Dynamic Percolation: A Case of Study on the
Shortcomings of Traditional Optimization in Many-core
Architectures

Elkin Garcia
University of Delaware

egarcia@udel.edu

loannis E. Venetis
Upiversity of Patras
venetis@ceid.upatras.gr

ABSTRACT

This paper provides a discussion on the shortcomings of tra-
ditional static optimization techniques when used in the con-
text of many-core architectures. We argue that these short-
comings are a result of the significantly different environ-
ment found in many-cores. We analyze previous attempts
at optimization of Dense Matrix Multiplication (DMM) that
failed to achieve high performance despite extensive efforts
towards optimization.

We have found that percolation (prefetching data) and
scheduling play a central role in the performance of applica-
tions. To overcome those difficulties, we have (1) fused dy-
namic scheduling and percolation into a dynamic percolation
approach and (2) we have added additional percolation op-
erations. Our new techniques enabled us to increase the per-
formance of the application in our study from 44 GFLOPS
(out of 80 GFLOPS possible) to 70.0 GFLOPS (operands in
SRAM) or 65.6 GFLOPS (operands in DRAM).

Categories and Subject Descriptors

C.4 [Performance of Systems]: [Modeling techniques];
D.1.3 [Programming Techniques]: Concurrent Program-
ming— Parallel programming; G.1.0 [Numerical Analy-
sis|: General—Parallel algorithms

Keywords
Many-cores, Dynamic Scheduling, Percolation, Cyclops64

1. INTRODUCTION

This paper presents a comprehensive case of study that
shows how to obtain high performance in modern many-core
processors. This study is important because it addresses sit-
uations not previously encountered in multi-core architec-
tures, other shared memory processors or distributed mem-
ory systems. Many-cores provide an environment where
hardware resources are uncomplicated and abundant. Large
numbers of thread units are present, on-chip memory is user-
managed, no automatic data cache is present and hardware

Copyright is held by the author/owner(s).
CF’12, May 15-17, 2012, Cagliari, Italy.
ACM 978-1-4503-1215-8/12/05.

Daniel Orozco
University of Delaware

orozco@udel.edu

Kelly Livingston
University of Delaware
kelly@udel.edu

Rishi Khan

. . __ET International
rishi@etinternational.com

Guang Gao

University of Delaware
ggao@capsl.udel.edu

support for synchronization is available. The environment
is different and requires new optimization paradigms.

Even in the simple case of Dense Matrix Multiplication
(DMM) running on IBM’s Cyclops-64 processor (C64) [2],
extensive efforts toward optimization using a broad range
of static optimization strategies such as multiple levels of
tiling, instruction scheduling, register allocation, manual in-
struction selection, optimized synchronization and several
other only resulted in disappointing performance of 44.12
GFLOPS [4] (out of 80 GFLOPS possible).

These results ultimately show that peak performance could
not be achieved by static techniques alone, even for simple,
highly parallel and regular programs such as DMM. Mainly,
this happens because it is not possible to statically create a
plan that efficiently schedules data prefetching (percolation)
and computation at the right times. The reason is that small
variations in the execution of tasks voids the possibility of
making optimal scheduling decisions a-priory.

To solve the difficulties in percolation and scheduling, we
propose to take advantage of the fine-grain synchronization
primitives available in many-core architectures. Percolation
and dynamic scheduling can be fused together in what we
call dynamic percolation which dynamically schedules data
prefetching at an appropriate time so that (1) data is avail-
able when the computation needs it and (2) the percolation
operation is done when enough memory bandwidth is avail-
able. We apply this technique for the optimization of DMM.

2. BACKGROUND

Cyclops-64: C64 is a homogeneous many-core system on
a chip architecture designed by IBM [2]. A C64 chip is an
aggregation of 160 simple MIMD Thread Units (TU). It has
80 floating point units (FPU), 5 MB of user-managed on-
chip memory (SRAM) with total bandwidth of 320 GB/s
and 1 GB of DRAM with a total bandwidth of 16 GB/s.
There is no automatic data cache. C64 has a total perfor-
mance of 80 GFLOPS per chip when running at 500MHz.
In addition, C64 incorporates efficient support for hardware
barriers and atomic in-memory operations. Each memory
controller has an ALU that allows it to execute atomic op-
erations directly inside the memory controller (both SRAM
and DRAM), without help from a thread unit.

Tiling: Bandwidth is the bottleneck for most naively-
implemented algorithms in C64. On-chip memory is fre-

quently used to perform partial computations (tilings) [1,
4, 8] decreasing the amount of bandwidth required.

Static Scheduling and Data Partitioning: Schedul-
ing is an important optimization for programs once the bot-
tleneck of memory bandwidth has been removed through
tiling. Scheduling presents challenges in itself since it re-
quires assignment of work to processors at the appropriate
time, taking into account issues such as availability of re-
sources and availability of data. The scheduling problem
is complicated by the fact that the tasks scheduled to each
processor are not necessarily identical. The problem seems
simpler for regular and embarrassingly parallel applications,
where the amount of data can be distributed uniformly be-
tween TUs, expecting similar execution times.

Two main factors, under the scenario imposed by many-
core architectures, decrease the expected performance of this
static approach to the point of making it impractical even for
regular applications: 1) The imbalance, due to competition
for shared resources, produced by shared resources even with
tasks that perform similar amounts of work. 2) Partitioning
the problem statically (in equal amounts of work per TU)
may result in non-optimal tile sizes with poor performance.

Percolation: Uninterrupted computation by the process-
ing units in a many-core chip requires data to be available
continuously. Percolation is the process by which data is
moved across the levels of memory hierarchy to meet the ne-
cessities of locality for computation. Percolation is related
to data prefetching in that both achieve the same objec-
tive. As opposed to conventional data prefetching, perco-
lation operations are expressed as tasks on their own, with
precedence relationships with other computational tasks and
with restrictions to available resources such as bandwidth or
on-chip memory space.

It is difficult to know a priori when percolation should be
done. As explained before, not all tiles are of the same size,
and not all tiles take the same amount of time, even when
they perform similar amounts of computations.

3. DYNAMIC SCHEDULING:
SCALABILITY AND PERCOLATION

Our target operation is DMM (C' = A x B) for matrices
with size m x m. We propose a separation of the problem
into two orthogonal subproblems: 1) optimizing DMM in
SRAM moving operands between SRAM and Registers and
2) moving data between DRAM and SRAM. To extend the
matrices to DRAM we simply partition the matrices A, B
and C into nxn blocks A; x, Bk,; and C; ; that fit in SRAM.
This is similar to the blocking performed in traditional cache
hierarchies, resulting in a trade off between computation and
data movement. Each block of C' is calculated by

m

m_q
Cij; = Z Aik - Br,j (1)
k=0

Considering the limitation of bandwidth in the crossbar
and the unpredictable effects of resource sharing, we must
devise a schedule that considers both computation and data
movement efficiently. DMM with operands on DRAM will
require two kind of tasks: Data movement tasks and compu-
tation tasks. Our analysis will follow a bottom-up approach:

1. We will analyze how to optimize MM in SRAM. Two

major aspects are studied and solutions are given in
each case: A load balanced scheduler with low over-
head and an optimized computation task with proper
percolation of operands between SRAM and Registers.

2. We will analyze the MM in DRAM. The main aspect
studied here is a load-balanced scheduler that effec-
tively overlaps data movement and computation tasks
using dynamic percolation

Dynamic Scheduling for Computation Tasks: Static
Scheduling (SS) is suboptimal because it does not consider
two main sources of imbalance in a many-core environment:
1) The amount of work is a function of how the block is
tiled and what fraction of tiles are not of optimum size. 2)
Possible stalls due to arbitration of shared resources.

The unpredictable effects of resource sharing are a formi-
dable challenge for SS. A static block partition exacerbates
problems, especially when the number of processors (P) is
increased. Despite the simplicity and regular behavior in
computation and data access of DMM, static techniques
cannot overcome these problems. At that point, Dynamic
Scheduling (DS) arises as a feasible solution able to alleviate
the overhead and scalability problems of SS.

We propose a work-stealing approach where the computa-
tion of optimum size tiles in matrix C' are scheduled dynami-
cally using atomic in-memory operations. The advantages of
this technique are low overhead and improved load-balance
in the presence of stalls.

Percolation in the Computation Tasks: Most of the
time is spent computing tiles. Therefore, computation de-
serves special attention. Previous Instruction Scheduling [4],
partially hides the latency incurred while fetching operands
from SRAM to registers. The remaining stalls due to laten-
cies in memory movements from SRAM are avoided with a
combination of loop unrolling and percolation.

Dynamic Percolation: A DMM algorithm, that has
been highly optimized through SRAM percolation, is severely
limited in the size of the matrices that can fit in SRAM (i.e.
500 x 500). We extend DMM into DRAM by blocking at
the SRAM level and using our percolated MM algorithm in
SRAM. We assume that the target many-core architecture
has no hardware mechanisms for block transfers (e.g. caches
or DMA engines), forcing us to use TUs for memory move-
ment. The computational TUs must be orchestrated with
data movement TUs to enforce data dependencies: work
cannot be done before a matrix is loaded and a matrix can-
not be unloaded until work using it is completed. Further,
TUs performing data movement should help with computa-
tion if there is no data to move. The straightforward static
scheduling approach using barriers will waste resources while
TUs are waiting on barriers. Also, it is inefficient for all TUs
to copy data at the same time given the limited DRAM
bandwidth. A dynamic scheduling approach replaces the
barriers with finer-grained signals while still enforcing data
dependencies.

We introduced Dynamic Percolation, where data move-
ment tasks and computation tasks were assigned dynami-
cally. Helper Threads (HT) are in charge of the data move-
ment tasks and Computation Threads (CT) are in charge of
the computation tasks. Computation and data movement
tasks are overlapped by a pipelined schema using a double
buffer in SRAM. Moreover, the distribution of computation

60.0

hops)
M
4
!
L d
4

30.0

\.\
’\
~

Performance(G
X
LN \
L 4
A

< Static Scheduling

200 7, -
/ I‘ <®-Dynamic Scheduling
10.0 ,/
l v
b‘l Sizem

0 50 100 150 200 250 300 350 400 450 500

Figure 1: Scalability vs Matrix Size with 156 TUs

tasks and data movement tasks will vary in the course of
Dynamic Percolation.

The Dynamic Scheduler for each set of tasks is imple-
mented using atomic in-memory additions. The main ad-
vantage of this implementation is the low overhead given by
the low latency of in-memory operations. They avoid unnec-
essary roundtrips to memory and they provide the necessary
synchronization due to the atomicity supported by the hard-
ware.

There is also a hierarchy of tasks. Tasks related with
data movement of the C;; blocks are at the highest level,
data movement of the blocks A; and By,; is next with
computation tasks at the lower level.

4. EXPERIMENTAL EVALUATION

This section describes the experimental evaluation based
on the analysis done in section 3 using the C64 architecture
described in section 2. Our baseline parallel DMM imple-
mentation uses Static Scheduling (SS) and the set of opti-
mizations described in [4].

Using the DMM in on-chip SRAM, we compared the scal-
ability of SS and DS with several matrix sizes. Figure 1
shows that SS not only has a lower performance than DS,
but also its performance is affected drastically for smaller
matrices. This is critical to extend our algorithm to off-chip
DRAM because smaller block sizes are required to hide the
latency of data movement tasks.

Figure 2 compares three implementations. (1) A fully par-
allel DMM that uses off-chip DRAM without overlapping
computation and data movement. This implementation is
based in the already optimized version of DMM that uses
on-chip SRAM. (2) A version with the proposed Dynamic
Percolation with optimized computation tasks, the optimum
number of HTs is 24. (3) A version that uses Dynamic Per-
colation, optimized computation tasks, and communication
that was optimized for the on-chip block sizes and the re-
quired transposition of matrix A.

In the best implementation, only 8 HTs were needed, in-
creasing the performance due to the larger number of TUs
available for computation, and ultimately achieving 65.63
GFLOPS with matrices of 6336 x 6336 using 156 TUs: 82.02%
of the theoretical peak performance of C64.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a Dynamic Percolation
technique using two types of tasks — computation tasks and

«¢=Baseline - No Overlapping - Opt
Computation
60.0 —| <M Dynamic Percolation - Opt. > 7
Computation ’
—_ Dynamic Percolation - Opt. P
500 & | . 2
a Computation and Data Movement
g r g
Ir ’ . ®
40.0 7'—.A
7 * /
300 7%/
L L/
3 ¥
200 }’
v
10.0 //./
&
x Thread Units

[20 40 60 80 100 120 140 160

Figure 2: Performance of MM in off-chip DRAM

data movement tasks. The distribution of computation tasks
and data movement tasks will vary in the course of dynamic
percolation. Therefore, our method allows runtime redistri-
bution between computational threads and data movement
threads to achieve better utilization of thread unit resources.
We have shown several advantages of the method proposed
over well-known static techniques for many-core architec-
tures in terms of scalability as a function of the matrix size
for DMM. Our method also load-balances tasks across the
machine because it handles well the unpredictable effects of
resource-sharing, drastically improving performance. We re-
port experimental results of our methods on a real C64 chip
achieving 70.0 and 65.6 GFLOPS (out of 80 GFLOPS) for
DMM with operands in SRAM and DRAM respectively.

Future work will apply this techniques to a broader set of
applications, extending the work on Dynamic Scheduling [3],
High Throughput Algorithms [5, 6] and Efficient Task Rep-
resentation [7] for many-cores.

6. REFERENCES

[1] Chen, L., Gao, G.R.: Performance Analysis of
Cooley-Tukey FFT Algorithms for a Many-core
Architecture. In: HPC 2010 (2010)

[2] Denneau, M., Warren Jr., H.S.: 64-bit Cyclops:
Principles of Operation. Tech. rep., IBM Watson
Research Center, Yorktown Heights, NY (April 2005)

[3] Garcia, E., Orozco, D., Pavel, R., Gao, G.R.: A
discussion in favor of Dynamic Scheduling for regular
applications in Many-core Architectures. In:
MTAAP’12. IEEE, Shanghai, China (May 2012)

[4] Garcia, E., Venetis, L.E., Khan, R., Gao, G.: Optimized
dense matrix multiplication on a many-core
architecture. In: Euro-Par’10. Ischia, Italy (2010)

[5] Orozco, D., Garcia, E., Khan, R., Livingston, K., Gao,
G.: Toward high-throughput algorithms on many-core
architectures. TACO 8(4), 49:1-21 (January 2012)

[6] Orozco, D., Garcia, E., Khan, R., Livingston, K., Gao,
G.R.: High throughput queue algorithms. CAPSL
Technical Memo 103 (January, 2011)

[7] Orozco, D., Garcia, E., Pavel, R., Gao, G.: TIDeFlow:
The Time Iterated Dependency Flow Execution Model.
In: DFM 2011. Galveston Island, TX, USA (October
2011)

[8] Orozco, D.A., Gao, G.R.: Mapping the fdtd application
to many-core chip architectures. In: ICPP’09. pp.
309-316. IEEE Computer Society, Washington, DC,
USA (2009)

