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Abstract. This paper proposes tiling techniques based on data depen-
dencies and not in code structure.

The work presented here leverages and expands previous work by the
authors in the domain of non traditional tiling for parallel applications.

The main contributions of this paper are: (1) A formal description of
tiling from the point of view of the data produced and not from the
source code. (2) A mathematical proof for an optimum tiling in terms of
maximum reuse for stencil applications, addressing the disparity between
computation power and memory bandwidth for many-core architectures.
(3) A description and implementation of our tiling technique for well
known stencil applications. (4) Experimental evidence that confirms the
effectiveness of the tiling proposed to alleviate the disparity between
computation power and memory bandwidth for many-core architectures.

Our experiments, performed using one of the first Cyclops-64 many-core
chips produced, confirm the effectiveness of our approach to reduce the
total number of memory operations of stencil applications as well as the
running time of the application.

1 Introduction

This paper addresses the problem of how to optimize a class of scientific com-
puting programs called stencil computations running on parallel many-core pro-
cessor architectures. This class of applications performs many read-modify-write
operations on a few data arrays. The main challenge faced by stencil applications
is the limitation of off-chip memory accesses, both in terms of bandwidth and
memory latency.

Tiling, described in [11, 12, 6, 5, 4, 8] and in many other publications, is a
commonly used technique to optimize stencil applications. Tiling transforma-
tions attempt to reduce the number of off-chip memory accesses by exploiting
locality in a program. To that effect, frequently used data is loaded to the local
processor memory where increased bandwidth and better latency are available.

Previous tiling techniques, when applied to stencil applications, achieve sub-
optimal results because they either do not take advantage of the algorithm [5],
they only work for one-dimensional loop structures [8], they require redundant
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computations [4], or, in general, a good tiling solution can not be found because
the particular code written by the programmer does not fit the tiling technique.

Previous research by the authors looked at the problem of tiling stencil ap-
plications from the side of the data produced in the application regardless of the
source code used to produce such data. The question posed was “What program
partitioning will result in maximum locality for stencil applications running on
many-core processors?”, and a partial answer was provided for a particular in-
stance of a 1 Dimensional Stencil application. Evidence on the advantage of the
technique proposed was produced using a simulator [8].

The limitation of memory bandwidth on many-core applications has been
addressed to other levels in the memory hierarchy for some linear algebra ap-
plications [10, 3]. They have proposed alternatives to find optimum tiling to the
register level and mechanism for hiding memory latency.

The main contributions of this paper, outlined in the abstract, are influenced
by a simple idea: Program tiling and/or partitioning should not be the result
of code transformations upon the original code, they should be a natural conse-
quence of the data dependencies between the computations of a program. The
source code of the program should only be used to generate a full data depen-
dency graph for the computations. The data dependency graph is then used to
formulate an optimization problem whose solution is the tiling strategy that, in
our case, would result in the least use of off-chip memory resources. This ap-
proach fundamentally departs from other tiling techniques where the program
partition is heavily influenced by the original structure of the source code.

The tiling strategies resulting from a dependency-graph-based optimization
for stencil computations can be collectively designated as Diamond Tilings. A
very limited form of Diamond Tiling was successfully demonstrated in the past [8]
without a detailed description of the optimization problem or a general solution.
This paper fully develops the idea of how to generate Diamond Tilings based on
the data dependencies of an application. We show guidelines to implement tiles
that increase reuse of data in the case of parallel stencil applications.

The key idea behind the development of the Diamond Tiling class of tilings is
simple: Maximum locality can be obtained if all local, enabled computations are
executed. In here, the term enabled is borrowed from the dataflow field, and it
refers to a computation whose input data is available, and whose input data re-
sides in on-chip memory. This thought is translated into an optimization problem
that is solved in the context of the implementation possibilities such as memory
available (that limits the total size of a tile), synchronization primitives and so
on. The main difference between Diamond Tiling and other tiling techniques is
that Diamond Tiling is not concerned with the original structure of the code.
The source code is only used to generate a complete data dependency graph of
the application, but it is not required in itself to do the tiling transformation.
Many programming models can benefit from the strategies used in the develop-
ment of Diamond Tiling: Dataflow programs, serial programs, parallel programs
and any other kind of program where a data dependency can be extracted.
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The effectiveness of Diamond Tiling is presented in our results. Diamond
Tiling was compared against other tiling techniques using an application that
models the propagation of electromagnetic waves (using the FDTD algorithm) in
multiple dimensions. The Cyclops-64 many-core processor developed by IBM [1]
is used as our testbed architecture. When DRAM bandwidth is the bottleneck of
the application, Diamond Tiling provides the shortest running time, the smallest
total amount of off-chip memory operations and the best performance among all
other tiling techniques, surpassing recent, state of the art tiling techniques by
many times in some cases.

The rest of the paper is organized as follows: Section 2 provides relevant back-
ground on the field, including details on stencil applications and the Cyclops-64
processor. Section 3 formally describes the problem addressed by this paper.
Section 4 provides a mathematical proof of the optimality of Diamond Tiling to
reduce the amount of DRAM operations, and Section 5 shows how to apply the
mathematical results of Section 4 to implement an application. The experiments
used to test the effectiveness of Diamond Tiling and their results are described
in Sections 6 and 7. The paper concludes with conclusions and future work on
Sections 8 and 9.

2 Background

This section provides a brief introduction of the knowledge required to under-
stand the paper. This section covers Stencil Applications, Cyclops-64 and many-
core Architectures, DRAM memory limitations in many-core architectures, and
traditional tiling approaches.

2.1 Stencil Applications

Stencil Applications are applications whose main computation consists of repeat-
edly updating an array with a copy of a previous version of the array. Stencil
applications are of great use for science and engineering, and they typically solve
partial differential equations. Common stencil applications include simulations
of Heat Propagation, Particle Transport, Electromagnetic Propagation, Mass
Transport and others.

The Finite Difference Time Domain (FDTD) [13] technique is a common
algorithm to simulate the propagation of electromagnetic waves through direct
solution of Maxwell’s Equations. FDTD was chosen to illustrate the techniques
presented here since it is easy to understand, it is widely used, and it can be
easily written for multiple dimensions.

2.2 Cyclops-64 and Many-core Architectures

Cyclops-64 [1] is a many-core processor chip recently developed by IBM. Cyclops-
64 allows simultaneous execution of 160 hardware threads. Cyclops-64 shows a
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new direction in computer architecture: It has a user-addressable on-chip mem-
ory and no data cache, it has direct hardware support for synchronization (bar-
riers as well as hardware sleep and awake) and a rich set of atomic operations.
The main features of Cyclops-64 chip are shown in Table 1.

Chip Features

Processor Cores 80 On-Chip Interconnect Full Crossbar
Frequency 500 MHz Off-Chip Interconnect Proprietary
Hardware Barriers Yes Instruction Cache 320 KB
Hardware Sleep - Awake Yes Addressable Memory 1GB
On-Chip Memory User Managed 5MB Off-Chip Memory Banks 4 x 64 bits

Processor Core Features

Thread Units 2, single issue Local Memory 32KB
Floating Point Unit 1, pipelined Registers 64 x 64 bit

Table 1: Cyclops-64 Features

Cyclops-64 was chosen as the testbed for this application since it has a
large amount of parallelism (160 threads simultaneously) and it is highly pro-
grammable (each thread runs its own code).

2.3 DRAM Limitations for Many-core Architectures

For many-core architectures, the disparity between the availability of DRAM
and the availability of floating point units is perhaps the most limiting factor for
performance. This disparity is only likely to increase with each new processor
chip generation: it becomes increasingly easier to build more and more floating
point units inside the chip, but the physical connections that supply memory
from outside the chip improve only marginally.

Current many-core architectures already suffer from this limitation. As an
illustration, the ratio of bandwidth available to the Floating Point Units to off-
chip bandwidth is already 60 to 1 in Cyclops (Table 1): There are 80 Floating
Point Floating units that consume 2 and produce 1 64-bit values per cycle while
there are only 4 memory banks that can supply 1 64-bit value per cycle each.

Floating point operations pay a low price in terms of latency, available re-
sources and power, while, on the other hand, memory operations on DRAM have
a long latency, use more power, and their total bandwidth is limited. For those
reasons, memory operations to DRAM are the determinant factor in the cost of
computations for scientific programs.

2.4 Tiling

The limitations of DRAM memory operations for many-core architectures drive
program optimizations to regard memory operations as precious and it makes lo-
cality one of the most important optimization goals. An effective way to optimize
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for locality is to partition the computations of an application in groups called
“Tiles”. Tiling, or partitioning the application into tiles, is an effective way to
optimize for locality: The advantages of temporal locality can be exploited by
reusing data.

Current tiling techniques follow the constraints of current paradigms. Tra-
ditional approaches are limited to search for possible partitions from a limited
set of transformations on the starting source code. Newer approaches attempt
to go beyond the limitations of source code, but their results are constrained
to heuristics to transform the code or they are constrained by simplistic code
generation approaches.

Some tiling techniques (Figure 1) apply a set of transformations to the source
code provided and search for the best locality in the transformed programs. This
approach was demonstrated with success in the past, but it is constrained by
the fact that the search space is inherently limited by the programs that can be
generated from the initial source code.

Traditional approaches find the best tiling technique from a fixed set of transformations.
For example, they find the affine transformation that produces the best result on the
source code.

Fig. 1: Traditional Approaches to Tiling

Tiling techniques that are not constrained by the structure of the original
source code have been proposed [2], but their usability is still restricted to pro-
grams with a specific structure, and their expressing power is still limited.

3 Problem Formulation

The previous sections described the main techniques for tiling. Most of them are
the result of applying clever transformations on the source code of the applica-
tion.

We propose instead focusing on the fundamental problem of tiling, regardless
of code structure or expressiveness (Figure 2): “What is the most effective tiling
strategy to reduce off-chip bandwidth through the use of on-chip memory?”

It is not claimed in this paper that it is always possible or convenient to
find a solution to the tiling problem as presented in Figure 2, or that such a
solution exists for all possible programs running all possible inputs on all possible
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Tiling, in this paper, is the result of an optimization done directly on the data depen-
dency graph of the program. This is different to traditional tiling techniques where a
set of proposed techniques is evaluated to find a local optimum.

Fig. 2: Tiling using Data Dependency Graphs

architectures. For example, solution of the problem requires knowing the full
dependency graph of the application, which can be practically or theoretically
impossible for some applications.

The focus of this paper is specific: The problem of finding an optimum tiling
is solved for stencil applications (See Section 2) running on parallel processors.
Under those conditions the optimization problem can be approached because:

– The computations in the program are independent of the input data,
– it is possible to count all the computations in the program and
– it is possible to build a data dependency graph providing the relations be-

tween the computations on the program.

The rest of the paper presents the solution in detail.

4 Optimal Tiling for Stencil Computations

The previous section formulated the problem of tiling optimality for a program
in general. This section addresses the problem for the particular case of parallel
stencil computations. Parallel in this context means that a tile can be fully
computed when its memory has been loaded; no communication with off-chip
memory or with other processors is required.

The optimal tiling problem is approached as a formal optimization prob-
lem. The optimization problem maximizes the ratio of computations to memory
operations for all possible tiling approaches.

Tiling of memory addresses and computations is an integer optimization
problem on the computation space. Figure 4 shows the computation space for
an implementation of FDTD (Figure 3). The problem is an integer optimization
problem since all computations are associated with a spatial grid and a computa-
tion step. The problem is extended to allow continuous values for the memory
addresses as well as the number of computations (Figure 5). The problem is
then solved in the continuous space. As will be seen in the equations below, the
optimum solution of the continuous problem is integer, which guarantees that it
is also a solution of the integer optimization problem.
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1 for t in 0 to NT-1
2

3 for i in 1 to N-1
4 E[i] = k1*E[i] +
5 k2 * ( H[i] - H[i-1] )
6 end for
7

8 for i in 1 to N-1
9 H[i]+=E[i]-E[i+1]
10 end for
11

12 end for

Fig. 3: Kernel for FDTD 1D Fig. 4: DDG for FDTD 1D

The rest of this section provides definitions of the variables used, some theo-
rems and a final remark that ultimately results in the optimal tiling technique.

Definition 1 DT is the computation space. The elements of DT are the values
computed by the stencil application. Each one of the elements of DT is associated
with a vector xT = (xT,0, xT,1, ..., xT,M−1, t) where M is the number of spatial
dimensions in the stencil problem, and t represents time in the computation. All
components in xT are integers because they are associated with a spatial grid and
a computation step.

As an example, consider the implementation of the FDTD algorithm in 1
dimension shown in Figure 3. The elements of DT for the implementation shown
in Figure 3 are represented by circles and squares in Figure 4. In the graph
shown in Figure 4, xT,0 corresponds to the i direction and t, the last coordinate
of the vector, corresponds to the t direction. For simplicity of the explanation,
consider that the circle and the square with the same coordinates in space and
time are merged and are referred to simply as one element of the computation
space.

Definition 2 Also, each element of DT is associated with a set of vectors di =
(di,0, di,1, ..., di,(M−1), di,t), i = 0, ..., p that represent the direction of the depen-
dencies in the computation space. In Figure 4 each arrow represents each di
These vectors are also illustrated in Figure 5.

Definition 3 D is the extended continuous space of DT . In the same way, a
point in D can be associated with a vector x = (x0, ..., xM−1, t).

Definition 4 T is a region (e.g. a tile) of the continuous computation space D.
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Fig. 5: Continuous computation space, tiles, and dependences for FDTD 1D

Figure 5 shows the extended computation space D, and an arbitrary tile T .

Definition 5 S(T ) represents the elements that have to be loaded to compute
T and V (T ) represents the elements that can be computed in tile T . S(T ) and
V (T ) can be interpreted as the surface and volume of T respectively.

Definition 6 N , or N(x), x ∈ S(T ) is a unit vector perpendicular to the surface
S(T ) at point x. The orientation of N is towards the inside of T if S(T ) is
associated with loads or it is towards the outside of T if S(T ) is associated with
stores.

Definition 7 Vertical bars | | are used to indicate the cardinality of a set in
DT . |S(T )| and |V (T )| can be interpreted as the area of the surface and volume
of T respectively.

Definition 8 m(T ) is the amount of memory used by a particular tiling T and
mmax is the maximum amount of on-chip memory available.

The optimization problem for finding the tiling in the continuous space is:

max
T

f(T ) =
|V (T )|
|S(T )|

(1)

s.t. m(T ) ≤ mmax, T is a parallel tiling (2)

The solution can be found by the following theorems:

Theorem 1. If T is a valid, parallel tiling, then N · di ≥ 0 for i = 0, 1, ..., p.

Proof. This condition ensures the dependencies points inwards. It implies, com-
putations inside T do not require loading data from other tiles or from memory
and can be computed in parallel.

Theorem 2. If T ∗ is an optimum solution of the optimization problem, then
T ∗ is a convex tile.
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Proof. Considering a feasible non-convex tile Tnc and the smallest convex tile
Tc that fully contains Tnc. Tc is also feasible. f(Tnc) ≤ f(Tc) because |S(Tnc)| ≥
|S(Tc)| and |V (Tnc)| ≤ |V (Tc)|. Since for any feasible non-convex tile there exists
a feasible convex tile with a better or equal value of f(T ), it follows that T ∗ is
convex.

Theorem 3. If T ∗ is an optimum solution of the optimization problem, then,
at each point along the boundaries of T ∗, N is perpendicular to at least one of
the dependency vectors di at that point.

Proof. Consider all the tiles T for which |S(T )| is a particular constant value. For
those tiles the optimization problem of Equation 1 is equivalent to maximization
of |V (T )| under the constraints of Equation 2.

Maximization of |V (T )| is equivalent to maximization of a multidimensional
integral1 of −N · t̂ along the surface of T. Which is maximum when N · t̂ is min-
imum at all points along the surface of the tile T.

Since theorem 1 implies that N lies in a cone extending in the direction of
+t̂. The minimum value of N · t̂ is when N · di = 0, for some i and thus, N is
perpendicular to at least one of the dependence vectors.

Theorem 4. The Tiling technique that solves the optimization problem of Equa-
tions 1 and 2 are tiles where the computation space DT is partitioned with planes
that extend in the direction of the dependences.

Proof. Theorem 3 states that an optimum tile is formed by planes whose normal
vectors are orthogonal to the dependence vectors. It follows that the planes
extend in the direction of the dependence vectors. Because N · di = 0 is required.
The only shape that satisfies this requirement are diamonds. Thus the name
given to the technique. This is also true in the computation space DT where the
optimum T ∗ is a diamond restricted to planes in a grid.

Theorem 5. The optimum tile has a size that tries to use all the available
memory.

Proof. The function f(T ) is a ratio between volume and surface of the tile, and
this ratio increases with the amount of memory used. The maximum tile size is
bounded by the constraint described in Equation 2.

Theorems 4 and 5 are enough to uniquely describe the tiling partition (Figure
5). The tile partitions extend in the direction of the dependences (Theorem 4)
and the size of the tile should be as big as possible (Theorem 5).

Note that the results of this section find the global optimum of the described
problem. The solution found here does not address other constraints not speci-
fied. For example, the result obtained in this section does not consider the effect
of latency, only the effects of bandwidth because, as argued, bandwidth is likely
to be the most important limiting factor, and other limitations such as latency
can be hidden using techniques such as double buffering.

The following sections provide examples and results of using the theorems of
this section to minimize the number of off-chip memory operations.

1 The full details of the derivation of the integral are omitted due to space constraints.
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5 Implementation

The process to obtain the optimum tile size and shape for an application was
described and solved for stencil applications in Section 4. This section provides
and informal description of the results of previous sections that seeks clarity
over formality. The complete details of the particular implementation used for
the experiments has been prepared as a separate publication and it can be found
in [7].

The main conclusion of Section 4 is that the optimum tiling technique is
ultimately defined by the direction of the dependences in the code. Those de-
pendencies ultimately define how the application is tiled.

Consider the application of Figure 3, and its corresponding expanded data
dependency graph (Figure 4). For the elements in the data dependency graph,
the vectors that represent the dependencies are (−1, 1), (0, 1), and (1, 0). Fol-
lowing the optimality result, the boundaries for the optimum tiling extend in
the direction of the dependencies. The planes that form the tiles would be
t = i + c, t = −i + c and t = c, where c is a constant that is associated
with the location of the tile, and t and i are the time and space indexes re-
spectively. The normal vectors N , found using linear algebra on the planes, are
( 1√

2
, 1√

2
), (0, 1) and (− 1√

2
, 1√

2
) respectively for the planes. As explained before,

the planes of the optimum tile have the lowest possible value of N · t̂. Since N · t̂
is ( 1√

2
, 1√

2
)· (0, 1) = 1√

2
, (0, 1)· (0, 1) = 1 and (− 1√

2
, 1√

2
)· (0, 1) = 1√

2
respectively

for the planes t = i + c, t = c, t = −i + c, then t = i + c, and t = −i + c are
chosen as the partition planes because of their lower value of N · t̂.

The resulting planes partition the iteration space as shown in Figure 5. The
planes are spaced so that each tile uses the maximum memory available.

Stencil applications in any number of dimensions can be similarly tiled.

6 Experiments

A number of experiments were conducted using the Cyclops-64 processor (de-
scribed in Section 2) to test our claims of optimality for Diamond Tiling.

A simulation (using the FDTD technique) of an electromagnetic wave propa-
gating both in 1 and 2 dimensions was used to compare Diamond Tiling to other
traditional and state of the art tiling techniques.

The tiling techniques used were:
Näıve: The traditional rectangular tiling was used. Each one of the perfectly

nested loops in the computation is fully tiled using all the available on-chip
memory.

Overlapped: Tiling along the time dimension and the spatial dimensions is
done at the expense of redundant computations and more memory operations
[4].

Split: Two or more tile shapes are used to fully partition the iteration space
such that time tiling with no redundant computations is achieved [4].

Diamond: Diamond Tiling, as described in this paper, was used.
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Fig. 6: Tiling techniques used in the experiments

Figure 6 shows a conceptual view of the tiling techniques when applied to a 1
dimensional problem. The experiments use tiling in both one and two dimensions.

Tiling was done at the on-chip memory level. Register tiling and tiling at
other levels was not done because the focus of our study is the limitation in
the memory operations between DRAM and the on-chip memory in many-core
processors. Further levels of tiling are likely to accentuate the results, but such
experiments fall outside of the scope of our work.

The code for each one of the tiling approaches was hand written in C. The
programs were compiled with ET International’s Compiler for Cyclops-64 version
4.8.17 with optimization flags -O3.

The required synchronization between the computational steps of each tiling
approach was done using the hardware supported barriers available on Cyclops-
64. The experiments were run using one of the first Cyclops-64 chips produced.

The 1 dimensional implementation computes 4000 timesteps of a problem
of size 10000 while the 2 dimensional application computes 500 timesteps of a
problem of size 1000 × 1000. The tile sizes used were 256 and 24 × 24 for the
implementations in 1 and 2 dimensions respectively. These tile sizes were chosen
so that they used all the available on-chip memory.

Information about the execution time, floating point operations and memory
accesses was obtained using the hardware counters available in the Cyclops-64
processor.

All results are reported for the computational part of the program. The
initialization and finalization stages of the program represent a minority of the
execution time and code size and they do not participate in tiling. For that
reason they are not included in the results.

7 Results

The result of executing the testbed application (FDTD) in 1 and 2 dimensions
using several tiling techniques are presented in Figures 7 to 12.
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Fig. 7: FDTD 1D: Operations on DRAM
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Fig. 8: FDTD 2D: Operations on DRAM
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Fig. 9: FDTD 1D: Performance
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Fig. 10: FDTD 2D: Performance

The results confirm the hypothesis that Diamond Tiling is an effective way
to tile stencil computations. For the two applications considered in section 6,
the use of Diamond Tiling resulted in a lower total number of DRAM memory
operations, and for the cases in which the bandwidth was the limiting factor of
the application, Diamond Tiling resulted in the best performance.

Figures 7 and 8 show the total number of off-chip memory operations re-
quired to execute the program. They show how Diamond Tiling provides the
lowest number of off-chip memory operations of all the tiling techniques in the
experiments. As explained before, this decrease in the total number of memory
operations greatly contributes to decrease the total running time of the applica-
tion as can be detailed on Figures 9 and 10 using the number of nodes processed
per second as a metric. As a result of the reduction in off-chip memory operations
and the increasing of performance, the average bandwidth used is decreased, as
can be seen on Figures 11 and 12. A better utilization of off-chip bandwidth
is achieved particularly for 2D-FDTD using Diamond Tiling. In all cases, the
maximum amount of bandwidth available was 2 GB/s.
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Fig. 11: FDTD 1D: Bandwidth used
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Fig. 12: FDTD 2D: Bandwidth used

Traditional tiling approaches such as the widely used rectangular tiling (our
näıve implementation) have a performance that is far below the performance of
Diamond Tiling. This is due to the fact that traditional tiling approaches do not
always consider the advantages of tiling across several loops and are limited by
the ability to generate code. Diamond Tiling has a much lower running time and
it has far less off-chip memory operations.

The recent Overlapped Tiling [4] overcomes the limitation of low parallelism
between tiles at the expense of more memory operations and redundant com-
putations. The price paid for parallelism results in a lower execution speed and
more off-chip memory operations. For large tiles, such as the ones used in the
experiment, Diamond Tiles require less memory operations while still enabling
full parallelism between tiles. Also, Diamond Tiling does not require redundant
computations.

In summary, the experimental data presented here supports the idea that
Diamond Tiling is an excellent technique to tile stencil applications in a parallel
execution environment.

8 Conclusions

This paper presents a technique for data locality optimization that is based on
the analysis of the data dependency graph of the application.

The most important contribution of this work is that it approaches the prob-
lem of tiling as a mathematical problem of optimality rather than as a transfor-
mation. Although the general approach of tiling a generic application through
mathematical optimization of a performance function is not always feasible, it
is nevertheless useful for Stencil Applications.

Section 4 showed a formal description of the problem and developed it to
reach a simple conclusion: In stencil computations, the iteration space should be
partitioned into Diamond-shaped tiles. This result was obtained for the case of
parallel applications. If the parallel restriction is dropped, it may be possible to
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find other tiling techniques with better performance. For example if the execution
is restricted to be serial, skewed tiling [12] may have a better performance than
Diamond Tiling.

The resulting Diamond Tiling has excellent characteristics: (1) It produces
fully parallel tiles, (2) it provides optimum utilization of the off-chip DRAM
bandwidth, and (3) it is easy to generate code for it. Additionally, the positive
impact of Diamond Tiling increases when combined with other optimizations and
possible architecture changes such as better synchronization or more memory.

The results of this paper extend the results of previous research by the au-
thors. In a previous publication, Diamond Tiling was conjectured to be optimal
for FDTD in 1 dimension [8]. This paper formally confirms such claim and ex-
tends the result to general stencil applications in any number of dimensions.

This paper also opens the door for formal optimization of other applications
where a full data dependency graph is possible to obtain. Or, at the very least,
it provides an alternative to locality optimization from source code.

It is possible that the importance of optimization in a mathematical way
will increase in future generations of many core architectures. If current trends
in computer architecture continue, more and more parallelism will be available
while data movement will become even more expensive.

9 Future Work

The main contributions of this paper are significant to stencil applications. Fu-
ture work in locality using data dependency graphs can focus in extending its
applicability to a larger number of applications, or to integrate other techniques
into the formal framework proposed.

So far, the results presented here only address the difficulties of DRAM mem-
ory accesses of one many-core chip. The issue of how to partition a distributed
memory application across multiple many-core chips using data dependency
graphs is a future topic of research.

The tradeoff between barrier synchronizations and point to point synchro-
nizations needs to be evaluated as well. Consumer-producer synchronization
primitives such as phasers [9] can potentially reduce execution noise in sten-
cil applications.

Future work will also focus on providing a generic mathematical framework
for optimization. In the case of the stencil application optimized here, all the op-
timization steps were hand-designed by the authors. A more attractive approach
would be to design a consistent methodology that could be applied to any ap-
plication without being restricted to a particular class of applications. Whether
or not that is possible is unknown to the authors at the time of publication.
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