory, reading one, two or three parameters from
the descriptor, or even having an indirect access to the mas-
ter thread, for instance. Reading from a thread descriptor,
although a simple operation, may be repeated many times
during the execution of a parallel loop, hence its relevance.
Independently of the number of parameters read, the differ-
ence between having the descriptor in local or global mem-
ory is a single load latency. In the first case it is easy to
hide a 2-cycle latency, no matter the number of memory
references (LM1, LM2, LM3). For global memory, only the
first load causes some delay. Successive memory instructions
are issued before the pipeline stalls. The crossbar handles
consecutive requests and after 20 cycles, starts delivering
the results, one every cycle (GM1, GM2, GM3). Notice the
overhead increases with the number of memory references.
This has to do with the additional integer instructions re-
quired to prepare the memory loads, not with the mem-
ory delay itself. When there is an indirect access, the sce-
nario changes significantly. With the descriptor in scratch-
pad an indirect reference is like two consecutive references
(LMI). However, when the descriptor is in global memory
the indirection stalls the pipeline before the second load is
issued, hence the overhead effectively doubles (GMI). Fur-
thermore, for a large number of active threads (64 and 128)
microbenchmarks with the descriptor in global memory ex-
perience a performance degradation between 3-5% due to
memory contention.

Besides faster access to its contents, the new location
of the descriptor provides new opportunities for improve-
ment: self-identification and less frequent access to the mas-
ter thread descriptor.
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In the original runtime library, self-identification requires
a call to pthread self(), which returns a unique identifier to
the calling thread. This number is then used as input to a
hash function that finally returns a pointer to the processor
descriptor. Moving the descriptors to scratchpad memory
simplifies this process. A reference to thread local data con-
sists of the addition of a 16-bit offset, which is a constant
known at compile time, to the higher 16 bits of a base reg-
ister. The operation takes four cycles only!

Threads spawned during a parallel region form a team
and share some information such as a function pointer, ar-
guments to this function, etc. The parameters are defined
by the OpenMP front-end based on the OpenMP directive
and any additional clause, hence they are known to the mas-
ter thread only. Threads within a team have to look for this
information in the master descriptor. In the enhanced li-
brary, when the master thread polls workers to assign them
new work, it copies this data into each worker’s descriptor.
This can be seen as the master thread prefetching data on
behalf of the workers. A store instruction can be issued
each cycle and the load-store data dependency is hidden by
the instruction schedule (load from scratchpad). Thus, lit-
tle overhead is added to the critical path. Once the workers
start running in parallel they do not have to reach their
parent thread. At that point, waiting for some data would
have added considerable overhead to the critical path (load
from global memory), which is what happens in the original
library. Notice there would be no difference if the descriptor
were in global memory, since the master thread would stall
while prefetching from global memory.

Once the worker threads locally obtain many parameters,
the number of references to the parent descriptor decreases
significantly. Indeed, it is only to perform collective oper-
ations such as reduction, ordered execution, etc. that an
access to the parent thread descriptor is required. At this
point, it seems reasonable to split the definition of the worker

and parent descriptors. The resulting size reduction trans-
lates into a more efficient use of the scratchpad memory,
which is important given its limited size.

5.2 Mutual exclusion
On a shared memory system with 160 threads like C64,

mechanisms for mutual exclusion are of vital importance.
In the original OpenMP runtime and user libraries mutual
exclusion is implemented by means of a two-level lock: mu-
tex and spin lock, where the first one is provided by the
POSIX thread library. Based on the Linux implementation,
a mutex has two pieces of state: a “locked” bit and a queue.
When the mutex is not locked, the queue is empty. Other-
wise, the queue may contain identifiers representing threads
waiting to acquire the lock. When the mutex is unlocked
while the queue is not empty, the first queue entry is re-
moved and the corresponding thread is implicitly given the
lock’s ownership. We use the test-and-set with exponential
backoff for the spin lock algorithm, and while waiting on a
queue, threads are put to sleep. However, the two-level lock
results in the mutex and associated spin lock being allocated
in DRAM, which is not efficient.

We propose to study existing spin lock and lock-free algo-
rithms and improve them based on C64 special features. The
objective of the study is to determine the most efficient algo-
rithm and use it in the OpenMP runtime system and library.
From our observations and contrary to common belief, we
do not find any benefit from adopting a lock-free concurrent
data structure, not to mention the complexity, maintainabil-
ity, and debuggability of these. Instead, we choose our own
adaptation of the MCS algorithm, we call MCS-SW, that
uses little space in scratchpad memory and makes good use
of the sleep and wake-up instructions to avoid spinning on
any global or local shared flag.



5.2.1 Spin lock
We implement five spin lock algorithms on C64 as de-

scribed below. Other well known algorithms are disregarded
because we do not consider them appropriate. For example,
array-based queuing locks [3, 9] are designed for multipro-
cessor systems with caches, which C64 does not have.

Test-and-set (TS) With TS lock, a processor repeatedly
checks the lock to see if it is available and, if avail-
able, marks it as unavailable. A hardware test-and-set
instruction is used to perform the check-and-mark-if-
available actions atomically. In our implementation,
the lock object is allocated in the on-chip global mem-
ory. We do not employ the well known test-and-test-
and-set approach [28], because there is no data cache.

Test-and-set with exponential backoff (TS-exp) The
same as TS lock, but instead of retrying immediately
after a fail, an exponential increasing backoff is per-
formed before the next try.

Ticket Before acquiring the lock, a processor increments a
global counter to determine its position in a waiting
list. All processors spin on a second global counter,
which will be incremented when the lock is released.
Both counters are allocated in on-chip global mem-
ory. Only the increment-and-get-ticket operation on
the first global counter requires the use of a fetch-and-
inc hardware atomic instruction, the spin uses a nor-
mal load instruction. A backoff mechanism is also used
between two spins.

MCS An MCS lock [19] uses a distributed linked list to
maintain the queue of waiting threads. Each thread
spins on a separate node of the linked list. In our
implementation, the node where a thread spins on is
allocated in its own scratchpad memory. Therefore,
there is no memory traffic generated to the crossbar
network when a thread spins locally.

MCS with sleep/wake-up (MCS-SW) We modify the
original MCS algorithm using the C64 sleep/wake-up
support as introduced in Section 2. Instead of spin-
ning, a thread waiting on a lock goes to sleep after it
adds its node (allocated in its scratchpad memory) to
the linked list. When a lock owner releases the lock,
it wakes up its successor by sending a wake-up signal,
which has the same cost of as a store instruction.

To evaluate the efficiency of different spin lock algorithms,
we use two microbenchmarks proposed in [16]: lock-delay,
and lock-null. In both benchmarks, each thread repeatedly
performs 1,000 pairs of acquires and releases. The lock-delay
microbenchmark uses fixed delays both inside and outside
the critical section. The delay (Di) inside the critical section
is large enough (we use 3 ×D0; and Do is the delay outside
the critical section) such that the last thread that released
the lock is already waiting to acquire the lock before the
lock is released. For this microbenchmark, the overhead of
a lock can be computed as follows:

Overhead =

8

<

:

Execution Time
No. Lock Acquires

− Di − Do , P = 1

Execution Time
No. Lock Acquires

− Di , P > 1

No. Lock Acquires = Iterations Per Thread × No. Threads

The second microbenchmark, lock-null, does not use any
delay at all. Each thread continuously acquires and releases
the lock 1,000 times. This is also the benchmark used in
other studies [19]. Here,

Overhead =
Execution Time

Iterations Per Thread × No. Threads

We measured the overhead and contention of our five
spin lock algorithms using the lock-delay, and lock-null mi-
crobenchmarks. The overhead is calculated using the equa-
tions above. The amount of contention is reported by the
simulator. When tow or more threads compete for the same
resource at the same cycle, the simulator increments the
contention counter by one. We normalize the number of
contentions by the number of threads for the report in Fig-
ure 5. Low contention is important because it does not affect
the overhead of the lock acquire/release only, but the normal
execution of the user program as well.

Figures 4 and 5 demonstrate that MCS and MCS-SW al-
ways have lower overhead and contention than any other
algorithm. In addition, MCS-based implementations show
perfect scalability, as overhead and contention remains con-
stant when the number of threads increases. It is worth
noting that Ticket has lower overhead but higher contention
than TS-exp lock. As we mentioned earlier, TS-exp al-
ways spins with the test-and-set instruction, which holds
a memory module for three cycles. However, Ticket uses
fetch-and-increment once to get its ticket and increment the
counter. Then it spins using normal load instructions, which
are served by memory in one cycle. As a result, with con-
tention at the memory module TS-exp experiences a longer
delay than Ticket.

MCS-SW shows several cycles lower overhead than MCS
for more than one thread. And they both show the same
level of contention. Additionally, MCS-SW executes less in-
structions per pair of lock/release than the original MCS
lock. Actually with MCS-SW, each lock acquire/release op-
eration takes a constant number of instructions, no matter
how many threads contend for the lock. Unlike MCS, with
which a thread keeps spinning on the local flag in scratch-
pad memory, with MCS-SW, a thread suspends after adding
itself to the waiting queue. During the wait, the thread re-
mains asleep and stops executing instructions until it is wo-
ken up by its predecessor. This is an important observation.
Because when a thread is suspended, it consumes much less
power. Therefore, MCS-SW is a time, memory, and power
efficient spin lock algorithm for C64, and it is our algorithm
of choice for the implementation of the OpenMP runtime
library.

5.2.2 Lock-free
In the last decade, lock-free concurrent data structures

and algorithms have emerged in literature. A lock-free con-
current data structure is “one that guarantees that if mul-
tiple threads concurrently access that data structure, then
some thread will complete its operation in a finite number
of steps, despite the delay or failure of other threads” [13].
It is argued that lock-free concurrent data structures do not
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only avoid the inherent problem with locks, i.e. priority in-
version, convoying, and deadlock [14], but also scale better
and achieve higher performances than their lock-based coun-
terparts. The only drawback seems to be difficulty and com-
plexity of designing general lock-free concurrent data struc-
tures. For that reason, most of the work has focused on lock-
free versions of commonly used basic data structures, such
as stacks [15, 12], queues [29, 23, 10, 21], sets [18, 29, 10, 11,
20], etc. Since queues, stacks and hash tables are precisely
the data structures implemented in the runtime library that
are protected with locks to guarantee mutual exclusion, we
compare lock-free with lock-based implementations on C64.
Since there is no priority inversion and convoying problem
in C64, performance and memory contention are the only
factors we take into consideration.

For our study, we implement the lock-free version of the
FIFO [23], LIFO [15], and hash table [20]. All these lock-free
implementations adapt Michael’s Hazard Pointers mecha-
nism to guarantee safe memory reclamation of lock-free ob-
jects [22]. We implement the lock-based counterparts, which
are straightforward, using our best spin lock algorithm: MCS-
SW. We also implement a lock-free-backoff version for each
data structure, which uses the same algorithms but an ex-
ponential increasing backoff is added before retry, when a
fail is observed in the algorithm.

To evaluate the performance of these implementations we
use microbenchmarks similar to those described in the spin
lock study. For FIFO and LIFO, at each iteration, a thread
performs either one enqueue/push or dequeue/pop opera-
tion randomly. A thread finishes after it completes 1,000
pairs of enqueue/push and dequeue/pop operations. After

each operation, a small random delay is inserted before per-
forming the next operation. The hash table has 25 buckets,
and each bucket manages an ordered linked list. The hash
table is initialized with a load factor of 10, which represents
the average number of items per bucket. Each thread per-
forms 10,000 operations, of which 20% are insertions, 20%
deletions, and 60% searches. At each iteration, the opera-
tion to be performed is randomly determined, after which a
small random delay is inserted. For the lock-based version,
each bucket in the hash table is protected with a differ-
ent lock to avoid unnecessary serialization. Finally, execu-
tion time and contention are normalized by the number of
threads.

Figures 6(a) and 7(a) show that lock-based FIFO per-
forms better and generates much less contention than both
lock-free, and lock-free-backoff versions. Figure 7(b) shows
that the lock-free-backoff LIFO generates slightly less con-
tention than the lock-based version (although within the
same range). However, the lock-based LIFO is much faster.
Both the FIFO and LIFO implementations of the lock-free
algorithm are worse than the lock-based version; especially
regarding contention, which is increased by several magni-
tude orders. For the hash table, because there are 25 differ-
ent buckets, conflicts do not happen frequently at runtime.
All three implementations show the parallelism. In all in-
stances, the lock-based version still performs faster and gen-
erates less contention than the other two.

Based on the above observations and contrary to common
belief, we do not see any benefit from adopting lock-free
concurrent data structures for the implementation of the
OpenMP runtime library.
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Figure 7: Normalized Contention of Lock and Lock-Free Algorithms

5.3 Barrier synchronization
Threads within a C64 chip are connected to a 16-bit signal

bus that provides a means to efficiently implement barriers.
A thread may write 16 bits onto the signal bus at any time.
On reading, instead of the last value written, the logical OR
of the last value written by all the thread units on the chip
is returned.

Omni barrier function implements a 1-read/n-write busy-
wait algorithm [19]. Obviously, the hardware mechanism
for barrier synchronization available on C64 should outper-
form this or any other software implementation. Hence, the
default barrier function has been replaced with calls to the
TNT library that access the signal bus interface register.
Besides significant improvements in execution time, the sig-
nal bus reduces memory traffic and power consumption, as
spinning waiting for a signal bus line to drop does not inter-
fere with other thread units or generate excessive heat.

6. RESULTS
In this section we demonstrate the efficiency of our newly

redesigned OpenMP runtime library. The combination of
the three optimizations described in the previous section:
memory aware runtime library, time and memory efficient
spin locks, and fast barrier synchronization, results in an
80% overhead reduction for all OpenMP language constructs.
The improvement is relative to the Omni runtime library
obtained from our earlier porting, which is regarded as the
baseline. All the experiments are conducted with the C64
software tool set 1.5 release.

An important factor in determining the performance of
a shared memory system is the overhead due to synchro-
nization for language constructs in OpenMP. Furthermore,
the costs of these operations are dependent on their im-
plementation in the OpenMP runtime library. To find out
what the cost for each construct is, we use the EPCC mi-
crobenchmarks [5], the main purpose of which is to measure
the overhead of synchronization and scheduling in OpenMP.
The overhead is basically determined by comparing the time
taken for a section of code executed sequentially to the time
taken for the same code executed in parallel enclosed in a
given directive.

Figure 8 shows that OpenMP parallel and parallel for lan-
guage constructs experiment an 80% overhead reduction for
128 threads.

Barrier synchronization improves by two orders of mag-
nitude. This is not a surprise since the library migrated
from a software implementation to a hardware-based syn-
chronization mechanism. The single construct experiences
a similar improvement. In part due to the new barrier syn-
chronization, but also because of the other enhancements to
the library. Enhancements such as self-identification, fast
access to the thread descriptor, less frequent access to the
parent thread descriptor, and efficient spin lock, not im-
provements to the barrier, are the only reason behind the
drastic improvement in the ordered construct, see Figure 9.

The overhead for critical, atomic and lock/unlock, see Fig-
ure 10, are all basically the same, since the library func-
tions, ompc lock/unlock are used to implement the critical
and atomic constructs. In all three cases there is an 80% re-
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duction overhead that comes from using the MCS-SW spin
lock algorithm directly instead of a Pthread mutex.

Finally, the reduction construct can be seen as a compre-
hensive example where all the optimizations previously de-
scribed (self-identification, fast access to data in the descrip-
tor, global barrier, etc.) add up. As a result, the optimized
reduction drops to 15% of its original cost, see Figure 11.

7. FUTURE WORK
The scalability of the OpenMP programming interface on

systems with a large number of processing elements is some-
times limited. In some instances the overhead due to the
OpenMP runtime library accounts for a significant part of an
application execution time. As a consequence, applications
amenable to effective parallelization are often restricted to
programs with a small number of parallel regions and/or
regular data access patterns.

The goal of this paper was to optimize the Omni OpenMP
runtime library, using the specific hardware features of the
C64 architecture. In that sense, we believe that an 80% over-
head reduction for language constructs in OpenMP should
be regarded as an important milestone. As future work,
we intend to enlarge the evaluation with some real applica-
tions and/or benchmarks. However, we are not interested
in regular memory-intensive applications. We believe these
programs will not be able to take advantage of the C64 ar-
chitecture, since the off-chip memory (DRAM) bandwidth
is quite limited. Instead, we are looking into irregular appli-
cations (with numerous parallel regions, and/or continuous

synchronization) that usually are disregarded for not be-
ing suited to effective parallelization with OpenMP. For this
type of code, the interaction between the runtime system
and the application is significant, hence the results hereby
provided become more relevant.

8. RELATED WORK
To the best of our knowledge, most of the previous work on

performance characterization of OpenMP focuses on bench-
marking general purpose shared memory systems and com-
mercial compilers. Since the computing environment is given,
the authors are limited to report their findings with little
chance to make significant improvement if any at all. On
the other hand, we target a specific machine and we opti-
mize the library by efficiently mapping software constructs
to the available hardware resources.

Initially, Bull [5] proposed a set of microbenchmarks that
offer some insight on the implementation of an OpenMP run-
time library for comparison and optimization purposes. He
made use of the EPCC microbenchmarks to compare three
different platforms: Sun HPC 35000, SGI Origin 200 and
Compaq Alpha Server, and suggested that the differences
observed would open the door to further improvements. Us-
ing a similar procedure Berrendorf [4] investigated the level
of support for OpenMP in four commercial compilers. Prab-
hakar [26] proposed an enhanced set of microbenchmarks
derived from EPCC and demonstrated its usefulness with
a comparative study of OpenMP language constructs on
the IBM SP3 and SUN SunFire systems. More recently,
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Fredrickson [8] presented an exhaustive report after running
the EPCC microbenchmarks, NAS parallel benchmarks and
the SPECOMPL2001 benchmark suite on a 72-processor
Sun Fire 15K SMP server. However, the author did not offer
any insight as to why specific applications spent a significant
fraction of the total execution time due to overhead and how
to reduce it. In the first evaluation of the Omni OpenMP
compiler, the authors discussed implementation details and
their initial attempt to optimize the library on conventional
SMP systems [17]. Probably the closest related work is
that done on an experimental Cyclops architecture (never
to be built) that (compared to C64) included data caches,
a larger amount of on-chip memory and no off-chip mem-
ory, among other differences. In [1] the authors ported the
Nanos thread library (based on Quick Threads) to this spe-
cial Cyclops platform. However no optimization to the run-
time library was described, even though the Nanos library
requires excessive memory to represent parallelism, which to
our understanding, makes it inefficient on an environment
with such a large number of threads and limited memory like
the Cyclops platform. In a subsequent work [27], two mem-
ory optimizations were presented. First, they remapped the
data caches, i.e. changed the order of some hardware ad-
dress lines. Second, they padded the thread descriptors to
distribute memory access across all the data caches. Mem-
ory efficiency issues within the library were not addressed in
either case. Furthermore, both solutions focus on improving
data cache locality, hence they are specific to the Cyclops
architecture used in that study.

9. SUMMARY
We have reported our experience mapping OpenMP into

the Cyclops-64 architecture. Although porting the Omni
OpenMP compiler to C64 using the TiNy ThreadsTMruntime
system makes the resulting runtime library already efficient,
we demonstrate how further improvements can be achieved
with the mindful usage of relevant architecture features.
In particular, we show an 80% overhead reduction for all
OpenMP language constructs. This represents a substantial
decrease in the cost of managing parallelism, which makes
OpenMP a parallel programming model amenable for writ-
ing parallel programs on the C64 platform.
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