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Abstract. Chip architectures are shifting from few, faster, functionally
heavy cores to abundant, slower, simpler cores to address pressing phys-
ical limitations such as energy consumption and heat expenditure. As
architectural trends continue to fluctuate, we propose a novel program
execution model, the Codelet model, which is designed for new systems
tasked with efficiently managing varying resources. The Codelet model
is a fine-grained dataflow inspired model extended to address the cum-
bersome resources available in new architectures. In the following, we
define the Codelet execution model as well as provide an implementation
named DARTS. Utilizing DARTS and two predominant kernels, matrix
multiplication and the Graph 500’s breadth first search, we explore the
validity of fine-grain execution as a promising and viable execution model
for future and current architectures. We show that our runtime is on par
or performs better than AMD’s highly-optimized parallel library for ma-
trix multication, outperforming it on average by 1.40× with a speedup
up to 4×. Our implementation of the parallel BFS outperforms Graph
500’s reference implementation (with or without dynamic scheduling) on
average by 1.50× with a speed up of up to 2.38×.
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1 Introduction

While the advent of many-core chips for mainstream computing is still yet to
come, many-core compute nodes have become common in new supercomputers.
A typical compute node may have 32 to 64 threads (or more), spread across
several sockets. In addition, non-uniform memory access (NUMA) has become
the new standard for shared-memory nodes. As thread counts increase, memory
and even compute resources (such as FPUs) per core are becoming more scarce
as seen in the IBM Cyclops-64 [8]. On-chip and off-chip bandwidth must also be
seen as scarce resources requiring intelligent allocation among computing units.
Furthermore, due to diminishing feature sizes, reducing power consumption has
become a predominant obstacle forcing chip manufacturers to simplify the de-
sign of individual cores, removing power-hungry branch predictors and cache
prefetchers.

The increase in available parallelism found in shared-memory nodes has
lead to hard-to-exploit program execution models (PXMs). These models are



still based on the sequential Von Neumann model. The semantics of traditional
threads makes it extremely difficult to guarantee correct execution, and race con-
ditions are the dreaded companion of any parallel programmer [17]. However,
there are PXMs which emphasize properties such as the isolation of execution
and the explicit declaration of producer-consumer relations like the dataflow
program execution models [9].

This paper evaluates an implementation of the codelet model [24], a fine-
grain PXM inspired by dataflow. We implemented the model using a runtime
system, DARTS. We evaluate its usefulness through two case studies comparing
DARTS against OpenMP on square matrix multiplication and the Graph500’s
breadth first search benchmark.

Section 2 provides the necessary background to understand how the codelet
model works, and how DARTS implements it. Section 3 presents our two case
studies, and describe in details how each problem was decomposed. Section 4
presents the related work. We conclude in Section 5.

2 Background

2.1 The Codelet Model

While most prevalent execution models in their current state are struggling to
scale to future machine’s peak performance, we propose the codelet execution
model. The codelet PXM differs fundamentally from its Von Neumann based
competitors, as it draws its roots from the dataflow model.

The Codelet Abstract Machine Model The codelet abstract machine model
(AMM) consists of many nodes connected together via an interconnection net-
work. Each node is expected to have several chips containing hundreds of cores.
Interconnects with varying latencies will connect components at multiple levels.
We envision two types of cores. The first is a simple Computation Unit (CU)
which is responsible performing operations. The other is a Synchronization Unit
(SU) which is responsible for steering computation. Figure 1 depicts the proposed
abstract machine model.
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Fig. 1. The codelet abstract machine model



Codelets: Definition and Operational Semantics

Definition A codelet is a collection of machine instructions which are scheduled
“atomically” as a non-preemptive, single unit of computation. In the codelet
PXM, Codelets are the principal scheduling quantum. Codelets are expected
(not required) to behave functionally, consuming inputs, working locally, and
producing output leaving (ideally) no state behind. A codelet will only fire when
all of the resources it requires are available. This entails having the necessary data
local prior to execution, eliminating the need to hide latencies due to accessing
remote data.

Operational Semantics Codelets differs from a traditional task in their invoca-
tion. Similar to a dataflow actor [9], a codelet is fired once all of its dependencies
(or events) are met. An event primarily consists of the data (i.e. arguments)
required by the codelet to perform its operations; however events may include
the requirement of any particular shared resource or condition such as band-
width, power, etc. Each codelet has a requisite number of event which must be
satisfied before execution. A Codelet’s output is not atomic, meaning a codelet
is capable of producing data, signaling other, and continuing execution differing
from macro-dataflow actors.

Codelet Graphs Codelets are linked together to form a codelet graph (CDG).
In a CDG, each codelet acts as a producer and/or consumer. An initial codelet
may fire, producing a result which multiple codelets can consume, giving way
for more codelets to execute. Since codelets are linked together based on data
dependencies, a CDG may benefit from the same properties as a dataflow graph.
This includes the explicit view of parallelism and determinate execution. Figure
2(a) provides an example of various codelet graph instances. Note that codelets
can signal other codelets outside of their CDG.
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Fig. 2. Examples of codelet graphs (CDGs) and threaded procedures (TPs). TPs are
CDG containers, and allocate the space required to hold inputs, outputs, and interme-
diate results.



Parallel Constructs

Asynchronous Functions Asynchronous functions are called Threaded Proce-
dures (or TPs) in the codelet model. They are closely related to EARTH’s [23]
TPs. Much like its ancestor, the codelet model’s TPs are containers for a codelet
graph. A TP also features a frame, which holds the inputs passed to it, the re-
sulting output, and values local to the contained CDG, as illustrated in Figure
2(b). A TP is invoked functionally, and exists in memory until all of the codelets
in the CDG have finished executing. When a TP is instantiated, it is bound to
a single cluster, equally binding the codelets. Prior to instantiation, a TP clo-
sure may be load balanced between clusters. In this way we utilize hierarchical
parallelism, while providing some form of locality.

Loops Loop parallelism is a crucial form of parallelism and a cornerstone in most
useful parallel execution models. As such the codelet model provides a special
loop construct enabling a CDG to be executed in successive iterations. Loops
without loop-carried dependencies (for all loops) can be executed completely in
parallel.

2.2 A Codelet Runtime

An execution model needs to be enforced to be useful. While using a combination
of hardware and software is preferable to achieve high-performance [15], it is less
time-consuming to implement everything in software that runs on off-the-shelf
hardware. This section presents the Delaware Adaptive Run-Time System –
DARTS.

Objectives There already exists runtime system implementations of the codelet
model currently under development, such as SWARM [16]. While they reuse the
codelet object as the central unit of computation, they generally tend to stray
from the original specification (see Section 4). Hence, our goal is to build a
runtime system which will be true to the codelet model, but also serve as a
research vehicle to evaluate and advance the model itself.

Faithfulness DARTS is implemented to be faithful to the base codelet model.
Hence, it employs codelets as the base unit of computation, but it also requires
the use of threaded procedures as the containers for codelets.

Portability and Modularity DARTS is written in C++. This language is low-
level enough to ensure full control of the underlying hardware, while offering an
object-oriented model which encourages modularity and component reuse. The
latter point is important as we intend to use DARTS to explore and stretch the
limit of the codelet PXM.

Implementation



The Codelet Abstract Machine The codelet AMM described in Section 2.1 re-
quires a concrete mapping to a physical machine. We reused the hwloc library [2]
to obtain the topology of the underlying computation node. Once discovered, the
runtime decides how to decompose the hardware resources (processing elements,
caches, etc.) according to the user-programmer’s selection of preset configura-
tions. For example, one can elect a single socket of an SMP system to act as the
AMM’s cluster, and a single core on the socket to act as the synchronization
unit. New mappings can easily be added to the description of the codelet AMM.

As described in the Section 2.1 each cluster contains two types of cores, one
SU and several CUs. Each core runs one of two types of schedulers. Each CU
runs a micro-scheduler, responsible primarily for executing codelets. An SU runs
a Threaded Procedure scheduler (TP scheduler) which is responsible for load
balancing TPs between clusters, instantiating codelets, and distributing codelets
within a cluster. Having designed DARTS with modularity as a guiding principle,
each scheduler is capable of running several different scheduling algorithms. For
the scope of this work, we use a work-stealing policy similar to Cilk [1] to perform
load balancing between TP schedulers. Within a cluster, micro-schedulers use a
centralized queue to get work.

Codelets The codelet specification is implemented as a Codelet class containing
a synchronization slot (sync slot) and a method called fire. The sync slot is
used to keep track of the outstanding dependencies. The codelet class must
be specialized (i.e. derived) and can be instantiated once the fire method is
expressed. fire is applied on a codelet by a CU’s micro-scheduler when the
codelet is chosen for execution.

Signaling Each sync slot is initialized with the number of events the codelet
requires to run. Codelets within a TP are known statically and can be accessed
through the TP frame. The address of a codelet is required to signal codelets
outside a TP, and can be provided at runtime. DARTS implements a form of
argument fetching dataflow [10], as the act of signaling is dissociated from passing
data. For this reason data is written first, and then a codelet is signaled.

Asynchronous Functions DARTS uses TPs as the main way to instantiate por-
tions of the computation graph. They act exactly as explained in Section 2.1.
Much like codelets, threaded procedures are implemented as classes that must
be derived by the programmer. The ThreadedProcedure class embeds an active
codelet counter (to know when all the codelets it contains have finished execut-
ing), a pointer to a parent TP (the one which invoked it), and a member function
to add a new codelet within the TP. The address of the TP frame (in practice,
the pointer to the TP instance) is passed along to codelets so that they can
access shared variables. Once the last codelet of an instantiated TP has finished
running, the TP is deallocated along with all the codelets it contained.

Loops Currently, DARTS implements three types of loops, a serial loop, a TP
parallel for loop, and a codelet parallel for loop. Parallel for loops (forall) pro-
hibit loop-carried dependencies, conceptually executing all iterations in parallel.



Practically, the iterations are executed when sufficient hardware is available. The
TP forall creates a TP for each iteration of the loop, permitting the iterations to
run on any cluster. The codelet forall loop adds all the iterations to the invoking
TP, pinning them to a single cluster.

Conceptually, a codelet loop requires two codelets, as shown in Figure 3.
These “loop controllers” act as a source and sink. The source codelet is signaled
normally. Upon execution, the source schedules copies of the enclosed CDG.
After the loop body has finished executing, the “leaf” codelets of each iteration
signal the sink codelet. Once all iterations have completed, the sink codelet
deallocates the copied iterations, and signals the next codelet in the CDG. In
practice, the source and sink codelets which control the loop are merged into one,
to avoid useless memory allocations. Once it has performed its source action, the
loop controller is reset to the number of “leaf” codelets multiplied by the number
of iterations prior to scheduling the loop iterations. This approach is sufficient
for supporting nested loops.

Codelet Dependence Loop BodyTP

Source

Sink

Source

Sink

CD
Loop

Fig. 3. Loops in the codelet model.

3 Case Studies

We present two case studies, matrix multiplication and Graph 500’s breadth first
search. The kernels significantly differ from each other. DGEMM is compute-
bound and allows for heavy data reuse, while Graph500 is memory-bound and
stresses the memory subsystem with random accesses. Together, they provide
an ideal base for an initial analysis of both the codelet model and DARTS.

3.1 Experimental Testbed

We evaluate our case studies on a 48-core compute node. It embeds four AMD
Opteron 6234 (Interlagos) processors, clocked at 2.4 GHz. The node is equipped
with 4 × 32 GB of DDR3-1333 ECC memory. Each core of the Interlagos have
access to a 16 KB L1 data cache. Two cores share a 2 MB L2 unified cache. A
6 MB unified L3 cache is shared by six cores. Hence there are two L3 caches
per Interlagos processor. One important architectural aspect of this processor is
that one floating-point unit is shared between two cores. It can process up to
four double precision operations at once using AVX instructions.

Our testbed runs Scientific Linux 6. Both the DARTS runtime and kernels
are compiled with GCC version 4.6.2 with -O3. In the following we compare the
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Fig. 4. Codelet representation of Matrix Multiply.

performance obtained with DARTS and OpenMP. All OpenMP programs were
run with the threads being pinned as far away from each other as possible, to
ensure they had as much cache memory to themselves as possible.

3.2 Matrix Multiplication

We use dense square matrix multiplication (DGEMM) to observe DARTS’ per-
formance on a common compute-bound kernel. Regular kernels like DGEMM
typically perform well in OpenMP-like environments. In this study, we lever-
age AMD’s Core Math Library (ACML) DGEMM kernel in two ways. First,
we use ACML’s sequential DGEMM kernel as an optimized building block in
our DARTS implementation. Second, we compare our results against ACML’s
parallelized OpenMP DGEMM.

Figure 4 illustrates our decomposition of the DARTS version of DGEMM.
We divide matrix A into rows and matrix B into columns producing a tile of
results stored in the C matrix. We leave the ”inner tiling” to the sequential
ACML kernel. This partitioning is achieved using a TP forall loop to divide
matrix A into even groups of rows. We further divide matrix B into columns
using a codelet forall loop per spawned TP. Each parallel codelet instantiated
will compute a tile in matrix C by calling ACML’s DGEMM.

This partitioning translates well to the implementation of the abstract ma-
chine. A single group of rows of matrix A will be processed by a single cluster (a
group of cores sharing a L3 cache). The cores within a cluster will individually
compute a tile of matrix C, using exclusive groups of columns of matrix B, while
sharing rows of matrix A.

Figure 5 presents our results. We present DGEMM’s strong scaling for 4000×
4000 matrices in Figure 5(a). When the number of cores used is small (i.e. less
than 12) the OpenMP kernel clearly outperforms our DARTS implementation.
As the number of cores grows, the gap becomes much more narrow (≈ 8% in
favor of OpenMP). When the full node is used, DARTS achieves the highest
speedup. As the number of cores increases we observe two phenomena: 1) the
FPU is more contended, as it is shared between two cores, and 2) contention on
the memory banks also increases. Such contention is usually low enough w.r.t.
to the number of active cores that there is no visible added latency. However



(a) Strong scalability: N = 4000 (b) Weak scalability: N = 700 to 20,000

Fig. 5. Results for N × N matrix multiplication. The X axis on Figure 5(a) is the
number of cores, and the size of N for Figure 5(b). In both figures, the Y axis shows
the speedup w.r.t. ACML’s sequential DGEMM.

with such a high number of cores simultaneously active, the delays accumulate
in the OpenMP version, having a real impact on the final execution time. This
phenomenon is not undocumented [12].

Figure 5(b) shows various results for runs with 48 active cores and dimen-
sion sizes ranging from 700 to 20, 000. The DARTS implementation outperforms
OpenMP in all but two cases. The average relative speedup between OpenMP
and DARTS is 1.40×, while the maximum speedup is 4× when N = 7001.

3.3 The Graph 500 Benchmark

To further evaluate DARTS, we used the Graph 500 parallel breadth-first search
(BFS) algorithm[20]. BFS represents a class of irregular applications as the la-
tencies of the memory accesses are dependent on the input data and subjected
to NUMA effects. Hassaan et al. [13] present various parallel BFS algorithms in
detail.

We compare a DARTS implementation of Graph 500’s second kernel (BFS)
to the OpenMP reference implementation. The kernel performs an in order BFS
search. Each iteration traverses through a search frontier, visiting nodes and
enqueuing their children for the next iteration’s search frontier until all connected
nodes have been visited. The kernel’s output is a spanning tree.

The OpenMP kernel distributes the nodes in a search frontier using a parallel
loop. After exploring a single search frontier, the OpenMP threads enter a barrier
before exploring the next frontier. By default, the reference implementation uses
static scheduling.

The DARTS implementation uses a similar barrier-like approach. A search
frontier is distributed to one or more codelets, and a sink codelet is used upon
completion. We however, take advantage of the two-level parallelism inherent
in the codelet model. When the frontier is very small, we use a single codelet
to process the frontier. As the frontier grows, we scale the parallelism using a

1 While we present results ranging from N = 700 to N = 20, 000, the overall experi-
ments started with N = 100. These numbers are included in our averages.



codelet loop. This limits the parallelism to a single cluster, reducing the overhead
of useless parallelism and increasing data locality. Once the frontier is large
enough, we partition it into TPs using a TP loop and again into codelets using
a codelet loop. Figure 6(a) illustrates our strategy.
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Fig. 6. Figure 6(a) illustrates the various strategies used to distribute the search fron-
tier among codelets. Figure 6(b) presents our BFS results. The X axis represents the
scale of the graph (2n); the Y axis represents the harmonic mean of several runs re-
ported in TEPS. Higher is better.

Figure 6(b) presents the number of Traversed Edges Per Second (TEPS),
where the greater the number, the faster the implementation. Both implemen-
tations were provided identical graphs generated using the RMAT method [5].
Moreover, we use numactl to interleave memory. This approach was not used
for DGEMM as it provided no performance gains. We did not present results
for OpenMP using dynamic scheduling (creating smaller iteration chunks to in-
crease over-subscription on the machine) as they were significantly worse. For
smaller graph sizes, we see DARTS is able to narrowly outperform the refer-
ence implementation as work is easily balanced. However as the graph grows,
DARTS begins to significantly outperform to the tune of 1.15-2.38×. This is
due to the ease in which DARTS can exploit parallelism, scaling with the size
of the search frontier. Moreover, DARTS balances the workload hierarchically,
first balancing TPs and then codelets. Furthermore by decomposing the machine
such that sockets map to AMM clusters, TPs will be balanced between sockets
ensuring less contended accesses to DRAM. This result is a natural extension
of the Codelet model, where similar approaches are possible, but require much
effort.

4 Related Work

The arrival of multicore and manycore systems has rekindled the interest of effi-
ciently running threads on shared-memory systems beyond the classical Pthread
[19] and OpenMP [7] models.

Intel Threading Building Blocks [21] is a C++ library which provides several
data structures and lock-free constructs to express parallelism. This includs the



recent addition of augmented flow graphs (similar to a dataflow graph). The
Codelet model differs as it advocates event-driven fine grained parallelism, while
TBB focus on offering various types of parallelism.

Charm++ [14] also uses C++ to provide a parallel, object oriented, pro-
graming environment. Charm++’s goals are close to DARTS’, with respect to
resource management, energy efficiency, etc. However, while DARTS is event-
driven, Charm++ is message-driven.

Cilk and its later iterations [1,18] are languages whose underlying execution
model is more fine grain than classical shared-memory models. However, they
do not implement dataflow features to express computations in terms of data
and/or event dependencies.

Habanero Java [4], a “spin-off” of the X10 language [6], extends the initial
Cilk syntax rendering it more flexible. Despite its recent additions of data driven
constructs [22], its execution model does not rely on dataflow as a foundation
unlike the Codelet model (and runtime implementation).

SWARM [16] is another runtime system which implements the codelet execu-
tion model. SWARM does not respect the basic semantics of individual codelets
as proposed in [11], nor does it implement other advocated features, such as
threaded procedures, loop constructs, etc.

The Concurrent Collections (CnC) family of languages [3] is a coordination
language which is very much inspired by dynamic dataflow. CnC utilizes a sep-
aration of concerns, providing a tuning specification to achieve performance. A
stand alone CnC program may not represent an event-driven codelet application,
however with a proper tuning specification they could be equivalent.

5 Conclusion

In this paper we have presented an implementation of the fine-grain dataflow in-
spired codelet execution model. We have tested our implementation on a many-
core shared-memory node, using two kernels. Our parallel implementation of
DGEMM yields on average a 1.40× speedup over AMD’s OpenMP-based im-
plementation for matrix sizes ranging from 100 × 100 to 20, 000 × 20, 000 with
a maximum speedup of 4×. We also compared ourselves to the reference imple-
mentation of the Graph500 BFS benchmark. On average, we reached a speedup
of 1.50×, with a maximum of 2.38×.

Our future work includes further exploring Graph500 kernels in order to show
how the codelet model eases the expression of parallelism and data dependencies
between tasks. This includes exploring unordered BFS kernels which discard the
barrier found at the end of each forall loop. We also want to further develop
DARTS’ parallel loop constructs applying software pipelining techniques, and
building more general constructs to handle streams. Lastly, we would like to
run our experiments on different compute node architectures, such as Intel’s Ivy
Bridge or other C++-supported general purpose many-core systems.
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