
Toward a Software Infrastructure for
the Cyclops-64 Cellular Architecture

Juan del Cuvillo Weirong Zhu Ziang Hu Guang R. Gao
Department of Electrical and Computer Engineering

University of Delaware
Newark, Delaware 19716, U.S.A

{jcuvillo,weirong,hu,ggao}@capsl.udel.edu

Abstract

This paper presents the initial design of the Cyclops-64
(C64) system software infrastructure and tools under devel-
opment as a joint effort between IBM T.J. Watson Research
Center, ETI Inc. and the University of Delaware. The C64
system is the latest version of the Cyclops cellular architec-
ture that consists of a large number of compute nodes each
employs a multiprocessor-on-a-chip architecture with 160
hardware thread units. The first version of the C64 system
software has been developed and is now under evaluation.
The current version of the C64 software infrastructure in-
cludes a C64 toolchain (compiler, linker, functionally accu-
rate simulator, runtime thread library, etc.) and other tools
for system control (system initialization, diagnostics and re-
covery, job scheduler, program launching, etc.)

This paper focuses on the following aspects of the C64
system software: (1) the C64 software toolchain; (2) the
C64 Thread Virtual Machine (C64 TVM) with emphasis on
TiNy ThreadsTM, the implementation of the C64 TVM; (3)
the system software for host control. In addition, we illus-
trate, through two case studies, what an application devel-
oper can expect from the C64 architecture as well as some
advantages of this architecture, in particular, how it pro-
vides a cost-effective solution. A C64 chip’s performance
varies across different applications from 5 to 35 times faster
than common off-the-self microprocessors.

1. Introduction

The C64 is an ambitious supercomputer project currently
under development at IBM Research Laboratory, which
plans to deliver the world’s first petaflop system by 2007.
C64 is designed to serve as a dedicated compute engine
for running high performance computing intensive appli-
cations. A C64 supercomputer is attached to a host sys-

tem through a number of Gigabit Ethernet links. The host
system provides a familiar computing environment to appli-
cations software developers and end users. Besides access
(through the Ethernet links) to a common file server, each
C64 chip can be connected to a serial ATA disk drive.

A C64 is built out of tens of thousands of C64 pro-
cessing nodes. Each processing node consists of a C64
chip, external DRAM, and a small amount of external in-
terface logic. A C64 chip employs a multiprocessor-on-a-
chip architecture containing 160 hardware thread units, half
as many floating point units, on-chip SRAM, on-chip in-
struction cache, bidirectional inter-chip routing ports,and
interface to off-chip DDR SDRAM. On-chip resources are
connected to a crossbar network, which also provides thread
units access to the routing ports that connect each C64 chip
to its neighbors arranged in a 3D-mesh configuration.

In this paper we present a system software architecture,
encompassing components running on the host system and
on C64 nodes, for system management and application de-
velopment and execution. In particular, we focus on the
following aspects of the C64 system software:

• The C64 Thread Virtual Machine (C64 TVM) and its
realization in the form of the TiNy ThreadsTMruntime
library. We outline the three key components of the
C64 TVM: the thread model, where thread manage-
ment issues are presented; the memory model that in-
cludes a presentation on both C64 memory address
space and memory consistency model; and the syn-
chronization model that provides the functionality to
implement mutual-exclusion regions, perform direct
thread-to-thread and barrier-type of synchronizations.
In addition, we discuss how TNT takes advantage
of C64 specific hardware features to leverage perfor-
mance without imposing any additional burden on the
application programmer.

• The C64 software toolchain with emphasis on the sup-

port for segmented memory spaces, which is required
to fully exploit the multi-level memory hierarchy that
is directly visible by the programmer.

• The C64 management system developed to maximize
the utilization of the C64 computing engine. On one
hand, procedures to bootup nodes, verify that all sys-
tems are working properly, and recovering from errors
are aimed to reduce the impact of hardware failures
and minimize downtime. On the other hand, a job
scheduler and launcher focus of preventing C64 nodes
from being idle while jobs are waiting for resources.

Although performance tuning and optimization are not
the objectives of this paper, we also report some initial per-
formance observations to demonstrate what a software de-
veloper can expect to obtain from the C64 architecture. In
particular we demonstrate that for some well known appli-
cations a C64 chip delivers the same performance as dozens
of common off-the-self microprocessors.

2. Cyclops-64 cellular architecture

File
Server

Gigabit

Switch
Ethernet

I/O nodes

Compute nodes

Cyclops64 Supercomputer

node
Control

Front−end
Nodes

Figure 1. Cyclops-64 computing environment

The computing environment we are considering consists
of a host and external file systems connected to a C64 su-
percomputer by means of a Gigabit Ethernet network, see
Figure 1. The host system (shown as consisting of a num-
ber of control nodes and a front-end node) supports applica-
tion program development and execution, as well as system
administration. The file system, which may also contain
multiple (external) file server nodes, provides one means of
file support for the C64 supercomputer. An internal high
bandwidth distributed file system hosted by serial ATA hard
drives attached to each C64 node will also be available to
avoid disk bottlenecks and network congestion.

C64 nodes are arranged in a 3D-mesh network. A frac-
tion of these nodes, labeled as I/O nodes, use the Gigabit
Ethernet port (present in all C64 chips) to connect the C64
supercomputer to the host and external file systems. Each
I/O node will service a number of C64 nodes, called com-
pute nodes, and relay requests and data between the com-
pute nodes and the host and file server systems. The I/O
nodes and compute nodes communicate via packets over the
3D-mesh network only. This 3D-mesh provides the high
bandwidth necessary for internode communication in run-
ning application programs.

There is a separate control network that connects the
C64 system to the host system. This control network car-
ries commands from the host system to each C64 node. A
C64 node attaches to this control network via its JTAG inter-
face. The host system uses this control network to initialize
the C64 system, monitor its status while programs are in
execution, and reconfigure and restart C64 after hardware
failures. Details of the initialization and configuration pro-
cedures are not the focus of this paper and will be discussed
elsewhere.

Gigabit
ethernet

FPGA

Control
network

1 2Processor 80 Chip

Node

FP interface

SP SP

GM

TU

SP

TU

HDFP

GM

TU

GM

SP

A−switch

GM

Host

TU

GM

SP SP
3D−mesh

TU TU

GM

FP

Crossbar Network

DDR2 SDRAM
memory
Off−chip

controller

Figure 2. Cyclops-64 node

In Figure 2, we show the architecture of a C64 node.
Each processing node consists of a C64 chip, external
DRAM, and a small amount of external interface logic.
Each C64 chip has 80 processors, each containing two
thread units, a floating-point unit and two SRAM memory
banks of 32KB each. A 32KB instruction cache, not shown
in the figure, is shared among five processors. A thread
unit is a simple 64-bit in-order RISC processor core with
a small instruction set architecture (60 instruction groups)
operating at 500MHz. In the C64 chip architecture there is
no data cache. Instead a portion of each SRAM bank can be
configured as scratchpad memory. Such a memory provides
a fast temporary storage to exploit locality under software
control. Processors are connected to a crossbar network that
enables intra-chip communication, i.e. access to other pro-
cessor’s on-chip memory as well as off-chip DRAM, and
inter-chip communication via the input and output ports

of the A-switch, which is the communication device that
connects each C64 chip to its nearest neighbors in the 3D-
mesh. The intra-chip network also facilitates access to spe-
cial hardware devices such as the Gigabit Ethernet port and
the serial ATA disk drive attached to each C64 node.

Finally, Figure 3 illustrates the physical arrangement of
a C64 supercomputer, which corresponds to a24× 24× 24

logical configuration.

320Gflops / 4GB DRAM
Board

80Gflops / 5MB SRAM

I−CacheProcessor

ChipProcessor
1Gflops / 64KB SRAM

Intra−chip Network

System
1.1Pflops

15.3Tflops
192GB

Rack

13.8TB

SRAM

SRAMUnit
Thread

Thread
Unit

FP

Figure 3. Cyclops-64 supercomputer

3. Cyclops-64 toolchain

Figure 4 illustrates the software toolchain currently
available for application development on the C64 platform.
The C/Fortran compilers have been ported from the GCC-
3.2.3 suite, although a more recent porting from the GCC-
4.0.2 is also available. Assembler, linker and other binary
utilities are based on binutils-2.11.2. To fully exploit C64
multi-layered memory hierarchy, the toolchain is designed
to support segmented memory spaces that are not contigu-
ous. In other words, multiple sections of code, initialized
and uninitialized data may be allocated on each memory
region, just like in some toolchains for embedded proces-
sors. To direct the allocation of sections, pragmas are pro-
vided to specify the memory areas were the user would like
to place certain variables or procedures. For instance, fre-
quently used data structures can be put in the scratchpad
memories, closer to the processor/thread units. In general,
applications should be designed having in mind the on-chip
and off-chip memories latency and bandwidth, such that in
the end they make the best use out of the memory. The cur-
rent toolchain with pragma support for segmented memory
spaces is the first step towards this goal.

The C standard and math libraries are derived from those
in newlib-1.10.0. Functions (libc/libm) are thread safe, i.e.

libompc.a

libshm.a

libcnet.a

libtnt.a

libm.a

FAST

libc.a

Assembler

Linker

OpenMP

GNU CC

User Application

Figure 4. Cyclops-64 software toolchain

multiple threads can call any of the functions at the same
time. Nonetheless, mutual exclusion is guaranteed by effi-
cient spin locks. In addition, memory functions have been
optimized taking into account the memory hierarchy and
C64 ISA support for multiple load and store operations that
make a more efficient use of the memory bandwidth.

The TNT microkernel/runtime system library provides
the software and application developer with the function-
ality to write multithreaded programs: thread manage-
ment, support for mutual exclusion, synchronization among
threads, etc. In order to achieve high performance and scal-
ability, the implementation of such functionality tries to
match as close as possible the architecture underneath the
microkernel/RTS, as explained in the next section.

The Cnet communication protocol is also part of the mi-
crokernel. This software component controls the A-switch,
and supports SHMEM, a one-sided communication library,
on top of it. SHMEM provides a shared global address
space, data movement operations between locations in that
address space, and synchronization primitives that greatly
simplify programming for a multi-chip system such as C64.

To carry out our research until a hardware platform is
available, we wrote FAST: an execution-driven, binary-
compatible simulator of a multichip multithreaded C64 sys-
tem. FAST accurately reproduces the functional behavior
and count of hardware components such as chips, thread
units, on-chip and off-chip memories, and the 3D-mesh net-
work. Although FAST is not cycle accurate, we have shown
it is useful for performance estimation [3].

4. Cyclops-64 thread virtual machine

As we described in the introduction, one important
role of the C64 system software is to implement a vir-
tual machine. This virtual machine, called C64 Thread
Virtual Machine, can be viewed as a multichip multipro-
cessor extension to the base C64 instruction set architec-

ture. In this section, we present a refinement of the C64
Thread Virtual Machine along with its implementation,
TiNy ThreadsTM(TNT) [4]. TNT has been designed and
developed to support a multithreaded programming model
for a cellular multithreaded architecture such as Cyclops.
Given C64 special features, it was not our intention to de-
velop an OS for this platform that would put a consider-
able overhead on top of a machine that is aimed for sim-
plicity from the bottom up. Instead we decided to imple-
ment TNT directly on top of the hardware architecture as
a micro-kernel/run-time system library that takes advantage
of C64 hardware features while providing an interface that
shields application programmers and system software de-
velopers from the complexities of the architecture wherever
possible. The C64 Thread Virtual Machine includes three
components: a thread model, a memory model and a syn-
chronization model.

4.1. Thread model

Although C64 architecture supports user and supervisor
operation modes, execution is non-preemptive. That means
once an application starts running on the C64 there is no
mechanism available to interrupt the program unless an ex-
ception occurs. However, the C64 instruction set architec-
ture design includes efficient support for thread level execu-
tion. For instance, it provides a sleep instruction, such that
a thread can stop executing instructions for a number of cy-
cles or indefinitely. While asleep a thread may be woken
up by another thread through a hardware wake-up signal.
Such a signal is generated when a store to a thread-specific
memory-mapped port is executed.

In the TNT thread model, thread execution is non-
preemptive and software threads map directly to hardware
thread units. In other words, after a software thread is as-
signed to a hardware thread unit, it will run on that hard-
ware thread unit until completion. Furthermore, a sleeping
thread will not be swapped out so that idle hardware re-
sources can be assigned to another software thread. As in
other thread models, a waiting thread (waiting on an exter-
nal event/synchronization) goes to sleep; such a thread is
woken up by another thread through the hardware signal.

4.2. Memory model

On C64 there is no hardware virtual memory man-
ager, which means the three-level memory hierarchy of the
C64 chip is exposed to the programmer. The C64 hard-
ware chip supports direct memory access from all thread
units/processors to the shared address space covering the
on-chip memory (interleaved and scratchpad sections) and
the off-chip DRAM banks associated with the chip. That is,
all threads see a single non-uniform shared address space.

On-chip SRAM memory space is limited in the current tech-
nology to 5MB, so it should be viewed and used as tempo-
rary storage during computation. There is no hardware data
cache used in the C64 design. Off-chip DRAM should be
considered as the main memory. In addition, it has been
proven that the C64 architecture behaves as sequentially
consistent for the interleaved and off-chip memories. How-
ever, hardware cannot guarantee a “Lamport order” of the
accesses to the scratchpad memory space, hence no sequen-
tial consistency can be assumed.

TNT is a memory-aware runtime library that takes ad-
vantage of C64 explicit memory hierarchy by placing fre-
quently used data in scratchpad memories that are closer to
the processor/thread units. Upon initialization each soft-
ware thread is given control over a well determined re-
gion of the scratchpad memory, which is allocated to every
physical thread unit at boot time. Such a section of mem-
ory holds the thread descriptor, a fixed-size structure (192
bytes) that holds all the information required to properly
handle the thread, including its stack pointer, and a small
amount of thread local data directly managed by the user.

4.3. Synchronization model

C64 architecture has a rich set of hardware supported in-
memory atomic instructions. Unlike similar instructions on
common off-the-shelf microprocessors, atomic instructions
in the C64 only block the memory bank where they oper-
ate upon while remaining banks continue servicing other re-
quests. In addition, threads within a C64 chip are connected
to a 16-bit signal bus that provides a means for very fast
communication of a small amount of information. Thread
units also have an interthread interrupt device, which is
mapped to memory. This device allows one thread to in-
terrupt another (or itself).

TNT provides a unique spin lock algorithm for shared
memory synchronization designed to make best use of the
C64 architecture supported in-memory atomic instructions
and thread sleep/wake-up mechanisms. Moreover, this spin
lock implementation has been proven to outperform lock-
free data structures on C64 [2]. For collective synchroniza-
tion, TNT library provides direct access to the signal bus
interface register. Besides significant improvements in the
execution time of barrier operations, the signal bus reduces
memory traffic and power consumption, as spinning wait-
ing for a signal bus line to drop does not interfere with other
thread units or generate excessive heat. A third type of syn-
chronization in TNT is introduced to express precedence
relations between operations from two different threads. In
the first version of the C64 TVM, we provide a coarse-grain
signal-wait type of synchronization based on the interthread
interrupt that should be placed between a pair of specific
program points within the two threads.

5. Host control software

This section outlines the system software that is specific
to the host. We refer to it as the host control software and its
three main components are: job scheduling and launching,
resource manager and host to C64 communication.

5.1. Job scheduler

Like in other large computing systems [1, 6, 5, 7], the
goal of the job scheduler is to maximize the utilization of the
computing system by minimizing waiting and idle times.
On C64, job scheduling supports both interactive and batch
modes. A C64 system may be partitioned into develop-
ment and production sections. For a fast turn-around, the
development partition may be used interactively while the
production partition is restricted to batch submission. In
interactive mode users are granted access to a small num-
ber of C64 nodes for the purpose of debugging or tuning
applications. Batch jobs submitted by users are put into a
job queue by the queue manager process. Associated with
each job there are certain parameters, including priority and
resource requirements such as number of C64 nodes. Ev-
ery time nodes in the production partition are released, the
job scheduler is awaken and decides which job runs next.
The decision is made based on the list of parameters sub-
mitted with the job as well as runtime factors such as time
awaiting on the queue. In addition, the scheduler invokes a
placement algorithm that determines the set of C64 nodes
assigned to run a job. Placement accounts for faulty nodes
and guarantees the number of nodes requested by the user.

5.2. Resource manager

A resource manager is deployed to manage the system
resources, including C64 and front-end nodes. Its objective
is to minimize downtime of the system due to hardware fail-
ures and hence, to improve the utilization of the system. On
a system as complex as the C64 computing environment,
the sources of failures are numerous. For instance, a thread
unit, floating point unit or memory bank of a chip may be
bad. An entire chip may be inaccessible due to a malfunc-
tion of the A-switch or some link of the 3D-mesh may not
work as expected. The C64 system software in general and
the resource manager in particular detect and try to work
around all these and many other issues. For instance, at
boot time each C64 node is thoroughly tested to determine
its aptitude to run programs. C64 architecture provides a
hardware mapping table (accessible to the resource manager
only) where bad components are marked and effectively re-
moved from the set of active elements. The resulting chip
with a reduced number of resources is still eligible for com-
putation. Similarly, faulty nodes and links may be assigned

to partitions allocated to run jobs. However, these may be
avoided by means of a routing algorithm. Given the nodes
and links status information generated by diagnostics pro-
grams run under the resource manager control, the role of
the routing algorithm is to find at least one path between
any two C64 nodes in a partition and among C64 and front-
end nodes. The ability to remain operational despite of
hardware failures is unique of the Cyclops architecture and
provides a cost-effective solution with unparallel efficiency
among common off-the-shelf microprocessors-based super-
computing systems.

Additionally, the resource manager maintains a cen-
tral database, which provides a reliable and comprehensive
view of the system. Such information eases the design of
the system software. For instance, the job scheduler re-
quires the knowledge of bad chips to ensure the user re-
quirements in terms of minimum number of working nodes
are met. In the event of a hardware failure, for instance a
C64 chip stops responding during the execution of a pro-
gram, this view of the system allows recovery in minimum
time. As soon as a node within the partition where the job
was running is identified as faulty, the remaining C64 nodes
are moved again to the pool of available resources. Notice
that while the status of a partition is verified, other jobs may
be assigned to other partitions independently.

5.3. Host to Cyclops-64 communication

The C64 supercomputer is attached to the host system
through a number of Gigabit Ethernet links. These links, in
addition to the 3D-mesh support all the communication be-
tween C64 and front-end nodes. Therefore, system software
developers are required to handle the specifics of both Eth-
ernet and Cnet protocols to carry out any communication
successfully. To avoid this trouble an uniform communica-
tion protocol layer, called CDP, is added. CDP provides a
global address space across the front-end host and the C64
back-end. Based on CDP, application level protocols are
implemented, including file I/O, debugging, performance
monitoring and host to C64 remote memory communica-
tion. For instance, when a C64 node attempts to open a file,
a request is shipped to the front-end in the form of a CDP
packet. At the host, a daemon performs the operation on be-
half of the back-end and sends the result (file handler) back
to the C64 node where the I/O operation came from. For file
I/O the C64 computing engine always starts the transaction.
However, there are services that are initiated by the front-
end instead. For instance, when a job is scheduled to start
execution on a set of C64 nodes, the job scheduler contacts
the process control thread running on each C64 node and
transfers among other information the program’s image, the
user environment, command line parameters, etc. All this
data communication relies on the CDP protocol as well.

Table 1. Microprocessor parameters

Processor Clock Cache Memory
Intel Centrino 1.86GHz 2MB L2 cache 512MB
AMD Opteron 2.4GHz 1MB L2 cache 3GB
Intel Pentium4 3.2GHz 512KB L2 cache 1GB
Cyclops-64 500MHZ No data cache 1GB

5MB on-chip
memory

When file I/O processing is expected to be intensive, it
would not be judicious to allow the C64 side drive the com-
putation. That would result in numerous I/O requests being
shipped to the front-end that could easily make of the Eth-
ernet links the bottleneck of the entire system. To cope with
this situation, a different computing paradigm is supported,
in which an application consists of two processes: one run-
ning on the front-end, another on the C64 back-end. The
former is responsible for I/O and takes care of preprocess-
ing and off-loading computation to the latter, which accom-
plishes the computational intensive part. Once computa-
tion is done, if any post-processing is required the front-end
will handle it. We enable this scenario with a remote mem-
ory operations library (RMO) that facilitates inter-process
communication. According to our current model, the ap-
plication part running on the front-end cluster sends data to
(push) and gets results from (pull) the C64-side. All the
communication and synchronization primitives provided by
the RMO library are implemented on top of CDP.

6. Experience

We report our experience with two case studies that
demonstrate the cost-effectiveness of the C64 architecture
compared to common off-the-shelf microprocessors.

6.1. Monte Carlo simulation

We start with a Monte Carlo simulation, which is a pop-
ular method for determining option prices. This finance ap-
plication is computational intensive. However, it is also em-
barrassingly parallel, i.e. there would be little communica-
tion among entities (processes or threads) that participate in
the parallel execution. We use this application to compare
the cost performance of a C64 chip with other three micro-
processors: Intel Centrino, AMD Opteron model 250, and
Intel Pentium 4, see Table 1.

On all the platforms we run the sequential algorithm
only. We use typical values as input parameters and take
note of the execution times, see Figure 5. Since the applica-
tion is embarrassingly parallel, a parallel implementation of

the algorithm would yield linear speedup. Furthermore, the
working data set is small enough to fit into a C64 thread
unit’s scratchpad memory. Hence, for the C64 chip, we
estimate the parallel execution time as the execution time
obtained from running the sequential algorithm on a thread
unit divided by the number of thread units available on a
C64 chip, 160 in total. Figure 6 represents the normalized
execution time, which demonstrates that for this applica-
tion a C64 chip delivers the same performance as 35 Intel
Centrino, 25 AMD Opteron or 30 Intel Pentium 4, approx-
imately. A C64 chip is estimated to cost the same as any of
these other microprocessors. Additionally, a C64 chip with
bad thread units due to some fabrication defect still can be
used, increasing the yield and hence the cost performance
of the C64 architecture.

 C64 Thread Unit, 500MHz
 Pentium4, 3.2GHz
 Opteron, 2.4GHz
Centrino, 1.86GHz

 0

 200

 400

 600

 1,000

 1,200

.

E
x
e

c
u

ti
o

n
 T

im
e

 [
m

s
]

 800

Figure 5. Monte Carlo simulation time

 C64 Chip, 500MHz
 Pentium4, 3.2GHz
 Opteron, 2.4GHz
Centrino, 1.86GHz

.

 25

 0

 5

 10

 15

 20

 30

 35

 40

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Figure 6. Normalized simulation time

6.2. FFT algorithm

The Fast Fourier Transform (FFT) is a well known algo-
rithm widely used in a variety of areas, such as signal pro-
cessing. On C64 we implement a one-dimensional double-
precision complex transform whose data set fits into inter-

leaved memory. In Figure 7 we plot the Gflops obtained
for FFTs with different number of data points. The per-
formance approximates to 0.3 floating point operations per
clock cycle per thread unit. For a small number of data
points such as210, performance flattens out after 16 threads,
however for a216-point FFT it scales up to 150 threads, at
which point it delivers almost 20 Gflops.

We looked at the results published in http://www.fftw.org
for other FFT implementations. We found that no conven-
tional microprocessor can achieve a performance in excess
of 4 Gflops, which is one-fifth of what a C64 chip delivers
for the same cost. Although we followed the benchmark
methodology described at the web site, the reader should be
aware that routines that use different formats are not strictly
comparable. Additionally, our results are only a prelimi-
nary estimation. Hence, this exercise should be regarded as
a rough comparison of the relative merits of the C64.

 0

 5

 10

 15

 20

 7 8 9 10 11 12 13 14 15 16

G
flo

ps

lg(N)

1 thread
2 threads
4 threads
8 threads

16 threads
32 threads
64 threads

128 threads
150 threads
159 threads

Figure 7. Gflops for the FFT on a C64 chip

7. Summary

In this paper we presented the first version of the C64
system software. First, we described the C64 software
toolchain available for application development. As part of
the toolchain we focused on the C64 Thread Virtual Ma-
chine, including its key components: the thread model, the
memory model and the synchronization model, as well as
its implementation: TiNy ThreadsTM. We also outlined the
management system software that runs on the host whose
goal is to maximize the utilization of the C64 computing
system. Finally, through two case studies we demonstrate
how C64 provides a cost-effective solution for running com-

puting intensive applications. For FFT and Monte Carlo
simulation, a C64 chip’s performance varies from 5 to 35
times faster than common off-the-self microprocessors.

8. Acknowledgments

We acknowledge the support from IBM, ETI, the De-
partment of Defense, the Department of Energy (DE-FC02-
01ER25503), the National Science Foundation (CNS-
0509332), and other government sponsors. The authors
would like to acknowledge all the people at the CAPSL
group and ETI who have been involved in the Cyclops
project, in particular Brice Dobry, Geoffrey Gerfin, John
Tully and Wesley Toland. Special thanks to Parimala Thu-
lasiraman and Ruppa K. Thulasiram from the University of
Manitoba for providing the Monte Carlo code and Michael
Merrill for the FFT implementation.

References

[1] R. Brightwell and L. A. Fisk. Scalable parallel application
launch on Cplant. InProceedings of SC2001: High Perfor-
mance Networking and Computing, page 263, Denver, Col-
orado, November 10–16, 2001.

[2] J. del Cuvillo, W. Zhu, and G. R. Gao. Landing OpenMP on
Cyclops-64: An efficient mapping of OpenMP to a many-core
system-on-a-chip. InProceedings of the ACM International
Conference on Computing Frontiers, Ischia, Italy, May 2–5,
2006.

[3] J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao. FAST: A func-
tionally accurate simulation toolset for the Cyclops64 cellular
architecture. InProceedings of the Workshop on Modeling,
Benchmarking and Simulation, pages 11–20, Madison, Wis-
consin, June 4, 2005. Held in conjunction with the 32nd An-
nual International Symposium on Computer Architecture.

[4] J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao. TiNy Threads:
A thread virtual machine for the Cyclops64 cellular architec-
ture. InProceedings of the Fifth Workshop on Massively Par-
allel Processing, page 265, Denver, Colorado, April 8, 2005.
Held in conjunction with the 19th International Parallel and
Distributed Processing Symposium.

[5] S. M. Kelly and R. Brightwell. Software architecture of the
light weight kernel, Catamount. Technical report, Sandia Na-
tional Laboratories, Albuquerque, New Mexico, 2005.

[6] A. Oliner, R. K. Sahoo, J. E. Moreira, M. Gupta, and A. Siva-
subramaniam. Fault-aware job scheduling for BlueGene/L
systems. InProceedings of the 18th International Parallel
and Distributed Processing Symposium, page 64, April 2004.

[7] J. Stearley. Towards a specification for measuring Red Storm
reliability, availability, and serviceability (RAS). Techni-
cal report, Sandia National Laboratories, Albuquerque, New
Mexico, May 2005.

