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Abstract. High-performance systems are evolving to a point where per-
formance is no longer the sole relevant criterion. The current execution
and resource management paradigms are no longer sufficient to ensure
correctness and performance. Power requirements are presently driving
the co-design of HPC systems, which in turn sets the course for a radical
change in how to express the need for scarcer and scarcer resources, as
well as how to manage them. It is our opinion that systems will need to
become more introspective and self-aware with respect to performance,
energy, and resiliency. In this position paper, we explore the major hard-
ware requirements we believe are central to enabling introspection and
self-awareness, as well as the types of interfaces and information that
will be needed for such runtime systems. We also discuss a research path
toward a self-aware system for exascale architectures.

1 Introduction

As we move toward an exascale future with ever expanding capacities in terms
of both cores and resources, we have reached a point in computing where cur-
rent execution paradigms no-longer suffice. High performance computing systems
have begun to approach a point where the ever growing multiplicity of transis-
tor counts and components is not sustainable in terms of energy consumption.
It has been said that at the current rates, extrapolated into the future, an ex-
ascale computer system would consume over 1.5 GW of power [18]. These ever
expanding power requirements necessarily result in the need for a fundamental
and radical shift in terms of programmability and adaptation. We believe that
systems will need to become hierarchically introspective and self-aware to be
able to adapt to steep performance and energy requirements.

Problem Statement There are number of key facets that need to be addressed
to enable a truly introspective and self-aware system capable of performing well
and efficiently. The first is that a form of co-design needs to occur in terms
of hardware and software. Exascale hardware needs to support a number of
integral features to enable controlling system software to monitor and adapt
to the current system state and any requirements passed to it in the form of
power or performance. In broad terms, there will need to be some form of an
observe-decide-act (ODA) loop to monitor, make decisions, and to control both



the hardware and software aspects of a system [7]. The second is that the system
needs to be capable of adapting for power and performance while at the same
time maintaining correct and reliable operation. It is key to recognize that these
conflicting goals form a basis for a multi-variable problem which will be further
complicated by the need to run multiple programs on a system with thousands
of components. There is an open question on how to self-adjust and to meet
these goals.

This position paper proposes the following contributions: (1) we evaluate
and motivate the important hardware requirements for a truly self-aware and
introspective system (using a specific target architecture), and (2) we provide a
vision and discuss important research venues for self-aware exascale systems.

This paper is organized as follows: Section 2 discusses our target exascale ar-
chitecture; Section 3 evaluates the hardware requirements essential for an intro-
spective system software; Section 4 provides research venues for self-adaptation
at the exascale level; Section 5 discusses the related work; and we conclude in
Section 6.

2 Background

Target Exascale Architecture and Associated Toolchain For the purpose of this
discussion, we introduce our target exascale architecture (TEA) which is similar
to the one described by Knauerhase et al. [11]. At the lowest level, the TEA
is organized into blocks consisting of a Control Engine (CE), several eXecution
Engines (XEs), and a block shared memory. An XE’s fundamental usage is to
execute arbitrary code without interruption. The CE on the other hand is de-
signed to control and schedule work to a number of local XEs within a given
block. A detailed description of the TEA is provided in Figure 1(a). Both XE
and CE cores contain a set of identical components: some local memory (for data
and code), ALUs, a clock/power gate control unit, and some network functional-
ity. In addition, XEs also feature a floating-point unit, as well as a performance
monitoring unit (PMU). The XEs, being designed solely for execution, do not
have logic to directly handle interrupts or traps and instead any interrupts are
offloaded to the CE within the block. The architecture itself is designed to op-
erate at close to threshold voltages, as well as to control the power and clocks
of functional units (FUs) within the system in order to minimize energy usage.
A detailed description of the TEA toolchain is shown in Figure 1(b).

Codelet Program FEzxecution Model and System Software Model The TEA will be
hierarchical in nature with numerous components. Coarse grain or monolithic
approaches to adaptation do not befit this type of architecture. We strongly
believe that these types of program execution models (PXMs) will be incapable of
effective self-adaptation. Instead we believe that the focus should be on using and
incorporating fine-grained PXMs within a self-adaptation framework. There have
been number of discussions to decide which program execution model should
be used for exascale systems. One such PXM is the codelet model [24], which
has already been implemented in various ways [13,21]. It features an abstract
machine model that fits very well with our TEA.
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(a) Our Target Exascale Architecture consists of heterogeneous cores in a hier-
archical configuration with network interconnects at each level, organized into
blocks, clusters, and chips. The exact number of cores and levels is not important

for our discussion.
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(b) Target Exascale Architecture Toolchain: XEs and CEs are specialized and
may have a distinct instruction set architecture. As a result, a special compiler
and linker may need to be used to produce the binaries for each. Each has a
library providing a basic runtime system. In the case of an XE, the library is
linked with the user program.
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Fig. 1. Our Target Exascale Architecture and associated toolchain.

3 Requirements for Self-adaptation

In this section, we discuss the underlying hardware requirements in order to
implement a self-adaptive, self-aware system. Many of these will be integral for
enabling a self-adaptive system software and others will simply improve or make



its job easier in adapting. Primarily, this section serves as a “wish” list of fea-
tures that we believe are important for adaptation in any exascale architecture.
We target three main objectives for self-aware systems: energy/power efficiency,
performance, and resiliency. However, the benefits of a tailored performance
monitoring unit are discussed first.

Role of the PMU in FExascale Systems Before moving on to the detailed re-
quirements in the subsequent subsections, we discuss the PMU as an important
mechanism toward enabling adaptation. From an energy perspective, the coun-
ters can be combined with instruction energy cost metrics in order to indirectly
monitor energy. From the perspective of performance monitoring, the PMU can
directly give many different instruction count metrics that are useful in charac-
terizing performance. From a resiliency perspective, counts of correctable errors
can be used to aid proactive monitoring for potential issues and as a mechanism
to determine whether the system software should be cautious with the work it
is scheduling. Being given a plethora of counters and the ability to run them
concurrently will greatly aid in information gathering for a self-adaptive system.
As such, it is our belief that the PMU will serve as the primary means of infor-
mation gathering for both performance and energy adaptation, and will be one
of the most important mechanisms of a self-adaptive system.

Energy For any large-scale computer system (including current petascale sys-
tems), the primary goal in self-adaptation is to minimize energy consumption.
As discussed previously, the PMU will be integral in this goal. At the most ba-
sic level, the PMU provides various performance related metrics. This includes
counts of various different instruction types such as local/remote reads, writes,
ALU operations, FPU operations, DMA operations, etc. These counts are useful
directly for determining the workload characteristics and optimality of running
tasks (and of higher level components in the system). For example, if the run-
time system is able to determine that a task is spending the majority of its time
idling while waiting for remote memory through the usage of some combination
of remote read and DMA operations, it could clock gate the processor running
the task while the data of the task is moved to a more localized memory. For an-
other example, through the count of FPU operations, the runtime system could
determine that only integer calculations are performed on a given XE, and thus
decide to power gate its FPU.

The PMU can also be used indirectly to estimate energy usage. This is pos-
sible if the energy cost of various instructions and components in the system are
known or estimable, and an energy model is developed. Essentially, the costs
of instructions could be combined with the counts read from the PMU to form
a picture about the overall energy usage. This information would then be used
in conjunction with specified power budgets to determine if actions need to be
taken in order to meet goals.

Our TEA is expected to be capable of adjusting the state of FUs, at least
at a functional unit block (FUB) granularity — which is at a finer granularity
than FUs. To motivate this, consider task kernel hinting. Given a compiler with



the capability to identify the types of instructions used by a task kernel and
given mechanism for the runtime to hook into this information, it could identify
explicitly which units would not be used by a given task and simply power
gate them. Furthermore, the same strategy could be applied at an even finer-
granularity to turn off individual pipelines within FUs.

Performance We expect the TEA’s system software to be responsible for task
scheduling and resource allocation. Thus, it needs to be able to monitor perfor-
mance in order to achieve adaptation. There are various types of performance
metrics that will be important. These can range from different types of resource
utilization (network, CPU, memory, etc.) to workload distribution, etc. Char-
acterizing sections of the system will require monitoring to be relatively fine-
grained. We believe that the ideal granularity is at the codelet level.

Using the PMU events described, performance within the runtime can be
evaluated. For example, by knowing the frequency and types of memory counts,
the system software can determine network utilization and whether the commu-
nication is relatively localized. This information is useful for determining how
optimal the current task scheduling is in terms of performance and energy effi-
ciency. If for instance, the system software can determine that groups of tasks
are communicating frequently but are not localized to the same block, it could
migrate the tasks to one block in order to localize the network traffic.

Resiliency Fault tolerance is one of the most important aspects of a self-adaptive
system. Without proper hardware support, the software will be unable to cope
with failures or to meet goals in exascale systems. Furthermore, the system
software would necessarily be burdened with the detection and prevention of
faults through costly primitive means. This could potentially entail such things
as duplicating tasks and verifying the results of all task computations within the
system. In short, lack of proper hardware support for resiliency will significantly
affect other aspects of self-adaptation.

It is our belief that the hardware must be able to detect faults within the com-
ponents of the system. The primary motivation for this is to minimize runtime
scope and energy costs. A system software burdened with the aforementioned
details will be extensive and inefficient. This leads not only to a high cost in
software support, but also a reduction in energy efficiency and performance. For
example, task duplication could force the same task to be re-run three times
simply to determine which set of components is faulty.

The hardware needs not only to detect and /or correct faults but also a means
to deliver information about the failure to the system software. It is absolutely
essential for an introspective system software to know which FUs have failed
in order to reschedule any tasks that require or depend on the failed hardware
resources.

4 Research Venues

In this section, we discuss our vision of exascale self-adaptation. At a high level,
the runtime system of exascale architectures will need to make intelligent de-
cisions to control various hardware features to reduce power consumption, as



well as to schedule tasks and move data. First, we start with a discussion of
adaptation at a fine-grained level and from there move toward a discussion of
adaptation at a more coarse-grained level.

Fine-grained Adaptation An exascale architecture must include power manage-
ment at a fine-grained level. We foresee adaptation occurring through an ODA
mechanism as shown in Figure 2. A CE will implement an ODA loop for self-
adaptation. Information will come from various hardware and software mecha-
nisms within the system, and goals will come from the user or program. Finally,
various actions will occur in the form of adjustments to hardware state or some
type of software change.
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Fig. 2. Mapping our target exascale architecture to an observe-decide-act mechanism.

Some of the decisions that we foresee are whether to clock gate or power
gate components, as well as whether to adjust the frequency of components.
For a small example of adaptation within our TEA, consider Figure 3. The
right side shows a block’s state at various stages during execution. The left side
shows three distinct decisions occurring between those stages. In the example, all
blocks are initially enabled. However, the CE observes that only two scheduled
tasks are currently running and from there decides to disable the unused XEs.
This decision is then translated into an action of writing to each XE’s Clock
Control to put them into a clock gated state. Next, the CE observes that there
are many remote DMA operations occurring and decides to lower the frequency
of the block to conserve energy. This decision is then translated into an action
of writing to the Block Frequency Control. Finally, the CE observes that there
are no floating point operations occurring within the second XE and decides
to power gate the FP functional unit. This decision is then translated into an
action of writing to the XE Power Control.

Coarse-Grain Adaptation At a coarse-grain level, a form of hierarchical man-
agement will need to occur. For this, there will need to be a communication



subsystem between CEs in order to communicate system state. In terms of en-
ergy and performance, it will be important to be able to generalize localized
information about specific sections of the system and to communicate that in-
formation without transferring large amounts of data. In short, CEs will need
to aggregate their local information and to package it into condensed form for
usage by nodes higher up in the hierarchy. This aggregated information would
include the health and resource allocations in subsections of the system. The
higher-level nodes would be tasked with making decisions based upon this infor-
mation, for example, whether to allocate data or schedule a task to a particular
section of the system.

5 Related Work

Below we discuss other previous work in self-adaptation. The approaches fall
into three categories: “Application-Centric Adaptation,” “Component-Centric
Adaptation,” and “System-Centric Adaptation.”

Application-Centric Adaptation Application-centric approaches focus on adap-
tation for specific applications or a subclass of applications within a given do-
main. Quality of service (QoS) is one large area of active research [1,9] due to
the real time requirements and the ever-changing field of computing resources.
Other works focus on changing application specific algorithm policy [22]. Some
approaches are more akin to toolkits designed for application programmers to
use to enable adaptation within their software [6].

Component-Centric Adaptation Component-centric approaches are a form of
adaptation that focuses on monitoring and adapting a particular component or
resource of a system. For example, there has been research in adapting cache poli-
cies [10], dynamic reconfiguration of memory hierarchies [3], and self-optimizing
memory controllers [8].

System-Centric Adaptation System-centric approaches focus on adaptation at
the system level. Historically the role of resource management has been given
to the operating system (OS). In the case of highly parallel systems, we can
divide these approaches into several categories: full OSes, lightweight kernels,
micro kernels, and high-level runtime systems. Full OSes adapted to cluster-like
environments [20] are mainstream OSes customized for high-performance needs.
Lightweight kernels [4,5] implement a reduced set of features directly accessible
to the application programmer and forward calls for missing features to a “fuller”
OS. Micro kernels [12,15,17] implement basic OS services (memory addressing,
process management, inter-process communications) as privileged code and im-
plement every other service as some form of unprivileged library [2]. Finally,
high-level runtime systems implement some form of resource management on
top of the host OS [14,19,23] or expose some form of languages (or frameworks)
that provide mechanisms for an application to adapt [7,16].
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Fig. 3. Target exascale architecture adaptation example.
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Discussion There are a number of shortcomings that need to be addressed for ex-
ascale architectures. Application and component-centric approaches lack a holis-
tic view of adaptation. A coordination between system resources, components,
and applications will be integral at the exascale level. Moreover, current system-
centric approaches lack fine-grained control over components due to limitations
in hardware. Exascale architectures will need to adjust the state of components at
a very fine granularity in order to conserve energy and to meet power envelopes.
This also means that applications will need to become first-class citizens in the
sense that their goals will need to be accounted for by a self-adapting system.



6 Conclusion

This paper takes the position that, due to the draconian requirements of future
exascale systems with respect to performance, energy, and resiliency, only a
proactive, self-aware, adaptive system will be able to correctly manage resources,
both at the global, coarse-grain level, as well as at the finest-grain level. To this
end, a target exascale architecture was presented, along with the challenges to
overcome, and the research venues to solve those problems.
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