
Towards An Energy-Efficient Scheduler in the Codelet Model

Chen Chen†, Yao Wu†, Joshua Suetterlein†, Long Zheng‡§ and Guang R. Gao†
† Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA

‡ Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
§ Department of Computer Science and Engineering, University of Aizu, Aizu-wakamatsu, 965-8580, Japan

Email: chenchen@capsl.udel.edu

Abstract—This paper uses the IBM Cyclops-64 many-
core architecture as a case study to show how to exploit
locality and save energy in the fine-grain dataflow-inspired
codelet execution model. State-of-the-art codelet scheduling
focuses on dynamic workload balance of codelets (similar
to tasks). While this approach may achieve reasonable
performance since computation resources are fully utilized,
it may not attain optimal energy savings. In this paper,
we propose a novel codelet scheduling algorithm that
targets on energy efficiency. Our algorithm leverages static
information regarding locality among codelets to achieve
better performance and energy efficiency. By using local
buffers to pass data produced in one codelet to another,
both global memory accesses and energy consumption can
be greatly reduced.

I. INTRODUCTION

To continue to reach new levels of performance, HPC
systems are growing extremely large and cumbersome.
Current means for effectively utilizing these systems
are quickly becoming antiquated. For this reason some
are seeking alternate execution models parting from the
unsatisfying MPI and OpenMP models which have dom-
inated today’s parallel paradigm. One such effort is the
Codelet model which aims at providing scalable fine-
grained execution for the upcoming exa-scale era. The
Codelet model finds its inspiration in the dataflow and
its descendants such as the hybrid dataflow/Von Neumann
EARTH execution model [1].

In the codelet model, a program is represented as many
codelets. Each codelet is a small piece of sequential
codes. The codelets form a dependency graph (so called
codelet graph) based on the data production and con-
sumption relations among the codelets. During runtime,
there is a codelet scheduler monitors and updates the
dependency satisfactions on the codelet graph. Once a
codelet has satisfied all its dependencies, the codelet
scheduler will try to execute the codelet on an avail-
able processor. Comparing to the traditional coarse-grain
models, the codelet model may achieve better resource
utilization due to its finer granularity on scheduling.

1This work was supported by European FP7 project TERAFLUX, id.
249013 and also partially supported by Japan Society for the Promotion
of Science (JSPS).

State-of-the-art codelet schedulers mainly focus on
workload balancing. Once a processor is available, the
scheduler will immediately schedule one ready codelet
(if applicable) to it. Energy efficiency issue is left for
programmers to study. In this paper, we propose a novel
scheduling algorithm that targets on energy efficiency via
automatic locality exploitation. Our major observation is
as follows: If two codelets have potential locality (i.e.,
one produces some data and the other consumes the same
data), then a codelet scheduler may exploit the potential
locality by scheduling the two codelets on the same core.
Then the producer codelet may store data on a local buffer
(e.g., local scratchpad memory in each core of the IBM
Cyclops-64 chip) for the consumer codelet to load. In
such a way, the data is not necessary to go though global
memory which normally consumes much more energy
than the local storage.

Our scheduling algorithm firstly generates a static
scheduling plan that assigns the codelets to the proces-
sors. During runtime, the codelet scheduler follows the
scheduling plan to execute the codelets. The algorithm
assumes that potential locality between every two depen-
dent codelets is statically known. In most cases, this in-
formation can be easily obtained from programmer hints,
compiler analysis, or profiling. The potential locality is
represent as the weight of each edge in the codelet graph.

The algorithm is as follows: Initially, all the edges are
put into an edge pool. Then the algorithm picks the max
edge (i.e., the one with highest weight) from the pool.
The two ends of the edge will be scheduled to the same
processor in some adjacent execution order. The edges
against the scheduling will be removed from the edge
pool. The algorithm continues this process of picking and
removing until the edge pool is empty.

The experimental result on our developed Cyclops-
64 emulator shows that the algorithm reduces up to
59.7% of global memory accesses and 57.9% of energy
consumption for randomly generated codelet graphs as
well as matrix multiplication and merge sort.

REFERENCES

[1] K. B. Theobald, “EARTH: an efficient architecture for running
threads,” Ph.D. dissertation, McGill University, Montreal, Que.,
Canada, Canada, May 1999, AAINQ50269.


