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Abstract

This paper reports our experience and lessons learned
in the design, implementation and experimentation of an
instruction-set level simulator for the IBM Cyclops-64 (or
C64 for short) architecture. This simulation tool, named
Functionally Accurate Simulation Toolset (FAST), is de-
signed for the purpose of architecture design verification
as well as early system and application software develop-
ment and testing. FAST has been in use by the C64 architec-
ture team, system software developers and application sci-
entists. We report some preliminary results and illustrate,
through case studies, how the FAST toolchain performs in
terms of its design objectives as well as where it should be
improved in the future.

1. Introduction

It is increasingly clear that the huge number of transis-
tors that can be put on a chip (now is reaching 1 billion and
continues to grow) can no longer be effectively utilized by
traditional microprocessor technology that only integrates a
single processor on a chip. A new generation of technology
is emerging by integrating a large number of tightly-coupled
simple processor cores on a chip empowered by parallel
system software technology that will coordinate these pro-
cessors toward a scalable solution.

This paper reports our experience and lessons learned
in the design, implementation and experimentation of an
instruction-set level simulator for the IBM Cyclops-64 ar-
chitecture that integrates on a single chip up to 150 process-
ing cores, an equal number of SRAM memory banks and
75 floating point units. This simulation tool, named Func-
tionally Accurate Simulator Toolset (FAST), is designed for
the following goals (1) architecture design verification; (2)
early system software development and testing; (3) early

application software development and testing. For our pur-
poses, a cycle accurate (rather than function accurate) sim-
ulator would be too slow for a system consisting of one
or more fully-populated C64 chips. Currently, FAST effi-
ciently handles C64 systems consisting of either a single
processing core, a C64 chip fully populated or a system built
out of several nodes connected with a 3D mesh.

We present several important aspects of the FAST simu-
lator and highlight the tradeoffs faced during its design and
implementation. Some design decisions are made based on
the unique features of the C64 architecture. For instance,
C64 employs no data caches. Instead, on-chip memories are
organized in two levels — global interleaved memory banks
that are uniformly addressable, and scratch memories that
are local to individual processing cores.

FAST has been in use by the C64 architecture team, sys-
tem software developers and application scientists. We re-
port some preliminary results and illustrate, through case
studies, how FAST performs in terms of its design objec-
tives as well as where it should be improved in the future.

2. Cyclops64 chip architecture

The Cyclops-64 (C64) is the latest version of the Cy-
clops cellular architecture designed to serve as a dedi-
cated petaflop compute engine for running high perfor-
mance applications [10]. A C64 supercomputer is attached
— through a number of Gigabit Ethernet links — to a host
system. The host system provides a familiar computing en-
vironment to application software developers and end users.

A C64 is built out of tens of thousands of C64 process-
ing nodes arranged in a 3D-mesh network. Each process-
ing node consists of a C64 chip, external DRAM, and a
small amount of external interface logic. A C64 chip em-
ploys a multiprocessor-on-a-chip design with a large num-
ber of hardware thread units, half as many floating point
units, embedded memory, an interface to the off-chip DDR
SDRAM memory and bidirectional inter-chip routing ports,
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Figure 1: Cyclops-64 node

see Figure 1. A C64 chip has 75 processors, each with two
thread units, a floating-point unit and two SRAM memory
banks of 32KB each. A 32KB instruction cache, not shown
in the figure, is shared among five processors. The C64 chip
has no data cache. Instead a portion of each SRAM bank
can be configured as scratchpad memory (SP). The remain-
ing sections of SRAM together form the global memory
(GM) that is uniformly addressable from all thread units.
On-chip resources are connected to a 96-port crossbar net-
work, which sustains all the intra-chip traffic communica-
tion and provides access to the routing ports that connect
each C64 chip to its nearest neighbors in the 3D-mesh net-
work. The intra-chip network also facilitates access to spe-
cial devices such as the Gigabit Ethernet port and the serial
ATA disk drive attached to each C64 node.

The C64 architecture represents a major departure from
mainstream microprocessor design in several aspects. The
C64 chip integrates processing logic, embedded memory
and communication hardware in the same piece of sili-
con. However, it provides no resource virtualization mech-
anisms. For instance, execution is non preemptive and there
is no hardware virtual memory manager. The former means
a single application can run at a given time on a set of C64
nodes. Additionally, the OS will not interrupt the user pro-
gram running on the thread units unless the user explic-
itly specifies preemption or an exception occurs. The latter
means the three-level memory hierarchy of the C64 chip is
visible by the programmer. From the processing core stand-
point, a thread unit is a simple 64-bit, single issue, in-order
RISC processor with a small instruction set architecture
(60 instruction groups) operating at a moderate clock rate
(500MHz). Nonetheless, it incorporates efficient support for
thread level execution. For instance, a thread can stop exe-
cuting instructions for a number of cycles or indefinitely;
and when asleep it can be woken up by another thread
through a hardware interrupt. Additionally, the integration
of processing logic and memory is further leveraged with a
rich set of hardware supported in-memory atomic instruc-
tions. Unlike similar instructions on common off-the-shelf
microprocessors, atomic instructions in the C64 only block

Table 1: Simulation parameters

Component # of units Params./unit
Threads 150 single in-order issue,

500MHz
FPUs 75 floating point/MAC,

divide/square root
I-cache 15 32KB
SRAM (on-chip) 150 32KB
DRAM (off-chip) 4 256MB
Crossbar 1 96 ports, 4GB/s port
A-switch 1 6 ports, 4GB/s port

the memory bank where they operate upon while the re-
maining banks proceed servicing other requests. This func-
tionality provides a higher memory bandwidth.

3. FAST design and implementation

FAST is an execution-driven, binary-compatible simula-
tor of a multichip multithreaded C64 system. It accurately
reproduces the functional behavior and count of hardware
components such thread units, on-chip and off-chip mem-
ory banks, and the 3D-mesh network, see Table 1. The ac-
tual number of simulated chips is limited by practical rea-
sons, since the memory corresponding to all the chips need
to be allocated in the host machine.

FAST has been developed following a modular ap-
proach, such that additional features could be easily incor-
porated into the existing design. To help the architecture
team with the verification of the C64 chip design, the simu-
lator executes instructions (3.1), models the architecture ex-
ceptions (3.2), reproduces the C64 memory map (3.3) and
produces histograms of the instruction mix as well as de-
tailed traces of all instructions executed (3.4). For the pur-
pose of early system and application software design and
evaluation, in addition FAST accounts for memory and in-
terconnect contention (3.5), supports intra-chip communi-
cation through the A-switch device (3.6) and incorporates
debugging facilities (3.7). Finally, an overview of the simu-
lator internals is provided (3.8).

3.1. Instruction execution

FAST simulates the four-stage pipeline employed in the
C64 architecture, see Figure 2.

At the first stage of the pipeline, an instruction (see Ta-
ble 2) is fetched from the program instruction buffer (PIB)
and decoded. FAST may account for the access to the PIB
and subsequent delay if the instruction has to be read from
the instruction cache or memory, if a miss should occur.
Whenever the branch prediction is incorrect, execution in
a thread unit stalls for three cycles while the pipeline is



Table 2: Instruction set summary

Core Integer and Branch Floating Point

Load, Store Add, Subtract
Load, Store Multiple Multiply, Divide
Add, Subtract [Immediate] Multiply and Add
Multiply, Divide Conversions
Compare [Immediate] Square Root
Trap on Condition [Immediate]
Logic [Immediate]
Shift [Immediate]
Shift left 16 then OR immediate
Insert, Extract
Move if Condition
Branch on Condition
Branch and Link
Exotic Control

Bit Gather (permute bits) All Stop
Count Leading Zeros I-Cache Invalidate
Count Population Move From/To SPR
Load then Op Return from Interrupt
Multiply and Accumulate Sleep

Supervisor Call

SPM

Decode

Mem

Commit
File

Register ALUPIB

I−cache

Global DRAM

Memory

Fetch

Figure 2: Four-stage instruction pipeline

flushed. However, FAST does not reflect the operation of
the branch predictor and regards all conditional branches as
correctly predicted.

In the second pipeline stage, the instruction input
operands are read from the register file. For all the C64 in-
structions, except the floating multiply and add (FMA), one
or two register operands are read in one cycle. FMA in-
structions have three input operands, hence an extra cycle
may be required to read the third operand since the regis-
ter file has two read ports.

In the third stage the instruction is executed. RISC-
like instructions such as integer, floating-point, branch and
memory operations are modeled based on execution times
expressed by �

���
pairs, where � is the execution time in the

ALU, and
�

represents the delay before the result of the in-

Table 3: Instruction timing

Instruction type �
�

Branches 2 0
Count population 1 1
Integer multiplication 1 5
Integer divide, remainder 1 33
Floating add, mult. and conv. 1 5
Floating mult. and add 1 10
Floating divide double 1 30
Floating square root double 1 56
Floating mult. and accumulate 1 5
Memory operation (local SRAM) 1 2
Memory operation (global SRAM) 1 20
Memory operation (off-chip DRAM) 1 36
All other operations 1 0

struction becomes available. Instruction timing reported in
Table 3 is based on information provided by the C64 chip
designer team. For instance, integer division is said to take
one cycle in the ALU but a subsequent instruction will not
be able to use the result until 33 cycles later. During this de-
lay, execution of independent instructions can proceed nor-
mally. However, if the result of an instruction is to be used
by another instruction before it is available, the pipeline will
stall. It is the compiler and programmer responsibility to
cover these delays as much as possible, with the appropri-
ate instruction scheduling.

The result is finally committed in the fourth stage if no
exception is generated. Otherwise, a context switch causes
execution to continue from the address specified by the in-
terrupt vector. When the results are to be put away, conflicts
may occur, since the register file has two write ports. How-
ever, these events are not expected to happen frequently and
FAST does not account for them.

In terms of instruction execution, FAST allows thread
units to fetch, decode and execute instructions indepen-
dently, following the sequence of events dictated by each
thread’s instruction stream. However, care need to be taken
for some special instructions. The sleep instruction, the
wakeup signal, the inter-thread interrupt, etc., all imply
a synchronization between threads. For instance, a thread
unit, while asleep, does not execute any instruction. Dur-
ing this time the simulator will not update its clock counter.
When a wakeup signal is received, the clock counter is set to
that of the remote thread that executed a store in the wakeup
memory area (plus some delay). To handle these synchro-
nizations, threads shall commit instructions once the simu-
lated chip clock reaches the time point at which the instruc-
tion is executed by the thread. In other words, although in-
structions are executed asynchronously they are committed
in a synchronized fashion.
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3.2. Exception handling

Exceptions are thread-specific events. Some are caused
by instructions and trigger what we call synchronous inter-
rupts that cannot be disabled. For instance, an attempt to ex-
ecute an instruction with an invalid opcode generates an il-
legal interrupt. Others, known as asynchronous, are caused
by events such as a timer alarm and can be disabled. While
disabled, only the first exception of each type generated by
a sequence of events is held pending; subsequent ones are
lost. Throughout the instruction’s execution, multiple ex-
ceptions of both classes may occur. FAST checks for ex-
ceptions at the end of the execution stage. Before the results
are put away, if one or more enabled exception exists, FAST
generates an interrupt according to the priority order speci-
fied by the architecture.

3.3. Segmented memory space

The C64 chip hardware supports a shared address space
model: all on-chip SRAM and off-chip DRAM banks are
addressable from all thread units/processors within a chip.
That is, all threads see a single shared address space.

Architecturally, each thread unit has an associated 32KB
SRAM bank. Each memory bank can be partitioned (con-
figured) into two sections: one called “global” (or “inter-
leaved”) section, the other “local” (or “scratchpad”) sec-
tion. All such global sections together form the (on-chip)
global memory in an interleaved fashion that is free of holes
and uniformly addressable from all thread units. Although
scratchpad memory, global memory and off-chip DRAM
memory are addressable from any thread within the chip,
the access is not uniform. Besides having different laten-
cies, these three memories have a separate address space,
resulting in a three level hierarchy. Furthermore, there is no
virtual memory manager in the C64 architecture, hence this
memory hierarchy is directly exposed to the programmer.

The FAST simulator accurately reproduces the C64
memory map by implementing the above mentioned
non-uniform shared address space. It also includes the ad-
dress upper limit special purpose registers (AULx) that
define the highest existing location in scratchpad mem-
ory, global memory and DRAM memory, respectively.
Nonetheless, all memory-specific parameters such as the
number of banks, size of each bank, latency, and band-
width are easily configurable. Additionally, it consid-
ers three protection boundary special purpose registers
(PBx). These registers define regions in scratchpad, inter-
leaved and DRAM memory that can only be written in
supervisor state, which effectively provide a basic mecha-
nism to protect the kernel against malign user code.

3.4. Execution trace and instruction statistics

Given the appropriate command line option, the toolset
generates the execution trace of a program. There are two
mechanisms to select the instructions that are to be stored
in the trace. The user can either specify the time interval
(in clock cycles) for which the program execution is to
be traced, or enclose the instructions to be output to the
trace within TraceOn/TraceOff macros. These macros ac-
cess unarchitected special purpose registers, i.e. SPRs that
control the simulator’s functionality but are not present in
the C64 chip design. The output consisting of a text file
per active thread on the C64 system, contains detailed in-
formation such as clock cycle, instruction executed, source
and target register values, address of the memory location
touched by the instruction, if applicable, and specific infor-
mation regarding events that could have delayed the execu-
tion of the instruction (contention in the crossbar network,
operand not available yet, etc).

FAST may also collect instruction statistics over an ex-
ecution interval and produce histograms of the instruction
mix. Similarly to the procedure available for tracing, the
user can specify an interval in clock cycles or use Stat-
sOn/StatsOff macros to start/stop collecting statistics, re-
spectively. A combined report for each node as well as in-
dividual reports for all active threads are generated.

3.5. Memory and interconnect contention

One of the latest additions to the FAST simulator is a
module that accounts for the contention in the crossbar net-
work and in the memory system.

Figure 3 illustrates the data path between processors and
memory banks on a C64 chip. Every memory instruction ex-
ecuted on a processor results in a network packet delivered
by the crossbar network to the appropriate memory bank
(global SRAM or off-chip DRAM). For load operations, the



memory replies with another packet containing the data re-
trieved from memory.

FAST models the following sources of contention: (1)
Packets issued by threads on the same processor are queued
on a 7-slot FIFO (processor buffer) until they are retrieved
by the crossbar. If a thread issues a memory operation when
the FIFO is full, the pipeline will stall until space is avail-
able; (2) The crossbar retrieves packets from the input ports
and delivers packets to the output ports, one per cycle. If
at the same cycle, two packets are to be delivered to the
same output port, the crossbar blocks one of them arbi-
trarily; (3) Between the crossbar and each memory bank
there is another 7-slot FIFO (memory buffer) where pack-
ets are held until processed by the memory. Whenever this
buffer becomes full, the crossbar stops delivering packets to
this destination. At the same time, it stops retrieving packet
from any input that tries to send packets to the blocked out-
put port; (4) Memory latencies are also taken into account.
SRAM memory banks can perform a load or store operation
every cycle, i.e., 4GB/s per bank. Whereas DRAM memory
can sustain a much lower bandwidth. DRAM memory con-
sists of four banks and each bank is subdivided into four
subbanks. Subbanks can service requests simultaneously,
one every 32 cycles. While a memory subbank is in ser-
vice, an incoming request is held pending in the memory
buffer. Therefore, the DRAM bandwidth is 2GB/s for single
loads and stores. For multiple transfers, using load multiple
(LDM) and store multiple (STM) instructions, the DRAM
bandwidth is 16GB/s instead.

3.6. A-switch device

In FAST, there are two optional modes for simulating the
A-switch: message accurate and packet accurate simulation.
The former is faster but less accurate, since it copies the
whole message directly to the destination node. The latter
models all of the hardware mechanisms involved in trans-
ferring packets double word by double word through the
3D-mesh network. However, this model is still under test-
ing. Mainly, because it does not account for the interaction
between the A-switch and the crossbar network. In other
words, reading from and writing to memory while sending
or receiving messages do not generate the corresponding
packets in the crossbar. Therefore, performance estimations
obtained with FAST for multichip simulations should be re-
garded as less accurate.

3.7. Debugger

FAST integrates a user-friendly assembly-level debug-
ger. In debugging mode, there are commands to set a break-
point, continue with the execution after a breakpoint, single-
step the execution, inspect and modify the values of regis-

ters or memory, etc. Although useful, this method is tedious.
To eliminate the hazard of mapping statements in the source
code to assembly instructions and vice versa, a source level
debugger is a necessary tool. The GNU debugger, GDB, has
been partly ported to the C64 architecture.

3.8. Simulator internals

The simulated C64 system starts running when one of the
three main simulator functions is called. To maximize per-
formance, each function specifically handles a C64 system
consisting of a single processing core, a C64 chip fully pop-
ulated, or a system built out of several nodes. Therefore, the
decision is simply based on the system configuration.

In multinode simulations, the main function starts with a
loop that iterates over all the active threads on all the nodes.
Each thread unit attempts to execute an instruction. For a
new instruction, calls to routines that take care of instruc-
tion fetch, instruction decode, read the input operands from
the register file, and instruction execution, are invoked. If
the thread unit is asleep, stalled waiting for an operand of
due to a resource hazard, or waiting to commit the previ-
ous instruction, it does nothing but return.

Back in the main function, the chip clock is moved for-
ward, just enough to allow one thread unit, at least, to com-
mit the current instruction. Once the clock is updated, the
crossbar and memory banks proceed to flush packets and
memory operations that are to be performed by this time.

Then a second loop iterates over all the threads, regard-
less of their status. First, thread units check whether an ex-
ception occurred, and if it did, the corresponding interrupt
is serviced with the appropriate context switch. If no inter-
rupt was triggered, they try to commit the last instruction.
At this stage, threads compare the chip clock with their own
internal clock. When the execution on the chip reaches the
time step at which a thread can commit an instruction, the
results are put away. Otherwise, the thread waits.

Finally, after the status of the A-switch is updated, exe-
cution returns to the beginning of the main loop. The pro-
cess is repeated until thread units on every node execute the
ALLSTOP instruction in supervisor state.

To simplify the communication among components of
the simulator, the representation of the simulated C64 sys-
tem is kept in a single multilevel data structure. At the chip
level, it contains information regarding thread units, float-
ing point units, on-chip SRAM and off-chip DRAM memo-
ries, I-caches, crossbar model, and A-switch. At the thread
level, it accounts for general, special purpose and accumu-
lator registers, in addition to timing information as to when
the value stored in a general purpose register will be avail-
able, the last decoded instruction, program counter, excep-
tion flags, thread status, and a third-level data structure with
statistics counters.
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4. Experience

The goal of FAST is three-fold: FAST is designed for
the purpose of architect design verification (section 4.1). As
part of the C64 toolchain, FAST provides the basic platform
for early system software development and testing (sec-
tion 4.2). FAST has been in use by other users for appli-
cation development and testing. Although not cycle accu-
rate, the timing information provided by the simulator has
proven to be useful for performance estimation and applica-
tion tuning as well (section 4.3).

4.1. Design verification

For the purpose of architecture design verification, the
execution trace generated by FAST is compared to the out-
put of the VHDL simulator that reproduces the C64 at a gate
level. Initial verification of the C64 design was carried out
following this procedure with a set of short programs in-
tended to test the C64 instruction set architecture [11].

The Cyclops-E is another cellular architecture design,
target to the embedded market. The first hardware imple-
mentation of a single-chip Embedded Cyclops system was
accomplished with DIMES, an FPGA-based multiprocessor
emulation system [21]. Concurrently with the development
of DIMES an earlier version of the FAST simulator, known
as CeDIMES, was also implemented [9]. Since this simula-
tion tool is also binary-compatible, once the hardware em-
ulation system was brought up, design verification started
immediately. A test suite consisting of more than 200 pro-
grams specifically designed to test the Cyclops-E ISA were
run on the actual hardware platform and the results were
compared to those produced by the simulator. The initial
testing revealed a few bugs in the chip design, which were
fixed by the chip architect.

4.2. System software development

4.2.1. Toolchain FAST is part of the software toolchain
available for application development on the C64 platform,
see Figure 4. Programs written in C or Fortran are compiled
using a porting of the GCC-3.2.3 suite. The assembler and
linker, which are based on binutils-2.11.2, along with the
necessary libraries, produce a 64-bit ELF executable that
can then be loaded into FAST and executed. The C stan-
dard and math libraries are based in newlib-1.10.0. In addi-
tion, we wrote the TNT runtime system and the CNET com-
munication libraries to manage hardware resources such as
the thread units and the A-switch, respectively.

4.2.2. Thread library We reported our work in the design
of a thread model for C64 that maps directly to the archi-
tecture assisted by a native thread runtime library, called
TNT (or TiNy Threads) [8]. In the development, debugging
and evaluation of the TNT library, FAST’s capability to ac-
curately simulate a large number of hardware threads with
practical time has proven to be useful.

4.2.3. Spin lock For a thread library, it is important that all
components are efficiently implemented. In multithreaded
environments, especially for architectures like C64 with 150
threads on a chip, spin lock, as an indirect synchroniza-
tion mechanism is known to be a key factor for scalabil-
ity. For this reason, we conducted a study on spin lock al-
gorithms on the C64 architecture. We implemented eight
programs based on well known spin lock algorithms: three
based on test-and-set, one on tickets, two on array queue,
and two on list queue [15]. All programs consist of a short
critical section (a single variable update) enclosed within
calls to procedures that acquire and release a lock follow-
ing the corresponding algorithm. The entire process (lock,
critical section, unlock) is repeated a thousand times as part
of a loop body. We run the programs on FAST with mem-
ory contention enabled and measure the execution time as
well as the overhead due to contention in the crossbar. As
expected, the results show list-based queuing locks are the
most efficient algorithms, see Figure 5. On C64, contrarily
to most shared memory multiprocessors, array-based queu-
ing lock methods do not perform well, because there is no
data cache. In other words, accesses to the array queue are
as expensive as any memory operation seen in test-and-
set based implementations. Indeed, test-and-set based algo-
rithms with linear and exponential backoff perform better.
Not surprisingly, list queue locks generate the least amount
of memory traffic on the crossbar, since threads spin lo-
cally on their own scratchpad memory, see Figure 6. That
means they would interfere least with the normal execution
of a program if it had additional memory accesses. As a re-
sult of this experience, the implementation of mutexes in
the TNT library is based on list queue locks.
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4.2.4. Communication library With the A-switch mod-
ule, FAST can be used to simulate C64 multichip system
configurations. With this feature, we developed a commu-
nication library implemented as several layers, each acces-
sible through its own interface. At the lowest level, the
packet transfer layer accesses the A-switch directly, hid-
ing all hardware details from layers above. A second layer,
built on top of the packet transfer layer, provides user-level
remote memory read and write, inter-chip synchronization
primitives and remote procedure call mechanisms. Finally,
we are in the process of porting the SHMEM library [17] to
the C64 architecture based on the two previous layers.

4.3. Application development and evaluation

To demonstrate FAST is functionally accurate, stable and
hence, useful for software development and performance
estimation, we write several benchmarks programs to con-
firm that the trends predicted by the simulator match to what
the C64 architecture is capable of.

4.3.1. GUPS Table Toy, which is also called Random Ac-
cess benchmark, is an important benchmark included in
the HPC Challenge Benchmark Suite [1]. It uses a metric
known as GUPS (Giga Updates Per Second) to evaluate the
random access capabilities of the memory system. In the
context of this experience, we use Table Toy to verify that
FAST reflects the C64 memory system accurately.

The kernel operations of Table Toy can be summarized
as follows:

1 tmp1 = stable[j]; (load)
2 tmp2 = table[i]; (load)
3 val = tmp2 xor tmp1; (xor)
4 table[i] = val; (store)

The � , � are the pseudo random locations chosen for�������
	
and � �������
	 . Ideally, thread units should access dif-

ferent locations of the
��������	

to avoid conflicts. The
������
	

can be placed either in the on-chip SRAM or the off-chip
DRAM, and is accessed by all thread units. The substitution
table ( � ��������	 ) is allocated in the thread’s scratchpad mem-
ory. The key point is that the last three operations (load, xor,
and store) must be atomic in a multithreaded execution.

Figure 7 shows the GUPS obtained on a C64 node with
up to 150 thread running in parallel. By taking advantage
of C64’s xor m in-memory atomic instruction (xor to mem-
ory), we guarantee the atomicity needed while all data de-
pendences are removed from the kernel loop. Therefore, the
number of memory updates is actually the number of xor m
instructions issued. If the updates are performed in SRAM,
the curve scales well as the number of threads increases,
due to the large on-chip memory bandwidth. On the other
hand, the off-chip DRAM memory bandwidth is limited.
Consequently, the DRAM curve flattens when the number
of threads exceeds 16. In both cases, the maximum achiev-
able memory bandwidth is not reached. It appears that the
pseudo random numbers generated in Table Toy result in
several threads accessing a memory bank at the same time.
Hence, the bandwidth limitation is not due to the crossbar
network but to conflicts accessing the memory banks.

To prove our hypothesis, we write three separate mi-
crobenchmarks with a deterministic access pattern to the
memory banks. In our first microbenchmark, New Toy 1,
each thread issues 3 store operations every 8 cycles. In ad-
dition, each thread targets one SRAM bank only. Therefore,
a processor issues 6 store operations every 8 cycles to the
on-chip SRAM memory. This represents 75% of the peak
throughput of the crossbar which is indeed achieved be-
cause there are no conflicts as the memory bank addressed
by each thread unit is different, see Figure 8. The other mi-
crobenchmarks test the off-chip DRAM memory subsystem
in different ways. In New Toy 2, each thread targets one
of the 16 DRAM subbanks based on the thread identifier.
Therefore, threads 0 and 16 access subbank 0, threads 1 and
17 access subbank 1, and so forth. A DRAM subbank can
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Figure 8: GUPS on a C64 node (New Toy 1)

only service one request every 32 cycles, this is 15 MUPS,
but all 16 subbanks can service requests in parallel. Fig-
ure 9 confirms the expected result. As long as no more than
16 threads are active, the DRAM throughput increases lin-
early, at a rate of 15 MUPS per thread, up to 250 MUPS. In
New Toy 3, every thread executes 16 consecutive stores ev-
ery 22 cycles and each store targets one of the DRAM sub-
banks. That means a thread can issue operations to mem-
ory faster than the memory can handle. Figure 9 shows that
for a small number of active threads, contention can be tol-
erated, and the crossbar and DRAM memory system deliver
the peak throughput, 250 MUPS. Finally, as contention in-
creases, performance drops.

4.3.2. Matrix-matrix-multiply As an example of what
an application developer can expect to learn using the
FAST toolset, we hereby report a tuning experience us-
ing the matrix-matrix-multiply program for a problem size
of ���������	�
����� . Throughout this exercise we use the sim-
ulator’s accurate time counter, the histograms file with
the instruction mix and the execution trace to deter-

 0

 50

 100

 150

 200

 250

 1  2  4  8  16  32  64  128

Number of Threads

New Toy 2
New Toy 3

Figure 9: MUPS on a C64 node (New Toy 2 and 3)

mine the cause of delays and/or bottlenecks that may
prevent the program from achieving higher performance.

Our baseline is a straightforward sequential code with
the matrices stored in DRAM. The program that is compiled
with -O3, achieves 16.7 MFLOPS. From the trace file, we
found that the main reasons for the low performance are the
poor data re-usage and the long latency to access DRAM.
In order to improve the performance, we unroll the two out-
ermost loops 4 times each and manually prefetch data and
re-schedule the instructions with the hints from the trace
files generated by FAST. In the resulting code, data is fed
to the floating point unit in a pipelined manner such that
all load latencies are hidden. This implementation achieves
216.1 MFLOPS, a speedup of 13 compared to the baseline
version. We also parallelized our tuned MxM program to
make use of multiple thread units. As shown in Figure 10,
the curve of the parallel version scales almost linearly up to
32 threads and then flats out because of the bandwidth lim-
itation. Afterwards, it even drops when memory contention
becomes too high. We believe higher performance can be
achieved by employing other techniques. However this is
not the purpose of this experiment.

4.3.3. Multi-chip benchmarks To verify the correctness
(not the accuracy) of FAST’s multichip simulation and the
communication libraries, we developed an assorted set of
multichip multithreaded benchmarks. It includes implemen-
tations of matrix-matrix-multiply, 1D Laplace solver, heat
conduction and Sobel edge detection.

5. Related work

To analyze and understand the impact of various ar-
chitectural parameters and components as well as study
the application performance and get detailed statis-
tics, both academia and industry developed a number
of simulators. Simulation frameworks for microarchi-
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tecture research and design exploration, such as Sim-
pleScalar [7, 3], Microlib [18], Liberty [23], RSIM [12]
and Turantdot [16], concentrate on accurately model-
ing the architecture design and normally they are cycle
accurate. FAST is a functional simulator since cycle accu-
rate simulation would be too slow for a system consisting
of one or more C64 chips. There are also full system sim-
ulators capable of running commercial workloads on an
unmodified operating system, such as SIMOS [20], Sim-
ics [13] and PearPC [4]. A C64 compute engine is attached
to a host system. The host system provides a familiar com-
puting environment to application developers. FAST only
simulates the compute engine running a custom microker-
nel, whereas conventional OS services are provided by the
native OS running on the host system.

Recently a new generation of simulators capable of sim-
ulating SMT and CMP architectures have been devel-
oped: SMTSIM [22], SESC [19], GEMS [14], M5 [5]
and Mambo [6]. It would appear the latter simulation
frameworks as well as extensions of SimpleScalar, Sim-
ics, SimOS and Turantdot are normally used to simulate
2/4/8 way SMT/CMP processors under multiprogram-
ming, thread level speculation, and commercial work-
loads1. FAST is designed to simulate and model a CMP
system consisting of several C64 nodes, each with up to
150 processing cores. However, the C64 architecture is de-
signed for the purpose of running massively parallel
applications, which deal with the complexity of scien-
tific and engineering multithreading workloads.

Probably, the closest related work to FAST is the
Cyclops-32 simulator. These simulators are as simi-
lar as the architectures they simulate. However, there are
significant differences as well. For instance, FAST de-
tects dependences and conflicts as instructions are exe-

1 Based on papers published in HPCA from 2000 to 2005.

cuted. Therefore, it directly produces performance esti-
mates. On the other hand, the C32 simulator does not
have timing information. Performance estimates are gener-
ated by two other performance tools (a cache simulator and
a trace analyzer) that post-process the execution trace pro-
duced by the simulator [2].

6. Summary

This paper presents FAST, a functionally accurate sim-
ulation toolset for the IBM Cyclops-64 architecture that is
fast, flexible and efficient. To the best of our knowledge, it
is the only simulation tool capable of simulating multichip
multithreaded cellular architectures with reasonable accu-
racy and practical speed. We report some preliminary re-
sults and illustrate, through case studies, how the FAST tool
chain accomplishes its purpose of architecture design veri-
fication as well as early system and application software de-
velopment and testing.

As future work, we plan to increase the amount of profile
information FAST produces, including text and data sym-
bols, and to incorporate integer counters to facilitate the per-
formance analysis of multithreaded programs.
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