
Strategies for Improving Performance and Energy
Efficiency on a Many-core

Elkin Garcia
Department of Electrical and Computer

Engineering
University of Delaware
egarcia@udel.edu

Guang Gao
Department of Electrical and Computer

Engineering
University of Delaware

ggao@capsl.udel.edu

ABSTRACT
New many-core architectures are characterized not only by
the large amount of processing elements but also by the large
number and heterogeneity of resources. This new environ-
ment has prompted the development of new techniques that
seek finer granularity and a greater interplay in the sharing
of resources.

The research proposed here will provide an analysis of
these new scenarios, proposing new methodologies and solu-
tions that leverage these new challenges in order to increase
the performance and energy efficiency of modern many-core
architectures.

Categories and Subject Descriptors
C.4 [Performance of Systems]: [Modeling techniques];
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; D.3.4 [Processors]: Optimiza-
tion; G.1.0 [Numerical Analysis]: General—Parallel algo-
rithms

General Terms
Algorithms, Performance, Theory

Keywords
Energy efficiency, Many-core architectures, Performance op-
timizations, Power-aware transformations

1. MOTIVATION AND SIGNIFICANCE
The new many-core era motivated by the recent efforts to

build peta-scale and exa-scale machines has brought several
challenges for exploiting the parallelism on new many-core
architectures with hundreds, or even thousands, of indepen-
dent processing elements. The scenario inside these chips
is different to previous multi-core processors, some of the
new characteristics are: (1) Increasing amount of shared re-
sources, (2) heterogeneity of resources, (3) diversity in co-
ordination and arbitration mechanisms for shared resources
and (4) constraints in energy consumption.

This new environment requires new techniques that seek
finer granularity and a greater interplay in the sharing of
resources. These work re-evaluate several elements of com-
puter systems and algorithm design under these new sce-

Copyright is held by the author/owner(s).
CF’13, May 14-16, 2013, Ischia, Italy.
ACM 978-1-4503-2053-5.

narios, it includes runtime systems, scheduling schemes and
compiler transformations.

Moore’s law is still valid, the number of transistor in a
single chip doubles every 18 months approximately, but sin-
gle processor architectures are not able to take advantage of
the increasing amount of transistors. Today, Computer Ar-
chitecture has become extremely parallel at all levels. The
many-core era has arisen: A large number of simple pro-
cessing elements are preferred over few very complex but
powerful processors. The whole system is moving towards
more heterogeneity with both approaches, where the share
resources are essential for a proper synergy.

2. PROBLEM FORMULATION
AND METHODOLOGY

This new era brings two main challenges in the algorithms
implemented on these modern many-core architectures: First,
shared resources have become the norm, ranging from the
memory hierarchy and the interconnections between pro-
cessing elements and memory to arithmetic blocks such as
double floating point units; different mechanism at software
and hardware levels are used for the arbitration of these
shared resources and need to be consider on the scheduling
and orchestration of tasks. Second, in order to take advan-
tage of the increasing amount of parallelism available, the
number of tasks has increased and tasks have become finer,
imposing new challenges for a light and balanced scheduling
subject to resource and energy constrains.

The research proposed here will provide an analysis of
these new scenarios, proposing new methodologies and solu-
tions that leverage these new challenges in order to increase
the performance and energy efficiency of modern many-core
architectures. During the pursue of these objectives, this
research intends to answer the following question:

• Which is the impact of low-level compiler transforma-
tions such as tiling and percolation to effectively pro-
duce high performance code for many-core architec-
tures?

• What are the trade-offs of static and dynamic schedul-
ing techniques to efficiently schedule fine grain tasks
with hundreds of threads sharing multiple resources
under different conditions in a single chip?

• How to efficiently model energy consumption on many-
cores managing trade offs between scalability and ac-
curacy?

• Which are feasible methodologies for designing power-
aware tiling transformations on many-core architec-
tures?

The research methodology adopted includes theoretical
analysis and experimental evaluation. Selected analysis and
results presented in these work have been extended on our
previous publications [9, 6, 7, 8]. For the evaluation, we have
used a novel many-core architecture: The IBM Cyclops-64
processor (C64), a double precision architecture with 160
independent hardware thread units on a chip and a soft-
ware managed memory hierarchy. C64 features have been
described extensively in previous publications [4].

3. PROPOSED APPROACH

3.1 Performance
Methodologies for improving performance in parallel sys-

tems have been focused on cache-based parallel systems.
This methodologies exploit locality through padding and
cache tiling techniques with tile size selection [3, 12]. Nev-
ertheless, cache replacement policies are controlled by hard-
ware, making fine control of these parameters difficult. A
feasible alternative is the new set of many-core-on-a-chip
systems with a software managed memory hierarchy such as
Cyclops-64 (C64). These new systems provide more oppor-
tunities to improve performance and flexibility.

We present a general framework that provides a mapping
of applications to software managed memory hierarchies, our
strategy involves an optimal register tiling and sequence of
traversing tiles. The size of tiles and the sequence of travers-
ing tiles are designed to maximize the reuse of data in regis-
ters and minimize the number of memory accesses to slower
levels by solving a non-linear optimization problem [9].

At task level, we put special attention to the case of fine-
grain parallelism. In the past, the main focus of schedul-
ing techniques was to achieve high load balancing with low
overhead in order to increase total performance. As a result,
Static Scheduling (SS) is preferred over Dynamic Scheduling
(DS) for embarrassingly parallel and highly regular applica-
tions executed in homogeneous architectures.

We have studied the task scheduling problem for this kind
of applications under the scenario imposed by many-core ar-
chitectures to investigate whether or not there exists scenar-
ios where DS is better than SS. We found that for highly reg-
ular and embarrassingly parallel applications, DS can over-
come SS in some situations commonly found in many-core
architectures. We present experimental evidence that sup-
port this claim. In particular, we show how the performance
of SS is degraded by the new environment on many-core
chips [8, 5, 13]. We analyze three reasons that contribute
to the poor performance of SS and the feasibility of a light
DS implementation on many-core architectures under the
situations described: (1) Under limited amounts of tasks, a
uniform mapping of work to processors without considering
the granularity of tasks is not necessarily scalable. (2) The
presence of shared resources (i.e. shared memory and cross-
bar interconnections) produces unexpected variations in the
task execution time of similar sizes. SS is not able to manage
these variations properly. (3) Hardware features, such as in-
memory atomic operations, greatly contribute to decrease
the overhead of DS, making it competitive with respected
to SS.

In addition, we have study the role of task percolation and
scheduling in the performance of applications. In order to in-
crease the returns of these techniques we have made two im-
provements. First, we fused dynamic scheduling and perco-
lation operations into a dynamic percolation approach. Sec-
ond, we propose to add additional percolation operations.
Our new improvements contribute to raise the performance
of certain applications in many-cores. We used the Matrix
Multiply benchmark under the C64 architecture. For this
example, we increase the performance by 48% [7, 5].

3.2 Energy Efficiency
On modern parallel architectures, power consumption and

energy efficiency are a feasible constraint. In this area, we
propose a scalable energy consumption model for many-core
architectures with software-managed memory hierarchy. In
addition we develop a power-aware tiling techniques for en-
ergy friendly applications [6].

The proposed energy consumption model is function of
two parameters: The total execution time and the number
and type of instructions executed in the application. In more
detail, for a program Λ, the total energy consumption ET

can be expressed by:

ET (Λ) = e0 · t +

M∑
i=1

ei ·N (Ci) (1)

Where e0 is the static power dissipated, and ei for i =
1, . . . ,M is the energy consumed by each type of instruction
Ci (e.g. integer addition, double multiplication, load dou-
ble from on-chip memory, etc). The function N(·) counts
the number of instructions in the program Λ that belong
to that type of instruction. The simplicity of this model
make it scalable with the number of hardware threads. In
addition, the model considers variations in latency of the
operations produced by diverse mechanism of arbitration in
shared resources and starvation of them.

Finally, the design of the power-aware tiling follows an ap-
proach supported by the solution of a non-linear optimiza-
tion problem that minimizes the energy consumption of the
most power hungry operations. This optimization problem
is targeting to minimize the dynamic energy, this portion is
close related to the amount of work performed, and it does
not depend on how the work is executed (serial or paral-
lel). While latency can be hidden by proper overlapping of
tasks in order to decrease execution time and increase per-
formance, performance optimizations are just decreasing the
static energy consumption but can positively or negatively
impact the dynamic energy consumption.

We have study different approaches to solve this optimiza-
tion problem under different applications such as FDTD,
LU decomposition and matrix multiplication. We have val-
idated our model on a real C64 chip, showing high accu-
racy. Also the power-aware tiling has shown success reduc-
ing the total energy consumption and increasing the power
efficiency.

4. EXPERIMENTAL RESULTS

4.1 Performance
First, we used a microbenchmark to evaluate SS vs DS.

The tasks in this microbechmark process 256B of data from
on-chip memory as follows: The thread copies a vector from

on-chip memory to local memory. Then, it computes the
checksum of the bytes and it stores back the vector in an-
other location of the memory. Figure 1 (left) shows the trade
offs between DS and SS with different number of Thread
Units (TUs). As expected, when few TUs are used, SS is
faster than DS, with the worst case being -27% for 32 TUs.
After 24 TUs, DS has better performance when few task are
used. Finally, after 48 TUs all the datasets favor DS. The
maximum relative speed up is 137%. This speed up occours
with the smallest problem size and the maximum number of
TUs.

Using Matrix Multiplication and on-chip memory, our base-
line used optimized register tiling and SS, its scalability with
the matrix size can be detailed in Figure 1 (center). We fur-
ther increased the performance to 58.95 GFLOPS by using
the Percolation inside the tasks using the same SS but the
scalability remains the same. With the implementation of
DS, the maximum performance and scalability with respect
to the number of TUs increased significantly.

A hierarchical tiling for matrix multiply was also studied.
We used large matrices in off-chip memory using Percolation
for the overlapping of computation and data movement. We
compared two versions of the matrix multiplication: The
first one is a static scheduling approach that assigns compu-
tation and data movement tasks at the beginning of execu-
tion using low latency hardware barriers for synchronization
between tasks. The second one is dynamically scheduled; the
tasks are ready after their dependencies are satisfied [5]. We
have used a Dynamic Percolation that takes advantage of the
in-memory atomic operations available in C64. The results
in figure 1 (right) show the high scalability and performance
of the Dynamic Scheduling approach. On the contrary, the
Static version is not able to surpass half the theoretical peak
performance of C64. In addition, the SS scalability decreases
after 120 TUs.

4.2 Energy Efficiency
Using measurements of instantaneous power on a real chip

and a regression model, the coefficients of equation 1 were
calculated. The results for a subset of the Instruction Set
of C64 are shown on Figure 2 (left). From our analysis,
loads and stores on DRAM (ldddram, stddram) are the
most energy hungry, followed by loads and stores on SRAM
(lddsram, stdsram). There is a difference of two orders of
magnitude in the energy consumption of DRAM operation
and SRAM operations. A deeper analysis using several mi-
crobenchmarks show that the energy consumption is highly
linear with the number of operations of each type. It de-
tails that after memory operations, floating point operations
(fmaddd, fmuld and fmad) and complex integer operations
(mull) consumes similar energy. Integer, logical and regis-
ter movement operations (add, and, mov, li) consumes less
energy than the other classes.

We also evaluated our energy-aware tiling using two appli-
cations: Matrix Multiply (MM) and Finite Difference Time
Domain (FDTD). First, we will compare real measurements
of energy consumption with the estimations made using our
model in order to determine the accuracy of it. Next, we
will compare different tilings with the one designed for been
energy-aware in order to study the advantages of the tech-
nique proposed.

A matrix of size m × m that fits on SRAM was used for
the MM benchmark. Our approach (OptT) was compared

with a dot product register tiling (DPT). Both tilings were
implemented using assembly code in order to use the whole
register file. The FDTD implementation used a problem of
size m× q, the tile size is the maximum possible that fits on
Scratchpad Memory, we compare our diamond tiling (DmT)
with 3 well-known techniques: A rectangular tiling (naive)
(NT), the overlapped tiling (OT) that uses redundant com-
putations in order to tile time and space dimensions and split
tiling (ST) that uses multiple shapes for fully partitioning
the iteration space.

Figure 2 (center) compares the measured energy with the
prediction of our model using the Matrix Multiplication.
Clearly, the predictions have high accuracy to the measure-
ments for the dynamic energy and static energy. The aver-
age error of our model is 26.6% and 0.82% for the dynamic
energy and total energy respectively. In addition, the tiling
proposed decreases the dynamic and total energy consump-
tion in 56.52% and 61.21% on average. Further calculations
show that the power efficiency [MFLOPS/W] increases be-
tween 2.62 and 4.13 times for this benchmark.

For the FDTD benchmark, figure 2 (right) shows the ef-
fectiveness of our energy-aware tiling (diamond tiling) for
decreasing the total and dynamic energy. The total average
energy reduction was 81.26%, 57.27% and 15.69% compared
with split tiling, overlapped tiling and naive tiling respec-
tively. The accuracy of our model is corroborated too; the
average error is 7.3% for the total energy with respect to
real measurements.

5. RELATED WORK
Studies for increasing performance on many-core archi-

tectures with software-managed memory hierarchy and hun-
dreds of independent threads on a single chip have been of
recent interest [9, 2, 11], several approaches used for cache
based systems have been able to increase performance but
they are still far to take full advantage of the hardware and
reach near peak performance even for highly regular appli-
cations [2, 11]. Some of them have shown empirical evidence
about increasing the power efficiency [9, 5].

Under traditional architectures, energy consumption has
been extensively studied [14]. Most of the research in the
area has focused on systems with caches [10]. Models with
high accuracy but also highly complex have been proposed
for serial processors. They uses precise information about
the hardware and they are based on elaborated instruction
scheduling [14]. Extensions of these models to many-core
architectures is highly difficult and not scalable with the
number of hardware threads. Energy efficiency on multipro-
cessors has been focused on the hardware design, including
hardware features like power saving off-chip memory or dy-
namic voltage selection [1].

6. FUTURE WORK
Several studies on regular applications have been done.

A more detailed studies on irregular applications and the
advantages of DS and Dynamic Percolation will allow more
general conclusions. At this point, tilings for high perfor-
mance and energy efficiency have been designed indepen-
dently. Future work is pointing to formulate and solve an
optimization problem for finding a tiling that includes trade
offs between energy efficient and high performance.

-30%

-10%

10%

30%

50%

70%

90%

110%

130%

150%

1 2 4 6 8 12 16 24 32 48 64 96 128156

R
e

la
ti

ve
 S

p
ee

d
 U

p

Thread Units

500 Tasks

1000 Tasks

2000 Tasks

4000 Tasks

 -

 10.0

 20.0

 30.0

 40.0

 50.0

 60.0

 70.0

 80.0

0 100 200 300 400 500

P
e

rf
o

rm
an

ce
(G

FL
O

P
S)

Size m

SS-Baseline

SS Optimized

DS

 -

 10

 20

 30

 40

 50

 60

0 20 40 60 80 100 120 140 160

P
e

rf
o

rm
an

ce
(G

FL
O

P
S)

Thread Units

Static Scheduling and Percolation

Dynamic Scheduling and Dynamic
Percolation

Figure 1: Results for Performance. LEFT : Relative Speed Up of DS vs. SS of Memory Copy. CENTER: Scalability for a
MM in SRAM with 144 Threads. RIGHT : Scalability for a MM of size 6480 × 6480

2.0E+0

2.0E+1

2.0E+2

2.0E+3

2.0E+4

2.0E+5

2.0E+6

0 20 40 60 80 100 120 140 160

Energy (uJ)

Processors

ldddram stddram lddsram
stdsram faddd fmuld
fmad mull add
and mov li
no-op

1E+1

1E+2

1E+3

1E+4

1E+5

0 20 40 60 80 100 120 140

Energy (mJ)

Processors

EsP-DPT EdP-DPT EtP-DPT

EsP-OptT EdP-OptT EtP-OptT

EsM-DPT EdM-DPT EtM-DPT

EsM-OptT EdM-OptT EtM-OptT

1E+3

1E+4

1E+5

1E+6

1E+7

0 10 20 30 40

Energy (mJ)

Processors

EtP-NT EtM-NT EdM-NT

EtP-OT EtM-OT EdM-OT

EtP-ST EtM-ST EdM-ST

EtP-DmT EtM-DmT EdM-DmT

Figure 2: Results for Energy Efficiency. LEFT : Overall comparison of selected ISA. CENTER: Energy consumption (Static
Es, Dynamic Ed and Total Et) vs Predicted model P and Measured M using different tilings for MM with m = 300. RIGHT :
Energy consumption (Static Es, Dynamic Ed and Total Et) vs Predicted model P and Measured M using different tilings for
FDTD with m = 100k and q = 500

7. ACKNOWLEDGEMENTS
This work has been made possible by the generous support

of the NSF through research grants CCF-0833122, CCF-
0925863, CCF-0937907, CNS-0720531, and OCI-0904534.

It was also partly supported by European FP7 project
TERAFLUX, id. 249013.

8. REFERENCES
[1] Andrei, A., Eles, P., Peng, Z., Schmitz, M., Hashimi,

B.: Energy optimization of multiprocessor systems on
chip by voltage selection. Trans. VLSI 15(3), 262 –275
(mar 2007)

[2] Chen, L., Hu, Z., Lin, J., Gao, G.R.: Optimizing the
Fast Fourier Transform on a Multi-core Architecture.
In: IPDPS ’07. pp. 1–8 (Mar 2007)

[3] Coleman, S., McKinley, K.S.: Tile size selection using
cache organization and data layout. In: PLDI’95. pp.
279–290. ACM, New York, NY, USA (1995)

[4] del Cuvillo, J., Zhu, W., Hu, Z., Gao, G.R.: FAST: A
Functionally Accurate Simulation Toolset for the
Cyclops-64 Cellular Architecture. In: MoBS’05. pp.
11–20 (2005)

[5] Garcia, E., Khan, R., Livingston, K., Venetis, I.E.,
Gao, G.R.: Dynamic percolation - mapping dense
matrix multiplication on a many-core architecture.
CAPSL TM098 (June, 2010)

[6] Garcia, E., Orozco, D., Gao, G.: Energy efficient tiling
on a Many-Core Architecture. In: MULTIPROG-2011.
pp. 53–66. Heraklion, Greece (January 2011)

[7] Garcia, E., Orozco, D., Khan, R., Venetis, I.,
Livingston, K., Gao, G.R.: Dynamic Percolation: A
case of study on the shortcomings of traditional

optimization in Many-core Architectures. In: CF 2012.
ACM, Cagliari, Italy (May 2012)

[8] Garcia, E., Orozco, D., Pavel, R., Gao, G.R.: A
discussion in favor of Dynamic Scheduling for regular
applications in Many-core Architectures. In: MTAAP
2012. IEEE, Shanghai, China (May 2012)

[9] Garcia, E., Venetis, I.E., Khan, R., Gao, G.:
Optimized Dense Matrix Multiplication on a
Many-Core Architecture. In: Euro-Par 2010. LNCS,
vol. 6272, pp. 316–327. Springer-Verlag, Ischia, Italy
(August 2010)

[10] Hanson, H., Hrishikesh, M., Agarwal, V., Keckler, S.,
Burger, D.: Static energy reduction techniques for
microprocessor caches. Tran. VLSI 11(3), 303 – 313
(jun 2003)

[11] Hu, Z., del Cuvillo, J., Zhu, W., Gao, G.R.:
Optimization of Dense Matrix Multiplication on IBM
Cyclops-64: Challenges and Experiences. In: Euro-Par
2006. pp. 134–144. Dresden, Germany (Aug 2006)

[12] M. D. Lam, E.E.R., Wolf, M.E.: The cache
performance and optimizations of blocked algorithms.
In: ASPLOS-IV. pp. 63–74. ACM, New York, NY,
USA (1991)

[13] Orozco, D., Garcia, E., Pavel, R., Gao, G.: TIDeFlow:
The Time Iterated Dependency Flow Execution
Model. In: Proceedings of Workshop on Data-Flow
Execution Models for Extreme Scale Computing
(DFM 2011); 20th International Conference on
Parallel Architectures and Compilation Techniques
(PACT 2011). pp. 1–9. IEEE Computer Society,
Galveston Island, TX, USA (October 2011)

[14] Yao, F., Demers, A., Shenker, S.: A scheduling model
for reduced cpu energy. pp. 374 –382 (oct 1995)

