
The Elephant and the Mice: The Role of Non-Strict
Fine-Grain Synchronization for Modern Many-Core

Architectures

Juergen Ributzka, Yuhei Hayashi, Joseph B. Manzano, and Guang R. Gao
University of Delaware

140 Evans Hall
Newark, DE 19716

{ributzka,hayashi,jmanzano,ggao}@capsl.udel.edu

ABSTRACT
The Cray XMT architecture has incited curiosity among
computer architects and system software designers for its
architecture support of fine-grain in-memory synchroniza-
tion. Although such discussion go back thirty years, there is
a lack of practical experimental platforms that can evaluate
major technological trends, such as fine-grain in-memory
synchronization. The need for these platforms becomes ap-
parent when dealing with new massive many-core designs
and applications.

This paper studies the feasibility, usefulness and trade-
offs of fine-grain in-memory synchronization support in a
real-world large-scale many-core chip (IBM Cyclops-64). We
extended the original Cyclops-64 architecture design at gate
level to support the fine-grain in-memory synchronization
feature. We performed an in-depth study of a well-known
kernel code: the wavefront computation. Several versions
of the kernel were used to test the effects of different syn-
chronization constructs using our chip emulation framework.
Furthermore, we tested selected OpenMP kernel loops against
existing software-based synchronization approaches.

In our wavefront benchmark study, the combination of
fine-grain dataflow-like in-memory synchronization with non-
strict scheduling methods yields a thirty percent improvement
over the best optimized traditional synchronization method
provided by the original Cyclops-64 design. For the OpenMP
kernel loops, we achieved speeds of three to fourteen times
the speed of software-based synchronization methods.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—Design studies

General Terms
Design

1. INTRODUCTION
During the 1970’s and 1980’s, a novel computational model

was introduced by Dennis et al. [9] named Dataflow. Under
this model, computation “flows” according to the availabil-
ity of data, which means that several operations can run
in parallel if the dependent data is available to them (and
there are free resources to run them). Under the umbrella of
Dataflow, several interesting structures and methods were
proposed, like the actor’s activity template structure for the
Moonson Machine [16], static dataflow schemas [8] and the
MIT tagged dataflow model [20]. Among these proposed
methods, the I-Structure is a very interesting addition. The
I-Structure was designed as a non-strict fine-grain memory
centric (dataflow style) synchronization method in which the
requesting operations will wait on the memory construct to
be initialized. This behavior allows a consumer operation (i.e.
read) to be issued before a producer operation (i.e. write)
is issued or completed. The consumer operation will have
to wait until the producer operation completes. However,
the waiting happens on the I-Structure construct and frees
the processor (i.e. producer and/or consumer) to do other
useful work. This non-blocking issuing behavior is what we
call the leniency property of the I-Structure. Another prop-
erty of the I-Structure is that it allows a true data centric
synchronization since it permits the synchronization on an
element level (i.e. the I-Structure) instead of depending on
certain control flow constructs such as barriers or signal-
wait. Finally, it allows the synchronization to occur on finer
granularity levels than its control-flow based counterparts.
Nevertheless, it puts the restriction of “single assignment”
on any given location. Due to the overwhelming trend of
frequency scaling and uni-processor performance during the
1990’s, Dataflow research was gently nudged out of main-
stream computing. Due to the emergence of multi-core and
many-core designs that have permeated the computer market
in the last decade, research on Dataflow models and Dataflow
style synchronization have seen a renaissance.

Although many synchronization methods exist today, most
of them are defined under the control-flow style of computa-
tion (i.e. they are processor centric). Most of these methods
are called coarse-grain since they allow synchronization of
structures at a very high level. This incurs high overhead,
which can be manageable on a small number of cores but
quickly becomes a critical performance killer on a large num-
ber of cores. All these synchronization constructs are critical
for applications that exhibit data races, a condition that

occurs when two or more memory operations concurrently
try to access a single memory element and at least one of
them is a write. Data races, if not taken care of, can pro-
duce erroneous or unexpected results in a given application.
Unfortunately, many of the real applications on High Per-
formance Computing (HPC) exhibit this phenomenon due
to the need to use previous computed values on its data
space. Some of the most famous applications are stencil-
like calculations such as the Finite Difference Time Domain
(FDTD) and wavefront communication type algorithms like
Sweep3D. Some of these problems can be parallelized by
program re-structuring or by the insertion of coarse-grain
synchronization.

One well known synchronization construct is signal-wait.
Under this model, the producer sends a signal to the con-
sumer after its write has been completed. Such behavior
guarantees the producer operation to be completed before the
consumer read arrives. However, this also implies that the
consumer will have to block and wait for the signal to arrive.
Although the way that the wait is implemented (busy-wait
versus sleep-and-wakeup approaches) can have a huge impact
on its performance, it still incurs an unnecessary substantial
overhead for the consumer. Furthermore, this has a nega-
tive effect on the processor’s and the toolchain’s ability to
schedule and reorder instructions. The reason for this is that
although the signal and the memory operation are decoupled,
they need to be scheduled in a very restricted manner, affect-
ing other unrelated memory operations. Signal-wait methods
can be implemented in several ways and may need hard-
ware support depending on the architecture. For example,
architectures which use out-of-order engines will require a
memory fence instruction so that memory operations will not
be incorrectly reordered across the wait and force the results
of any memory operations to be “visible” to the whole system.
These strict conditions apply to every memory operation in
the processor, even the ones that do not need synchroniza-
tion. Such overhead can be reduced by certain program
transformations, such as loop unrolling, which allows having
a synchronization operation every nth iterations if unrolled n
times. Although this increases performance, it also increases
the time delay until the next processor can continue program
execution. Due to this behavior, it becomes difficult to scale,
especially for small data sets.

Coarse-grain synchronization constructs like signal-wait
cannot take full advantage of parallelism due to their strict
behavior, overhead, the scheduling penalty, and the control-
flow centric approach. Thus, many architectures have im-
plemented fine-grain synchronization constructs in hardware.
Some examples include the Denalcor HEP[19], Monsoon [16],
the Tera MTA family of processors [2], MDP [5], Cedar [12],
Multicube, KSR1, Alewife/Sparcle [1], the M-Machine [11],
the J-Machine [15], ElDorado (aka Cray XMT) [10] and oth-
ers. One popular way to implement the fine-grain constructs
is to add an extra bit, called the full/empty bit, to each
memory location. This enhancement, along with the addi-
tion of several extensions to the Instruction Set Architecture
(ISA) to handle the full/empty bit, allows fast and efficient
fine-grain dataflow-like synchronization. Since these bits are
in each memory location, a synchronized operation will only
complete if the memory word is in a pre-determined state
(e.g. for loads the full/empty bit must be “full” and for stores
the full/empty bit must be “empty”). Upon completion of
the operation and according to the instruction type, the state

of the memory location might change to a different state or
stay the same. The usage of fine-grain synchronization helps
to achieve good performance and scalability as we will show
in this paper.

Another factor that influences synchronization performance
is the strictness of the operation. In general, strictness refers
to the point of evaluation. If the value is evaluated when it
is requested, it is called strict. If the value is evaluated when
it is needed, it is called non-strict or lenient. In particular,
strict operations stall or block execution until the operation
is completed. Non-strict operations work in an asynchronous
fashion and allow execution to continue even though the
operation has not yet been completed.

Even though the addition of the extra bit to each memory
location allows the implementation of fine-grain synchroniza-
tion constructs, its cost might be very high. The Synchro-
nization State Buffer (SSB) from Zhu et al. [22] mitigates
this problem with a trade-off. This trade-off is based on the
observation that the number of synchronizations at any given
time is much smaller than the number of memory locations in
the system. Therefore, the use of a small buffer to keep track
of the full/empty bits was proposed. However, this approach
lacked the non-strictness/leniency of the I-Structures and
other dataflow-type synchronization constructs.

In this paper, we propose an Extended Synchronization
State Buffer (E-SSB) that combines the advantages of a
small synchronization buffer with the advantages of non-strict
synchronization in a many-core architecture. By adding
the non-strictness, this structure behaves more like an I-
Structure and it can reap all the benefits of dataflow-like
synchronization. We implemented the E-SSB at the gate-
level using the hardware description language (HDL) code
of the original Cyclops-64 architecture and extended it with
our E-SSB implementation. A more detailed description of
the Cyclops-64 architecture is given in Section 2.1. This
enhanced architecture was then emulated on a gate-level
accurate emulation platform, which was also used during the
original chip verification. A more detailed description of the
emulation platform is given in Section 3.1.

Problem Formulation
In the following sections we answer these questions:

How difficult is it to implement and support non-strict
fine-grain synchronization?
New features in chips can be simulated and tested in a fast
and reliable fashion using functional-accurate simulators,
but the real complexity is often misunderstood or just not
implementable. To determine the complexity of fine-grain
synchronization, we performed an implementation at the
hardware description level (HDL) of a real many-core ar-
chitecture. Section 2.4 gives a more detailed description
of the changes that were necessary to support fine-grain
synchronization in the Cyclops-64 many-core architecture.

What are the implications on used chip estate?
The real hardware cost of a new architectural feature can, to
a certain extent, be estimated by chip architects, but its final
resource usage is unknown until an actual implementation
has been performed. In Section 2.5 we discuss and describe
both the additional hardware resources, which are required
to support fine-grain synchronization, and how we obtained
these results.

S
R
A
M

TU 0

FPU

TU 1

S
R
A
M

MPG

Processor 0 S
R
A
M

TU 0

FPU

TU 1

S
R
A
M

MPG

Processor 1 S
R
A
M

TU 0

FPU

TU 1

S
R
A
M

MPG

Processor 2 S
R
A
M

TU 0

FPU

TU 1

S
R
A
M

MPG

Processor 79

D
D
R
2

C
n
t
r
l

3

Host Interface

D
D
R
2

C
n
t
r
l

2

D
D
R
2

C
n
t
r
l

1

D
D
R
2

C
n
t
r
l

0

I
C

1
0

T
U
s

I
C

1
0

T
U
s

I
C

1
0

T
U
s

I
C

1
0

T
U
s

IC Glue

I
C

1
0

T
U
s

I
C

1
0

T
U
s

I
C

1
0

T
U
s

I
C

1
0

T
U
s

IC Glue

I
C

1
0

T
U
s

I
C

1
0

T
U
s

I
C

1
0

T
U
s

I
C

1
0

T
U
s

IC Glue

I
C

1
0

T
U
s

I
C

1
0

T
U
s

I
C

1
0

T
U
s

I
C

1
0

T
U
s

IC Glue

A
-
S
w
i
t
c
h

B
-
S
w
i
t
c
h

96 Port Crossbar

Figure 1: IBM Cyclops-64 (C64) Many-Core Architecture: The architecture consists of 80 processors (Proces-
sor 0 -79). Each processor has two Thread Units (TUs) called TU 0 and TU 1. Both share one Floating-Point
Unit (FPU) and one crossbar port (MPG). Each TU is connected to a SRAM bank, which can be accessed
by all other TUs via the crossbar. Ten TUs share one Instruction Cache (IC). The system has four on-chip
DDR2 memory controllers to access off-chip memory. The A-Switch is used to connect to the six surrounding
neighbors in a 3D-mesh network.

What are the performance gains of non-strict fine-grain
synchronization?
The effort and cost of adding a new architectural feature has
to be validated. In the case of our non-strict fine-grain syn-
chronization construct, we expect a substantial performance
increase. Otherwise, it may be more useful to use chip real
estate for other features or even more cores. In Section 3, we
compare and contrast fine-grain synchronization with other
already existing synchronization constructs of the Cyclops-64
many-core architecture.

How do we ensure the correctness of our implementa-
tion and the given performance prediction with a very
high degree of confidence?
The validation of new features and their true performance is
difficult to measure with software simulators only. Software
simulators may be cycle accurate, but they are slow and
not useful to validate a full chip or even run a benchmark.
Others might be fast, but sacrifice accuracy. In Section
3.1, we describe our emulation system and how we used it
to obtain cycle-accurate performance results of the whole
chip with a very high degree of confidence and the system’s
usefulness for whole chip and system software validation.

The remainder of the paper is structured as follows: Section
2 describes the design and implementation of non-strict fine-
grain synchronization. Section 3 introduces the experimental
testbed and shows our results. Section 4 gives a recap of the
related work. Section 5 concludes the paper.

2. DESIGN AND IMPLEMENTATION OF
FINE-GRAIN SYNCHRONIZATION

Before we go into the details of the design and implemen-
tation of fine-grain synchronization, we will first introduce
the Cyclops-64 many-core architecture. We will then show
our proposed design and its actual implementation for the
given many-core architecture.

2.1 The IBM Cyclops-64 Architecture
The IBM Cyclops-64 (C64) architecture is logically parti-

tioned into 80 homogeneous processors, which are connected
to a 96-port crossbar. A processor contains two Thread
Units (TUs), which share one Floating-Point Unit (FPU).
Therefore, it is possible to have 160 independent and con-
current threads running at the same time. Every TU is
attached to one SRAM bank and each TU can access all
SRAM banks via the crossbar. The SRAM banks can be
configured during chip boot-up into two distinct sections.
One section contributes to the Global Interleaved Shared
Memory; the other section can be used as Scratch Pad Mem-
ory (SPM). A TU has direct, low-latency access to its own
SPM. The SPM of other TUs can still be accessed through
the crossbar. Sequential Consistency is guaranteed for the
Global Interleaved Shared Memory, but not for the SPM.
TUs are in-order single-issue cores and use scoreboarding
for out-of-order completion. They have a quad-ported reg-
ister file (two read ports and two write ports) with 64 ×
64 bit General Purpose Registers (GPRs). All TUs share a
common signal bus, which provides fast barrier support in

hardware. Ten TUs (five processors) share one Instruction
Cache (IC) and four ICs share one crossbar port. There is no
Data Cache. Off-chip DDR2 memory is connected through
four on-chip DDR2 memory controllers and each memory
controller is connected to its own crossbar port. Each chip
can be connected to six neighboring chips in a 3-D mesh
network. The network switch is also integrated into the chip
and has seven connections to the crossbar. The host interface
is connected to one crossbar port. In summary, the chip’s
crossbar interconnect possesses a total of 96 ports: eighty for
the processors, four ports for the IC, four ports for on-chip
DDR2 memory controllers, seven ports for inter-chip com-
munication, and one port for the host interface. A logical
overview of the chip is shown in Figure 1.

The architecture uses an explicit memory hierarchy similar
to the one found in the NVIDIA CUDA or the Cell/B.E.
architecture. Moreover, there is no paging or virtual mem-
ory support between all the memory hierarchy segments.
More information about the C64 architecture and its system
software can be found elsewhere [21, 6, 7].

2.2 SSB: A Recap
The Synchronization State Buffer (SSB) proposed by Zhu

et al. is based on the observation that in any synchronized
program only a small number of synchronized variables are
needed at any point in time [22]. This means that a small
buffer (added to each memory controller) is sufficient to keep
the synchronization metadata of these variables. This reduces
the overhead of keeping N bits for each memory word in the
system as presented in other solutions [10]. Moreover, this
buffer can store additional metadata for a specific variable for
enabling such features as memory-based pointer forwarding
and debugging/tracing capabilities.

In this paper we will only describe the usage of the meta-
data as full/empty bits in the context of Single-Writer-Single-
Reader (SWSR) synchronization. The information saved in
an SSB entry is implementation dependent, but it requires
at least four parts in the original SSB: (1) a state field to
indicate the current synchronization mode; (2) a counter
field; (3) a thread identifier field; and (4) an address field to
specify the memory address to which the entry applies.

The original SSB design had two different SWSR modes.
Mode 1 employed a busy-wait approach for the reader until
the data was ready. The second mode utilized the sleep-
wakeup features of the architecture to reduce crossbar traffic
and energy consumption. The operational semantics for the
SSB synchronization constructs are described as follows:

SSB 1: Busy-Wait.

no record SWSR 1

swsr1_w / success

swsr1_r / success, value

swsr1_r /
fail

swsr1_w /
fail

Figure 2: SSB 1: Busy-Wait

If the writer is first, then an entry is created in the SSB
and the status “SUCCESS” is returned to the writer. When
the load arrives, it is allowed to proceed and the entry is
removed from the SSB. The value and the status “SUCCESS”

are returned to the reader. If the reader is first, then no
entry is created and the status “FAIL” is returned to the
reader. The reader has to retry until the status “SUCCESS”
is returned. The corresponding state diagram is shown in
Figure 2.

SSB 2: Sleep-Wakeup.

no record

SWSR 2
tid = TID
cnt = 1

swsr2_w / success

SWSR 2
cnt = 0

swsr2_r /
success, value

swsr2_r (TID) /
wait

swsr2_w /
tid

swsr2_r /
wait

swsr2_w /
fail

Figure 3: SSB 2: Sleep-Wakeup

If the writer is first, then an entry is created in the SSB
and the status “SUCCESS” is returned to the writer. When
the load arrives, it is allowed to proceed and the entry is
removed from the SSB. The value and the status “SUCCESS”
are returned to the reader. If the reader is first, then an
entry is created and the status “WAIT” is returned to the
reader. The reader goes to sleep and waits to be woken up by
the writer. When the writer arrives, the Thread ID (TID) of
the waiting reader is returned. The writer sends the wakeup
signal to the waiting reader. The reader has now to retry
the load again. This time it will succeed and the entry is
removed from the SSB. The corresponding state diagram is
shown in Figure 3.

If the buffer is full and a synchronization operation tries to
add a new entry, an interrupt is generated and the software
runtime will take control of the buffer. There is no automatic
eviction of entries and flush to memory as a cache would do.

2.3 Design of the Extended Synchronization
State Buffer (E-SSB)

In this section we will explain the design principles for non-
strict fine-grain synchronization and its operational semantics.
We implemented the original SSB and extended it with non-
strict fine-grain synchronization. The major goal in design-
ing our Extended Synchronization State Buffer (E-SSB) was
to improve programmability and ease-of-scheduling for the
compiler. Our major interest were the Single-Writer-Single-
Reader (SWSR) synchronization operations. We added a
third mode which eliminates the overhead of the synchroniza-
tion operation with little additional hardware cost and added
non-strict behavior. For the remainder of this paper we will
refer to these three different modes as SSB 1, SSB 2 and SSB
3, respectively. Furthermore, we extended all modes to sup-
port any data size (byte, half word, word and double word)
and signedness (signed and unsigned) of memory operations.
To support these new features we extended the SSB entry
with the following fields: (5) register identifier; (6) size; and
(7) signdness.

The operational semantics of the non-strict synchronization
is defined as follows:

SSB 3: Non-Strict.

no record

SWSR 3
tid = TID
cnt = 1
gpr = GPR

swsr3_w /

SWSR 3
cnt = 0swsr3_r / value

swsr3_r (TID,GPR) /

swsr3_w / value to tid,gpr

swsr3_w /
interrupt

swsr3_r /
interrupt

Figure 4: SSB 3: Non-Strict

If the writer arrives first, an entry is created in the E-
SSB indicating this scenario. No status code is returned to
the writer, as opposed to Modes 1 and 2. When the load
operation arrives, its corresponding entry in the E-SSB is
obtained (if available) and it is allowed to proceed. Finally,
the entry is removed from the E-SSB and the value of the
requested memory location is returned to the reader. If the
reader arrives first, an entry is created in the E-SSB to store
the Thread ID and register id of the requesting thread unit,
and no data is returned. While waiting for the data to return,
the reader uses scoreboarding to determine if it can continue
issuing other instructions that do not depend on the return
value. When the writer arrives, the value is stored in memory
and also returned to the reader at the same time. Finally,
the entry is removed from the E-SSB. Under this mode, the
synchronization memory operations appear as normal load
and store operations to the processor. The processor only
stalls when a dependency is found between the synchronized
operation and another operation. The corresponding state
diagram is shown in Figure 4.

add r10, r10, r11 add r12, r12, 8 swsr_3 r11, r12

Issuing Instructions

Fetch /
Decode

Reg
Read

Exec

0
1
2
3
4
5
6
7

11

63

Register File

Thread Unit

Crossbar

E-SSB

Memory

Mem
Cntrl

1

4

5

2

3

1 4 5

1 4 5

1 4
6

7

8

9

11
12

1

2

3

4

5

10

6

7

8

9

1011

12

Issue & execute synchronized load

Set scoreboard bit for reg 11

Send E-SSB load
request to
network

Issue & execute
first addition

Issue & stall
second addition.
Reg 11 not
available

E-SSB Load's Data not available.
SSB entry is created

E-SSB Write

Store value to memory

Remove E-SSB entry

Send data to the consumerUnset scoreboard bit for
reg 11 and write the value

Execute the second addition

Thread Unit Activity

Crossbar Activity

Memory Unit Activity

Figure 5: SSB 3 Read Example

Figure 5 illustrates the advantages of the non-strict behav-
ior of an SSB 3 load operation. Even if the load operation is
outstanding, other operations can be issued in order until a
dependency is met. Register dependencies are enforced by
the scoreboard. Another advantage of the non-strict version
is that there are no additonal crossbar packages, meaning
that zero overhead is incurred. An SSB 3 load or store oper-

ation produces the exact same number of crossbar packages
as their normal memory load and store counterparts.

Using these operational semantics, we implemented the
E-SSB in the Cyclops-64 architecture at the HDL level. The
following section gives an overview of the required changes
and implementation decisions.

2.4 Implementation of the Extended Synchro-
nization State Buffer (E-SSB)

In this section, we will describe the architectural changes
we performed to implement fine-grain synchronization in the
Cyclops-64 many-core architecture. The Extended Synchro-
nization State Buffer (E-SSB) required changes mostly in the
Thread Unit (TU), because all the required logic related to
the on-chip memory interface is located there. In particular,
changes were required on the instruction decoder to support
the new E-SSB instructions and the storage interface, which
is responsible for routing memory requests from the network
and the thread unit. Another module, the crossbar interface,
which is shared by two thread units, had to be adapted to
support new crossbar packages. Changes to the crossbar
itself were not required.

The existing design allowed for an easy extension of the
instruction decoder to support the new synchronization in-
structions. The Storage Interface (SI) of the TU required
more extensive changes, because we added the E-SSB in this
module. This was the actual buffer for the metadata and
the associated control logic. The SI orchestrates the data
routing between different requests coming from the network,
TU, and E-SSB and the responses coming from the network
and memory controller.

Some of the original SSB instructions require more than
one result register. One register is required for the return code
and one for the data. Due to restrictions in the instruction
format, crossbar package format, and the register file, we use
the result register and implicitly, the following register as
bundled result registers. For example, the SSB 1 instruction
swsr1_rd rt,ra reads a signed double word value from the
address specified in register ra. The return code is written
to register rt and the value is written to register rt+1. The
write-back register is selected to be the next register after the
return-code register in the register file. The SI in the TU was
adapted to handle this special case and to generate crossbar
packages for the new instructions if necessary. The actual
implementation of the meta-data buffer is a 16-entry 8-way
associative buffer and is 47 bits wide for each entry. The
required fields for an E-SSB entry in this architecture are:
state (4 bits), counter (8 bits), address (15 bits), processor id
(7 bits), thread id (3 bits), register id (6 bits), size (2 bits),
signdness (1 bit), and bits for implementation dependent
features (in this case one bit).

The E-SSB creates special network return packages to
accommodate support for E-SSB return codes, interrupts
and performance counter events. The interrupt is always
raised in the TU that produced it and not in the TU where
the E-SSB is located. This is necessary because even if a TU
is turned off, its SRAM can still be accessed by other TUs.

2.5 Logic Resource Usage of the Extended
Synchronization State Buffer (E-SSB)

New architectural features may sometimes be implemented
very easily, but the associated hardware cost can be over-
whelming and may not be feasible to implement in hardware.

We did a comparison of the Cyclops-64 design with and
without E-SSB. We converted the HDL code to VHDL and
synthesized it with the design compiler, using the generic
technology independent libraries (GTECH) to generate a
VHDL netlist. We then used a tool to analyze the VHDL
netlist and calculated the number of each design primitive.
The design primitives reported for this study are NOT, AND,
OR, XOR, Flip-Flops (FF), and SRAM. An exact gate num-
ber cannot be given, because this depends on the feature
size of the process and the specific component libraries of
the semiconductor foundry. The implementation of the first

Table 1: Logic Resource Usage of the Cyclops-64
Architecture.

Design Primitive Original with E-SSB Increase

NOT 6,946,100 7,364,740 6.03%
AND 10,924,586 11,779,946 7.83%
OR 5,812,398 6,257,358 7.66%
XOR 1,171,951 1,200,671 2.45%
FF 2,140,299 2,350,619 9.83%
RAM(bit) 50,318,560 51,260,640 1.87%

two Single-Writer-Single-Reader Modes (SSB 1 and SSB 2)
required additional buffers in the crossbar interface, which is
solely responsible for an increase of 76,000 FF in the whole
system. We only implemented the first two modes to have a
fair comparison for benchmarking. In the final architecture
it would not be necessary to implement all three modes and
these additional FF will not be required. We still list them
here for completeness to represent the current design.

3. EVALUATION
In this section we first introduce the experimental testbed,

which was used to emulate the Cyclops-64 design. Then we
present the results obtained from the experimental testbed,
using the wavefront computation kernel and selected OpenMP
kernel loops.

3.1 Experimental Testbed
For experimental performance evaluation, we implemented

the proposed Extended Synchronization State Buffer (E-
SSB) at the Hardware Description Language (HDL) level
of the Cyclops-64 (C64) architecture. Moreover, we use the
Delaware Enhanced Emulation Platform (DEEP) to emulate
this many-core architecture. We selected this FPGA-based
emulator due to several of its properties. This emulation
platform is fast and cycle-accurate compared to software
based methods. It is capable of emulating the whole many-
core design with a relatively small number of FPGAs (32
Altera Stratix II) thanks to the Delaware Iterative Multipro-
cessor Emulation System (DIMES) mode. Since the whole
Cyclops-64 design cannot fit into a single FPGA, neither the
FPGAs in DEEP nor any other on the market today, the
design is broken down into sub-modules. These sub-modules
fit on a single FPGA, but many FPGA would be required
to run the entire system and the communication overhead
would be very high. On the other hand, DEEP, running in
DIMES mode, takes an iterative emulation approach [18].
Combinatorial logic equivalent sub-modules are implemented
on only one (or a few) FPGA(s); they are then iteratively
utilized to emulate all instances of the sub-module. Moreover,
stateful elements, like Flip-Flops (FF) and internal RAM

blocks, are isolated and kept independent of the sub-module
instance. By using this approach, the required number of
FPGAs to run the design is drastically reduced. All the
steps described above are done automatically by the DEEP
software stack. Finally, thanks to its debugging facilities
and emulation modes, a design can be quickly debugged and
run. For more information about the DEEP system and its
various modes of operations (including DIMES), please refer
to Ributzka et al. [17]. In the case of the C64 design (with
E-SSB) the average emulation speed is around 20k cycles per
second on DEEP (without using its tracing capabilities).

3.2 Experimental Results

Wavefront
We implemented the wavefront computation kernel in six
different versions. The different versions are serial, barrier,
signal-wait, and SSB Modes 1 to 3. All kernels were hand-
coded in assembly. In all versions, the inner loop is unrolled
four times to reduce the overhead of the synchronization
and to allow for a better overlapping of memory operations
and arithmetic computation. We run the benchmark on
the emulation system for problem sizes starting at 16x16
elements at increments of 16 up to the maximum supported
problem size of 512x512 elements. For each problem size,
we run the wavefront benchmark with different numbers of
threads, starting with one thread and going up by increments
of one to 159 threads1. The runtime was calculated only
for the kernel and the speedup was calculated based on the
results of the serial version. Figure 6 shows the speedups of
the different parallel versions.

Barrier: Even though the hardware-enabled barrier is
very efficient, the speedup of the application is limited. The
weakest link is the slowest thread. All other threads have
to wait for it before they can continue doing useful work.
Using barriers for these kinds of workloads is not necessar-
ily a good choice, and dynamic scheduling approaches have
achieved better results. We are aware of this, but we chose to
demonstrate the barrier implementation for two important
reasons. First, the barrier is supported in hardware and we
wanted to compare different hardware supported synchro-
nization constructs. Second, from a programming point of
view the barriers seems to be an easy and efficient construct,
because the work for each thread is the same. We wanted
to show that this thinking cannot be applied anymore to
many-core architectures and that congestion, bank conflicts,
etc., can have unpredictable impacts on a thread’s execution.
The barrier version of the benchmark achieved a maximal
speedup of 24x.

Signal-Wait: The signal-wait version can be implemented
very efficiently on the Cyclops-64 architecture by taking ad-
vantage of the extensive atomic memory operation support
and the local, low-latency scratch pad memory resulting in
a speedup of 72x. Figure 7 illustrates the synchronization
delay of the different benchmark versions. For all exam-
ples in this illustration, Thread 1 (consumer) always tries
to read the shared data, whereas Thread 2 (producer) is
producing this shared data. The first example shows the
synchronization delay for signal-wait. The dashed arrows
represent accesses to scratch pad memory via the back-door

1The architecture supports up to 160 hardware threads, but
only 159 can be used, because the OS kernel is running on
the first thread unit.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number of Threads

Barrier
Signal-Wait

SSB 1
SSB 2

SSB 3

(a) Wavefront (16x16)

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30

S
p
e
e
d
u
p

Number of Threads

Barrier
Signal-Wait

SSB 1
SSB 2

SSB 3

(b) Wavefront (32x32)

 0

 2

 4

 6

 8

 10

 12

 14

 10 20 30 40 50 60

S
p
e
e
d
u
p

Number of Threads

Barrier
Signal-Wait

SSB 1
SSB 2

SSB 3

(c) Wavefront (64x64)

 0

 5

 10

 15

 20

 25

 30

 20 40 60 80 100 120

S
p
e
e
d
u
p

Number of Threads

Barrier
Signal-Wait

SSB 1
SSB 2

SSB 3

(d) Wavefront (128x128)

 0

 10

 20

 30

 40

 50

 60

 20 40 60 80 100 120 140

S
p
e
e
d
u
p

Number of Threads

Barrier
Signal-Wait

SSB 1
SSB 2

SSB 3

(e) Wavefront (256x256)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 20 40 60 80 100 120 140

S
p
e
e
d
u
p

Number of Threads

Barrier
Signal-Wait

SSB 1
SSB 2

SSB 3

(f) Wavefront (512x512)

Figure 6: Wavefront Speedup

Thread 1 Memory Thread 2

Ti
m

e

wait

fail

load

success

store

Signal-Wait

Thread 1 Memory Thread 2

load

fail

store

SSB 1: Busy-Wait

load

success + data

Thread 1 Memory Thread 2

load

fail

load

store

SSB 2: Sleep-Wakeup

Thread 1 Memory Thread 2

load

store

Thread 1 waiting

SSB 3: Non-Strict

wait

fail

wait

signal

data

success

stall

stall

stall

stall

stall

stall

stall

sleep

stall

wakeup

success + data

stall

data

Figure 7: Synchronization Delay Illustration

each thread unit has to its own scratch pad memory. This
access is much faster, because it does not have to go through
the crossbar. Solid arrows represents memory operations
that go through the crossbar and therefore take more time.
Since the consumer spins on its own local synchronization
variable, changes to this variable are observed with little de-
lay. Once the signal from the producer arrives, the consumer
can continue execution without any further synchronization
related stalls. This allows the overlap of computation and
memory operations after the wait. The producer does not
need to stall at all. This makes signal-wait a very efficient
synchronization construct on Cyclops-64.

Fine-grain In-Memory Synchronization: The differ-
ent SSB versions of the benchmark achieved speedups of
60x, 50x and 94x respectively. We took a closer look at the
benchmarks by using performance counters. In summary, we
can say that the benchmark is not memory bound. The SSB
1 (busy-wait) version has a synchronization failure rate of
150%. That means every synchronizing load operation has
to be repeated 1.5 times on average, because the data had
not been written yet by the producer. The SSB 2 (sleep-
wakeup) version on the other hand had a failure rate of only
1-2%. Nevertheless, the SSB 1 (busy-wait) approach still
achieved better speedups. The second approach generates
fewer memory operations and also saves power, but the price
is a longer synchronization delay, which hinders parallelism
and therefore performance. The SSB 3 (non-strict) version
has a failure rate of 25%, but that only means that the
load arrived before the store. No additional overhead or
memory transactions were required to correct this, because
the memory controller had already taken care of it. The
second illustration in Figure 7 shows that SSB 1 employs
a similar busy-waiting approach as signal-wait, but it has
to go through the crossbar every time. Furthermore, the
producer and the consumer have to stall and cannot over-
lap any other computation or memory operations until the
memory operation on their side has successfully completed.
The SSB 2 sleep-wakeup approach in the next example even
further aggravates this problem, because now the producer
has to wake up the consumer and the synchronization delay
increases further. The last SSB mode solves all the problems
of the previous versions by performing the synchronization
completely in the memory controller. No further action is
required from the producer or the consumer. In this mode
synchronizing memory operations act like normal memory
operations for the thread unit and the synchronization is
transparent to them. This allows aggressive scheduling of
synchronizing and non-synchronizing memory operations and
arithmetic instructions.

OpenMP Kernel Loops
The kernel loops are extracted from SPEC OpenMP bench-
marks, such as 314.mgrid and 318.galgel. As in the original
SSB paper, we compare our SSB versions against the software-
based approaches proposed by Kejariwal et al. [14]. All loops
exhibit the same characteristics, namely, that dependencies
between loop iterations are positive and constant. They
also fulfill our requirement of Single-Writer-Single-Reader,
so our SSB synchronization constructs can be applied. Fig-
ure 8 shows the speedup of the different parallel versions
against the sequential version. SSB 3 clearly outperforms
all other versions, both software and hardware based. An-
other interesting aspect is that we do not lose performance

when we increase the number of threads. K1’s and K2’s
speedups are severely limited, but this is understandable and
expected. K1 only performs a single arithmetic operation
in the loop and therefore the speedup is clearly limited by
it and the only form of parallelism can be obtained from
the number of iterations that can be performed in parallel
without dependence. K2’s story is even worse, because the
iteration dependence is 1. That means none of the iterations
can be performed in parallel. Nevertheless, SSB 3 is still
able to obtain instruction level parallelism between iterations
through its fine-grain non-strict behavior and does not suffer
any performance degradation as the other approaches. K3,
K4 and K5 do not only provide sufficient iteration level par-
allelism due to a larger dependence distance of 8, but also a
larger kernel that provides a great source of cross-iteration
instruction level parallelism that can only be leveraged by
SSB 3.

3.3 Analysis Breakdown
In this section we take an in-depth look at the different

versions of the tested wavefront benchmarks. This in-depth
look consists of breaking down the collected information into
different important activities and overhead such as cycles
spent on useful work, synchronization overhead, loop over-
head, arithmetic stalls, and stalls due to synchronized and
unrelated memory operations, among others. To obtain this
instruction mix, we enabled the program tracing feature on
the emulation engine and obtained the detailed trace of all
160 thread units. Figure 9 shows a break down of the in-

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

Sequential Barrier Signal-Wait SSB 1 SSB 2 SSB 3

C
y
c
le

s

Synchronization Overhead
Stall Memory
Loop Overhead
Stall Arithmetic
Work

Figure 9: Wavefront Execution Runtime Break-
down: This histogram shows a breakdown of cycles
spend on certain important aspects of the program.
The Sequential version shows cycles spend by a sin-
gle thread, whereas the other versions show the ac-
cumulated cycles spend by all 159 threads.

struction mix of the different benchmark versions. We used
the maximum problem size (512x512) for the benchmark
to fully utilize the whole system. The histogram shows the
accumulated cycles spent by all thread units to complete the
work. The serial version uses of course only one thread unit,
whereas all the other versions use 159 thread units. To obtain
the actual execution time, each version has to be divided
by the number of threads used. “Work” contains all instruc-
tions necessary to perform the actual required computation.
This includes the arithmetic instructions and the memory

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

SYS MAP MYS SSB 2 SSB 3

S
p
e
e
d
u
p

2
4
8

16
32
64

128

(a) K1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

SYS MAP MYS SSB 2 SSB 3

S
p
e
e
d
u
p

2
4
8

16
32
64

128

(b) K2

 0

 10

 20

 30

 40

 50

 60

 70

SYS MAP MYS SSB 2 SSB 3

S
p
e
e
d
u
p

2
4
8

16
32
64

128

(c) K3

 0

 20

 40

 60

 80

 100

 120

SYS MAP MYS SSB 2 SSB 3

S
p
e
e
d
u
p

2
4
8

16
32
64

128

(d) K4

 0

 10

 20

 30

 40

 50

 60

 70

SYS MAP MYS SSB 2 SSB 3

S
p
e
e
d
u
p

2
4
8

16
32
64

128

(e) K5

Figure 8: OpenMP Loops Speedup

operations to obtain the data. “Stall Arithmetic” contains
all the stall cycles in the kernel due to dependence on an
unfinished arithmetic instruction. “Stall Arithmetic” can
bee seen as part of “Work”, because it depends on the given
schedule and the arithmetic instruction latency of the archi-
tecture. “Loop Overhead” contains pointer increments, loop
exit checks, branches and branch delays. “Stall Memory” con-
tains all the stall cycles inside the kernel due to instructions
waiting on data to return from memory. “Synchronization
Overhead” contains all the additional instructions, stalls and
branch delays which were required to perform the actual
synchronization. “Function Overhead” contains all the in-
structions, stall cycles, etc, which are not part of the kernel
code, but the surrounding setup code of the function. “Stall
Misc” contains stalls due to the fact that the crossbar port
and the floating-point unit are shared between two thread
units and other architecture related stall cycles. “Function
Overhead” and “Stall Misc” are so small (less than 1%) that
we omitted them in the figure.

The instruction mix break-down, overall, is predictable:
“Work” and “Stall Arithmetic” are uniform across all bench-
marks and indicate a compute-bound kernel. “Loop Overhead”
should also be rather constant across all benchmarks, but
signal-wait and barrier have a much higher loop overhead
than the other versions. A detailed analysis showed that this
increase is solely due to branch delays for the signal-wait
version, because the loop does not fit completely in the in-
struction buffer. The barrier version suffers from the same
problem, but it also has more complex loop exit checks on
top of that. The barrier version also suffers a lot under a
very large amount of memory related stall cycles. This is
due to the pathologic nature of programs that use barriers,
which have normally three distinct phases. During phase
one, all threads try to obtain the data at the same time,
followed by the computation phase with almost no memory
operations. Finally, in the last phase the results are written

back to memory. This behavior makes the first phase a mem-
ory bound problem, which is responsible for the increase in
memory related stall cycles.

Due to the factors described above, the main components
that determine performance are the “Stall Memory” and the
“Synchronization Overhead”. The SSB 3 method shows no
“Synchronization Overhead”, because these cycles are hidden
in the memory stall cycles. Thus, for a fair comparison, both
of these components must be used together to evaluate our
synchronization methods. Under these conditions, SSB 3
still clearly outperforms all other methods, even the highly
optimized signal-wait version.

4. RELATED WORK
Our research was greatly influenced by previous work on

fine-grain synchronization constructs by academia and indus-
try. This includes research on dataflow constructs like the
I-Structure [3], the Synchronization State Buffer (SSB) [22],
and the Tera MTA/Cray XMT [2, 10]. The use of tagged
memory, full/empty bits, and I-Structure has been explained
in Section 1. E-SSB differs in the following aspect from pre-
vious work: It enables “virtual tagging” of the whole memory
space like SSB; it also supports all data sizes of the archi-
tecture and it is not limited to double-word synchronization.
Furthermore, it has been enhanced to support non-strict
synchronization. It has the benefits of SSB, which means
using fewer hardware resources, and the non-strict behavior
of I-Structures. Another approach that gained momentum
in recent years is Transactional Memory (TM) [13, 4], which
also employs a non-blocking synchronization approach. The
major difference with our approach is that in TM, if a trans-
action fails, all changes done inside a transaction must be
rolled back and the transaction has to be restarted. This
results in unnecessary computation every time a transaction
has to be restarted. Our approach does not require this.

5. CONCLUSION AND FUTURE WORK
In this paper, we presented a new design for a dataflow-

like fine-grain synchronization, based on the Synchronization
State Buffer (SSB) presented in [22], and its implementa-
tion at the Hardware Description Level (HDL) of a “real”
many-core architecture. Our experiments were performed on
an emulation engine with gate-level accuracy. The results
surpassed our expectations and show very good scalability
for even small problem sizes. Even for larger problem sizes,
our non-strict synchronization approach surpasses all other
synchronization constructs, such as barriers with hardware
support and signal-wait. The most noticeable result is that
we achieve scalability beyond the 100 core barrier. E-SSB
is the first step toward a new paradigm in code generation
for many-core architectures and we intend to utilize this in
future compiler research.

Acknowledgements
Our utmost respect goes to Monty Denneau for creating
such a great architecture. We also would like to thank all
the reviewers for their comments, suggestions, and help to
improve this paper. This work would have not been possible
without the support by NSF (CCF-0833122, CCF-0925863,
CCF-0937907, CNS-0720531, and OCI-0904534), and other
government sponsors.

6. REFERENCES
[1] A. Agarwal, J. Kubiatowicz, D. Kranz, B. Lim,

D. Yeung, G. D’Souza, and M. Parkin. Sparcle: An
Evolutionary Processor Design for Large-Scale
Multiprocessors. IEEE Micro, 13(3):48–61, 1993.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz,
A. Porterfield, and B. Smith. The Tera Computer
System. In Proceedings of the 4th International
Conference on Supercomputing, pages 1–6. ACM, 1990.

[3] R. Arvind, R. Nikhil, and K. Pingali. I-Structures:
Data Structures for Parallel Computing. TOPLAS,
11(4):598–632, 1989.

[4] B. Carlstrom, A. McDonald, H. Chafi, J. Chung,
C. Minh, C. Kozyrakis, and K. Olukotun. The Atomos
Transactional Programming Language. ACM
SIGPLAN Notices, 41(6):13, 2006.

[5] W. Dally, L. Chao, A. Chien, S. Hassoun, W. Horwat,
J. Kaplan, P. Song, B. Totty, and S. Wills. Architecture
of a Message-Driven Processor. In Proceedings of the
14th Annual International Symposium on Computer
Architecture, pages 189–196. ACM, 1987.

[6] J. del Cuvillo, W. Zhu, Z. Hu, and G. Gao. TiNy
Threads: A Thread Virtual Machine for the Cyclops64
Cellular Architecture. In 19th IEEE International
Parallel and Distributed Processing Symposium, 2005.
Proceedings, page 8, 2005.

[7] J. Del Cuvillo, W. Zhu, Z. Hu, and G. Gao. Toward a
Software Infrastructure for the Cyclops-64 Cellular
Architecture. In High-Performance Computing in an
Advanced Collaborative Environment, 2006. HPCS
2006. 20th International Symposium on, pages 9–9,
2006.

[8] J. Dennis. The Evolution of ’Static’ Dataflow
Architecture. Advanced Topics in Data-Flow
Computing, pages 35–91.

[9] J. Dennis, J. Fosseen, and J. Linderman. Data Flow
Schemas. In International Symposium on Theoretical
Programming, pages 187–216. Springer, 1974.

[10] J. Feo, D. Harper, S. Kahan, and P. Konecny. Eldorado.
In Proceedings of the 2nd Conference on Computing
Frontiers, page 34. ACM, 2005.

[11] M. Fillo, S. Keckler, W. Dally, N. Carter, A. Chang,
Y. Gurevich, and W. Lee. The M-Machine
Multicomputer. In Proceedings of the 28th Annual
International Symposium on Microarchitecture, pages
146–156. IEEE Computer Society Press, 1995.

[12] D. Gajski, D. Kuck, D. Lawrie, and A. Sameh. CEDAR:
A Large Scale Multiprocessor. ACM SIGARCH
Computer Architecture News, 11(1):7–11, 1983.

[13] M. Herlihy and J. Moss. Transactional Memory:
Architectural Support for Lock-Free Data Structures.
In Proceedings of the 20th Annual International
Symposium on Computer Architecture, page 300. ACM,
1993.

[14] A. Kejariwal, H. Saito, X. Tian, M. Girkar, W. Li,
U. Banerjee, A. Nicolau, and C. Polychronopoulos.
Lightweight Lock-Free Synchronization Methods for
Multithreading. In Proceedings of the 20th Annual
International Conference on Supercomputing, pages
361–371. ACM, 2006.

[15] M. Noakes, D. Wallach, and W. Dally. The J-Machine
Multicomputer: An Architectural Evaluation. In ACM
SIGARCH Computer Architecture News, volume 21,
pages 224–235. ACM, 1993.

[16] G. Papadopoulos and D. Culler. Monsoon: An Explicit
Token-Store Architecture. ACM SIGARCH Computer
Architecture News, 18(3a):82–91, 1990.

[17] J. Ributzka, Y. Hayashi, F. Chen, and G. Gao. DEEP:
An Iterative FPGA-based Many-core Emulation
System for Chip Verification and Architecture Research.
In Proceedings of the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, pages
115–118. ACM, 2011.

[18] H. Sakane, L. Yakay, V. Karna, C. Leung, and G. Gao.
DIMES: An Iterative Emulation Platform for
Multiprocessor-System-On-Chip Designs. In 2003 IEEE
International Conference on Field-Programmable
Technology (FPT), 2003. Proceedings, pages 244–251,
2003.

[19] B. J. Smith. Architecture and applications of the HEP
multiprocessor computer system. Real-Time Signal
Processing IV, pages 241–248, 1982.

[20] K. R. Traub. A Compiler for the MIT Tagged-token
Dataflow Architecture. 1986.

[21] Y. Zhang, T. Jeong, F. Chen, H. Wu, R. Nitzsche, and
G. Gao. A Study of the On-Chip Interconnection
Network for the IBM Cyclops64 Multi-Core
Architecture. In 20th International Parallel and
Distributed Processing Symposium (IPDPS), page 10.
IEEE, 2006.

[22] W. Zhu, V. Sreedhar, Z. Hu, and G. Gao.
Synchronization State Buffer: Supporting Efficient
Fine-Grain Synchronization on Many-Core
Architectures. In Proceedings of the 34th Annual
International Symposium on Computer Architecture,
page 45. ACM, 2007.

